
An abstract model for branching and its application to
Mixed Integer Programming

Pierre Le Bodic
Joint work with George Nemhauser

School of Industrial and Systems Engineering
Georgia Institute of Technology

Grant FA9550-12-1-0151 of the Air Force Office of Scientific Research

Grant CCF-1415460 of the National Science Foundation

Discrete Maths Seminar, Monash University
August 1 2016

1 / 30



Linear Programming (LP)

Integer Programming (IP)

zLP = max ctx

s.t. Ax ≤ b

x ∈ Rn
+

LP is in P.

zIP = max ctx

s.t. Ax ≤ b

x ∈ Zn
+

IP is NP-hard.

zLP ≥ zIP

x ∈ Z n
+ optimal for LP ⇒ zIP = zLP

where


A is a m × n matrix,
c is a n vector,
b is a m vector,

and all data are rational.

2 / 30



Linear Programming (LP) Integer Programming (IP)

zLP = max ctx

s.t. Ax ≤ b

x ∈ Rn
+

LP is in P.

zIP = max ctx

s.t. Ax ≤ b

x ∈ Zn
+

IP is NP-hard.

zLP ≥ zIP

x ∈ Z n
+ optimal for LP ⇒ zIP = zLP

where


A is a m × n matrix,
c is a n vector,
b is a m vector,

and all data are rational.

2 / 30



Linear Programming (LP) Integer Programming (IP)

zLP = max ctx

s.t. Ax ≤ b

x ∈ Rn
+

LP is in P.

zIP = max ctx

s.t. Ax ≤ b

x ∈ Zn
+

IP is NP-hard.

zLP ≥ zIP

x ∈ Z n
+ optimal for LP ⇒ zIP = zLP

where


A is a m × n matrix,
c is a n vector,
b is a m vector,

and all data are rational.

2 / 30



Linear Programming (LP) Integer Programming (IP)

zLP = max ctx

s.t. Ax ≤ b

x ∈ Rn
+

LP is in P.

zIP = max ctx

s.t. Ax ≤ b

x ∈ Zn
+

IP is NP-hard.

zLP ≥ zIP

x ∈ Z n
+ optimal for LP ⇒ zIP = zLP

where


A is a m × n matrix,
c is a n vector,
b is a m vector,

and all data are rational.

2 / 30



Example: an IP formulation for edge coloring
Given G = (V ,E ), let C = {1, . . . ,∆ + 1} be the set of possible colors,
and

I Variable c i = 1 iff color i ∈ C is used,

I Variable x ie = 1 iff color i ∈ C is assigned to edge e ∈ E .

minx ,c
∑

i∈C c i (1)∑
i∈C x ie = 1 ∀e ∈ E (2)∑
u∈V ,e=uv x

i
e ≤ c i ∀v ∈ V , ∀i ∈ C (3)

c i ∈ {0, 1} ∀i ∈ C (4)
x ie ∈ {0, 1} ∀e ∈ E , ∀i ∈ C (5)

I (1) minimizes the number of colors used.

I (2) ensures each edge is assigned a color.

I (3) enforces a proper coloring.

I (4) and (5) enforce integrality

3 / 30



(Mixed) Integer Programming solvers main components

Presolvers

I Simplify problem (e.g. eliminate redundancy)

I Tighten LP bound (e.g. change coefficients)

Primal heuristics

I Find a feasible solution (e.g. starting from LP or IP solution)

Cutting planes

I Tighten LP bound

Branch & Bound

I Implicit enumeration using primal and dual bounds to prune nodes

4 / 30



Outline of the B&B algorithm for MIP solving
Input: a MIP instance

1: Add the root node to the list of nodes to process
2: while the list of nodes is non empty do
3: Select∗ the node to process
4: Solve the node’s LP
5: if the LP solution is integral then
6: Add the solution to the pool of solutions
7: else
8: if the node’s LP bound is better than the primal bound then
9: Select∗∗ an integer variable x with a fractional value xLP

10: Create two children where x ≤ bxLPc or x ≥ dxLPe
11: Add the children to the list of nodes
12: end if
13: end if
14: end while
15: Output the best primal solution
∗ using a node selector
∗∗ using a branching rule

5 / 30



Discrete maths in two papers related to branching in MIP

6 / 30



Fooling MIP solvers

Find a family of MIP instances for which:

I There exists a small Branch & Bound tree

I MIP solvers produce big Branch & Bound trees

7 / 30



Edge coloring problem

Without knowing Vizing, MIP solvers will still immediately find that they
need

I At least ∆ colors

I At most ∆ + 1 colors

Then they have to use branch-and-bound to decide between ∆ and ∆ + 1.

8 / 30



Petersen graph

I 10 vertices
I 15 edges
I degree 3
I chromatic index χ′ = 4

Good, but we want bigger graphs! And we can’t add edges!

Find a family of snarks that

I has arbitrarily large graphs

I is easily constructible

9 / 30



Petersen graph

I 10 vertices
I 15 edges
I degree 3
I chromatic index χ′ = 4

Good, but we want bigger graphs! And we can’t add edges!

Find a family of snarks that

I has arbitrarily large graphs

I is easily constructible

9 / 30



Modifying the Petersen graph

(a) Petersen graph
χ′ = 4

(b) Graph P1

χ′ = 4
(c) Graph P2

χ′ = 3

10 / 30



Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow
the “path” {b,c} cannot be blue or green
the “path” {a,b,e} cannot be blue
We want to split these “paths” by adding two vertices!
Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!
P2 can be colored using three colors but P1 cannot!

11 / 30



Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow
the “path” {b,c} cannot be blue or green
the “path” {a,b,e} cannot be blue
We want to split these “paths” by adding two vertices!
Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!
P2 can be colored using three colors but P1 cannot!

11 / 30



Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow
the “path” {b,c} cannot be blue or green
the “path” {a,b,e} cannot be blue
We want to split these “paths” by adding two vertices!
Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!
P2 can be colored using three colors but P1 cannot!

11 / 30



Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow
the “path” {b,c} cannot be blue or green
the “path” {a,b,e} cannot be blue
We want to split these “paths” by adding two vertices!
Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!
P2 can be colored using three colors but P1 cannot!

11 / 30



Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow

the “path” {b,c} cannot be blue or green
the “path” {a,b,e} cannot be blue
We want to split these “paths” by adding two vertices!
Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!
P2 can be colored using three colors but P1 cannot!

11 / 30



Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow
the “path” {b,c} cannot be blue or green

the “path” {a,b,e} cannot be blue
We want to split these “paths” by adding two vertices!
Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!
P2 can be colored using three colors but P1 cannot!

11 / 30



Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow
the “path” {b,c} cannot be blue or green
the “path” {a,b,e} cannot be blue

We want to split these “paths” by adding two vertices!
Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!
P2 can be colored using three colors but P1 cannot!

11 / 30



Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow
the “path” {b,c} cannot be blue or green
the “path” {a,b,e} cannot be blue
We want to split these “paths” by adding two vertices!

Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!
P2 can be colored using three colors but P1 cannot!

11 / 30



Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow
the “path” {b,c} cannot be blue or green
the “path” {a,b,e} cannot be blue
We want to split these “paths” by adding two vertices!
Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!

P2 can be colored using three colors but P1 cannot!

11 / 30



Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow
the “path” {b,c} cannot be blue or green
the “path” {a,b,e} cannot be blue
We want to split these “paths” by adding two vertices!
Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!
P2 can be colored using three colors but P1 cannot!

11 / 30



Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow
the “path” {b,c} cannot be blue or green
the “path” {a,b,e} cannot be blue
We want to split these “paths” by adding two vertices!
Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!
P2 can be colored using three colors but P1 cannot!

11 / 30



Input graphs

Figure: the graph G3

Gk = P1 + (k − 1)P2

Gk has ∆ = 3 and χ′ = 4.

12 / 30



A fixed-size Branch & Bound tree

Theorem
Given an optimal solution, there is a fixed-size Branch & Bound tree for
any k ≥ 1.

Proof

I Solve instance I1 → Branch & Bound tree T1

I Solve Ik by following T1 in the Branch & Bound tree Tk

I Note that the global dual bound of T1 is 4

I All constraints of I1 are contained in or implied by Ik , thus the global
dual bound of the tree Tk is 4

13 / 30



Experimental results

CPLEX GUROBI SCIP
Size (k) s n t s n t s n t

1 10 11 0 10 21 0 10 12 0
2 10 15 0 10 23 0 10 19 1
4 10 38 0 10 30 1 10 41 4
8 10 59 0 10 50 3 10 79 10

16 9 302 3 10 84 15 10 263 23
32 7 213 11 10 175 47 10 419 48
64 9 50 26 10 1921 424 9 1328 178

128 8 276 79 7 1470 1098 10 6542 808
256 6 1366 564 7 699 4182 8 6225 2041
512 2 3265 1700 7 198 3586 6 6125 6347

1024 2 1509 5501 3 112 16943 0 - -

Number of instances solved (s), and, for the instances solved, the
geometric means of the number of nodes (n) and time in seconds (t)

14 / 30



An abstract model for branching and its application to
Mixed Integer Programming

15 / 30



State-of-the-art branching rule in MIP solvers
At a given node, a branching rule picks the variable to branch on.
The state-of-the-art branching rule is a hybrid of two branching rules that
aim at improving the dual bound.

Strong branching

For all fractional variables x , strong branching computes the LP values at
the children that would be created by branching on x .
Example: x1 = 0.2, x2 = 0.5 in the LP relaxation.

0

5 10

0

2 8

x1 = 0 x1 = 1 x2 = 0 x2 = 1

Pseudocost branching

For all fractional variables x , pseudocost branching imitates strong
branching using historical information provided by strong branching and
(actual) branching.

16 / 30



State-of-the-art branching rule in MIP solvers
At a given node, a branching rule picks the variable to branch on.
The state-of-the-art branching rule is a hybrid of two branching rules that
aim at improving the dual bound.

Strong branching

For all fractional variables x , strong branching computes the LP values at
the children that would be created by branching on x .
Example: x1 = 0.2, x2 = 0.5 in the LP relaxation.

0

5 10

0

2 8

x1 = 0 x1 = 1 x2 = 0 x2 = 1

Pseudocost branching

For all fractional variables x , pseudocost branching imitates strong
branching using historical information provided by strong branching and
(actual) branching.

16 / 30



State-of-the-art branching rule in MIP solvers
At a given node, a branching rule picks the variable to branch on.
The state-of-the-art branching rule is a hybrid of two branching rules that
aim at improving the dual bound.

Strong branching

For all fractional variables x , strong branching computes the LP values at
the children that would be created by branching on x .
Example: x1 = 0.2, x2 = 0.5 in the LP relaxation.

0

5 10

0

2 8

x1 = 0 x1 = 1 x2 = 0 x2 = 1

Pseudocost branching

For all fractional variables x , pseudocost branching imitates strong
branching using historical information provided by strong branching and
(actual) branching.

16 / 30



Branch & Bound abstract model for MIP solving

Variable = pair (l , r) of two > 0 integers with l ≤ r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap1 closed at a node = value at that node

Gap closed by the B&B tree = minimum gap at a leaf

0

l1

l1 + l2

l1 + l2 + l3 l1 + l2 + r3

l1 + r2

r1

r1 + l3 r1 + r3

Tree-size = 9

1In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30



Branch & Bound abstract model for MIP solving

Variable = pair (l , r) of two > 0 integers with l ≤ r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap1 closed at a node = value at that node

Gap closed by the B&B tree = minimum gap at a leaf

0

l1

l1 + l2

l1 + l2 + l3 l1 + l2 + r3

l1 + r2

r1

r1 + l3 r1 + r3

Tree-size = 9

1In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30



Branch & Bound abstract model for MIP solving

Variable = pair (l , r) of two > 0 integers with l ≤ r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap1 closed at a node = value at that node

Gap closed by the B&B tree = minimum gap at a leaf

0

l1

l1 + l2

l1 + l2 + l3 l1 + l2 + r3

l1 + r2

r1

r1 + l3 r1 + r3

Tree-size = 9

1In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30



Branch & Bound abstract model for MIP solving

Variable = pair (l , r) of two > 0 integers with l ≤ r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap1 closed at a node = value at that node

Gap closed by the B&B tree = minimum gap at a leaf

0

l1

l1 + l2

l1 + l2 + l3 l1 + l2 + r3

l1 + r2

r1

r1 + l3 r1 + r3

Tree-size = 9

1In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30



Branch & Bound abstract model for MIP solving

Variable = pair (l , r) of two > 0 integers with l ≤ r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap1 closed at a node = value at that node

Gap closed by the B&B tree = minimum gap at a leaf

0

l1

l1 + l2

l1 + l2 + l3 l1 + l2 + r3

l1 + r2

r1

r1 + l3 r1 + r3

Tree-size = 9

1In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30



Branch & Bound abstract model for MIP solving

Variable = pair (l , r) of two > 0 integers with l ≤ r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap1 closed at a node = value at that node
Gap closed by the B&B tree = minimum gap at a leaf

0

l1

l1 + l2

l1 + l2 + l3 l1 + l2 + r3

l1 + r2

r1

r1 + l3 r1 + r3

Tree-size = 9

1In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30



Branch & Bound abstract model for MIP solving

Variable = pair (l , r) of two > 0 integers with l ≤ r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap1 closed at a node = value at that node
Gap closed by the B&B tree = minimum gap at a leaf

0

l1

l1 + l2

l1 + l2 + l3 l1 + l2 + r3

l1 + r2

r1

r1 + l3 r1 + r3

Tree-size = 9

1In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30



Single Variable Branching (SVB)

Input: one variable (l , r), an integer G and an integer k, all positive.
Question: Is the size of the Branch & Bound tree that closes the gap G ,
repeatedly using the given variable, at most k?

Example: variable (2, 5) and gap G = 6.

0

2

4

6 9

7

5

7 10

Treesize = 9

18 / 30



Single Variable Branching (SVB)

Input: one variable (l , r), an integer G and an integer k, all positive.
Question: Is the size of the Branch & Bound tree that closes the gap G ,
repeatedly using the given variable, at most k?

Example: variable (2, 5) and gap G = 6.

0

2

4

6 9

7

5

7 10

Treesize = 9

18 / 30



Motivation: state-of-the-art scoring functions
At a given node, we have to branch on a variable given mutliple variables
x with gains (lx , rx). ⇒ scoring functions

0

10 10

0

2 50

x1 = 0 x1 = 1 x2 = 1 x2 = 2

Linear function:

(1− µ)× lx + µ× rx

(
µ =

1

6

)
Product function:

lx × rx

−34% nodes

−14% time

Variables (10, 10) and (2, 50) have the same score for both functions!

19 / 30



Motivation: state-of-the-art scoring functions
At a given node, we have to branch on a variable given mutliple variables
x with gains (lx , rx). ⇒ scoring functions

0

10 10

0

2 50

x1 = 0 x1 = 1 x2 = 1 x2 = 2

Linear function:

(1− µ)× lx + µ× rx

(
µ =

1

6

)

Product function:

lx × rx

−34% nodes

−14% time

Variables (10, 10) and (2, 50) have the same score for both functions!

19 / 30



Motivation: state-of-the-art scoring functions
At a given node, we have to branch on a variable given mutliple variables
x with gains (lx , rx). ⇒ scoring functions

0

10 10

0

2 50

x1 = 0 x1 = 1 x2 = 1 x2 = 2

Linear function:

(1− µ)× lx + µ× rx

(
µ =

1

6

)
Product function:

lx × rx

−34% nodes

−14% time

Variables (10, 10) and (2, 50) have the same score for both functions!

19 / 30



Motivation: state-of-the-art scoring functions
At a given node, we have to branch on a variable given mutliple variables
x with gains (lx , rx). ⇒ scoring functions

0

10 10

0

2 50

x1 = 0 x1 = 1 x2 = 1 x2 = 2

Linear function:

(1− µ)× lx + µ× rx

(
µ =

1

6

)
Product function:

lx × rx

−34% nodes

−14% time

Variables (10, 10) and (2, 50) have the same score for both functions!

19 / 30



Motivation: state-of-the-art scoring functions
At a given node, we have to branch on a variable given mutliple variables
x with gains (lx , rx). ⇒ scoring functions

0

10 10

0

2 50

x1 = 0 x1 = 1 x2 = 1 x2 = 2

Linear function:

(1− µ)× lx + µ× rx

(
µ =

1

6

)
Product function:

lx × rx

−34% nodes

−14% time

Variables (10, 10) and (2, 50) have the same score for both functions!
19 / 30



Motivation: variable (10, 10) vs (2, 49) for SVB
The linear and product functions both score (10, 10) higher than (2, 49).

0

10

20 20

10

20 20

0

2

4 51

49

51 98

0 10 20 30 40

0

20

40

gap

tr
ee

si
ze

0 20 40 60 80 100

0

1,000

2,000

gap

At gap G = 1000, the relative difference in treesize is 323 millions.

20 / 30



Motivation: variable (10, 10) vs (2, 49) for SVB
The linear and product functions both score (10, 10) higher than (2, 49).

0

10

20 20

10

20 20

0

2

4 51

49

51 98

0 10 20 30 40

0

20

40

gap

tr
ee

si
ze

0 20 40 60 80 100

0

1,000

2,000

gap

At gap G = 1000, the relative difference in treesize is 323 millions.

20 / 30



Motivation: variable (10, 10) vs (2, 49) for SVB
The linear and product functions both score (10, 10) higher than (2, 49).

0

10

20 20

10

20 20

0

2

4 51

49

51 98

0 10 20 30 40

0

20

40

gap

tr
ee

si
ze

0 20 40 60 80 100

0

1,000

2,000

gap

At gap G = 1000, the relative difference in treesize is 323 millions.

20 / 30



Motivation: variable (10, 10) vs (2, 49) for SVB
The linear and product functions both score (10, 10) higher than (2, 49).

0

10

20 20

10

20 20

0

2

4 51

49

51 98

0 10 20 30 40

0

20

40

gap

tr
ee

si
ze

0 20 40 60 80 100

0

1,000

2,000

gap

At gap G = 1000, the relative difference in treesize is 323 millions.
20 / 30



Complexity results for SVB

Notation
t(G ) = treesize to close G with (l , r)
Is t(G ) ≤ k?

Recursion

t(G ) =

{
1 if G ≤ 0

1 + t(G − l) + t(G − r) otherwise

Pseudo-polynomial!

Closed-form formula (CFF)

t(G ) = 1 + 2×
dG

r
e∑

h=1

(
h + dG−(h−1)×r

l e − 1

h

)
Proof: group leaves that are reached by “turning” right h times together.

O(log2(k)) is polynomial, but still big in practice!

21 / 30



Complexity results for SVB

Notation
t(G ) = treesize to close G with (l , r)
Is t(G ) ≤ k?

Recursion

t(G ) =

{
1 if G ≤ 0

1 + t(G − l) + t(G − r) otherwise

Pseudo-polynomial!

Closed-form formula (CFF)

t(G ) = 1 + 2×
dG

r
e∑

h=1

(
h + dG−(h−1)×r

l e − 1

h

)
Proof: group leaves that are reached by “turning” right h times together.

O(log2(k)) is polynomial, but still big in practice!

21 / 30



Complexity results for SVB

Notation
t(G ) = treesize to close G with (l , r)
Is t(G ) ≤ k?

Recursion

t(G ) =

{
1 if G ≤ 0

1 + t(G − l) + t(G − r) otherwise

Pseudo-polynomial!

Closed-form formula (CFF)

t(G ) = 1 + 2×
dG

r
e∑

h=1

(
h + dG−(h−1)×r

l e − 1

h

)
Proof: group leaves that are reached by “turning” right h times together.

O(log2(k)) is polynomial, but still big in practice!

21 / 30



Asymptotic case results for SVB
I For variable (1, 2), the growth rate t(G+1)

t(G) of the tree tends to 1+
√

5
2

I The sequence t(G+1)
t(G) does not converge for all variables. We use:

ϕ = lim
G→∞

l

√
t(G + l)

t(G )

ϕ is the unique > 1 root of the polynomial p(x) = x r − x r−l − 1
I We have the bounds r

√
2 ≤ ϕ ≤ l

√
2

I A numerical approximation of ϕr is given by the fixed-point iteration

f (x) = 1 +
1

x
l
r − 1

I For G ≥ F , we have
t(G ) ≈ ϕG−F t(F )

I Given two variables x and y and a “large” G , ϕx < ϕy implies that
branching on x leads to a smaller treesize.

22 / 30



Asymptotic case results for SVB
I For variable (1, 2), the growth rate t(G+1)

t(G) of the tree tends to 1+
√

5
2

I The sequence t(G+1)
t(G) does not converge for all variables. We use:

ϕ = lim
G→∞

l

√
t(G + l)

t(G )

ϕ is the unique > 1 root of the polynomial p(x) = x r − x r−l − 1

I We have the bounds r
√

2 ≤ ϕ ≤ l
√

2
I A numerical approximation of ϕr is given by the fixed-point iteration

f (x) = 1 +
1

x
l
r − 1

I For G ≥ F , we have
t(G ) ≈ ϕG−F t(F )

I Given two variables x and y and a “large” G , ϕx < ϕy implies that
branching on x leads to a smaller treesize.

22 / 30



Asymptotic case results for SVB
I For variable (1, 2), the growth rate t(G+1)

t(G) of the tree tends to 1+
√

5
2

I The sequence t(G+1)
t(G) does not converge for all variables. We use:

ϕ = lim
G→∞

l

√
t(G + l)

t(G )

ϕ is the unique > 1 root of the polynomial p(x) = x r − x r−l − 1
I We have the bounds r

√
2 ≤ ϕ ≤ l

√
2

I A numerical approximation of ϕr is given by the fixed-point iteration

f (x) = 1 +
1

x
l
r − 1

I For G ≥ F , we have
t(G ) ≈ ϕG−F t(F )

I Given two variables x and y and a “large” G , ϕx < ϕy implies that
branching on x leads to a smaller treesize.

22 / 30



Asymptotic case results for SVB
I For variable (1, 2), the growth rate t(G+1)

t(G) of the tree tends to 1+
√

5
2

I The sequence t(G+1)
t(G) does not converge for all variables. We use:

ϕ = lim
G→∞

l

√
t(G + l)

t(G )

ϕ is the unique > 1 root of the polynomial p(x) = x r − x r−l − 1
I We have the bounds r

√
2 ≤ ϕ ≤ l

√
2

I A numerical approximation of ϕr is given by the fixed-point iteration

f (x) = 1 +
1

x
l
r − 1

I For G ≥ F , we have
t(G ) ≈ ϕG−F t(F )

I Given two variables x and y and a “large” G , ϕx < ϕy implies that
branching on x leads to a smaller treesize.

22 / 30



Asymptotic case results for SVB
I For variable (1, 2), the growth rate t(G+1)

t(G) of the tree tends to 1+
√

5
2

I The sequence t(G+1)
t(G) does not converge for all variables. We use:

ϕ = lim
G→∞

l

√
t(G + l)

t(G )

ϕ is the unique > 1 root of the polynomial p(x) = x r − x r−l − 1
I We have the bounds r

√
2 ≤ ϕ ≤ l

√
2

I A numerical approximation of ϕr is given by the fixed-point iteration

f (x) = 1 +
1

x
l
r − 1

I For G ≥ F , we have
t(G ) ≈ ϕG−F t(F )

I Given two variables x and y and a “large” G , ϕx < ϕy implies that
branching on x leads to a smaller treesize.

22 / 30



Asymptotic case results for SVB
I For variable (1, 2), the growth rate t(G+1)

t(G) of the tree tends to 1+
√

5
2

I The sequence t(G+1)
t(G) does not converge for all variables. We use:

ϕ = lim
G→∞

l

√
t(G + l)

t(G )

ϕ is the unique > 1 root of the polynomial p(x) = x r − x r−l − 1
I We have the bounds r

√
2 ≤ ϕ ≤ l

√
2

I A numerical approximation of ϕr is given by the fixed-point iteration

f (x) = 1 +
1

x
l
r − 1

I For G ≥ F , we have
t(G ) ≈ ϕG−F t(F )

I Given two variables x and y and a “large” G , ϕx < ϕy implies that
branching on x leads to a smaller treesize.

22 / 30



Single Variable Branching

(10, 10), (2, 49)

, (2, 49) or (10, 10)

0 10 20 30 40

0

20

40

gap

tr
ee

-s
iz

e

0 20 40 60 80 100

0

1,000

2,000

gap

ϕ(10,10) ≈ 1.071, ϕ(2,49) ≈ 1.049

I For a gap of G = 1000, only a relative difference of 1.798 between
red and green treesizes.

I Variable (2, 49) is branched on at every node where the gap left to
close is at least 31.

23 / 30



Multiple Variable Branching

(10, 10), (2, 49), (2, 49) or (10, 10)

0 10 20 30 40

0

20

40

gap

tr
ee

-s
iz

e

0 20 40 60 80 100

0

1,000

2,000

gap

ϕ(10,10) ≈ 1.071, ϕ(2,49) ≈ 1.049

I For a gap of G = 1000, only a relative difference of 1.798 between
red and green treesizes.

I Variable (2, 49) is branched on at every node where the gap left to
close is at least 31.

23 / 30



Multiple Variable Branching

(10, 10), (2, 49), (2, 49) or (10, 10)

0 10 20 30 40

0

20

40

gap

tr
ee

-s
iz

e

0 20 40 60 80 100

0

1,000

2,000

gap

ϕ(10,10) ≈ 1.071, ϕ(2,49) ≈ 1.049

I For a gap of G = 1000, only a relative difference of 1.798 between
red and green treesizes.

I Variable (2, 49) is branched on at every node where the gap left to
close is at least 31.

23 / 30



Multiple Variable Branching

(10, 10), (2, 49), (2, 49) or (10, 10)

0 10 20 30 40

0

20

40

gap

tr
ee

-s
iz

e

0 20 40 60 80 100

0

1,000

2,000

gap

ϕ(10,10) ≈ 1.071, ϕ(2,49) ≈ 1.049

I For a gap of G = 1000, only a relative difference of 1.798 between
red and green treesizes.

I Variable (2, 49) is branched on at every node where the gap left to
close is at least 31.

23 / 30



Multiple Variable Branching (MVB)
Input: n variables (li , ri ), i = 1, . . . , n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G , using each variable as many times as needed?

t(G ) =

1 if G ≤ 0

1 + min
1≤i≤n

(t(G − li ) + t(G − ri )) otherwise

We do not know if there exists a poly-time algorithm!

We define:

ϕ = lim
G→∞

z

√
t(G + z)

t(G )

where z is the least common multiple of all li and ri .

ϕ = min
i
ϕi

where ϕi is the SVB ratio of variable i .
For G ≥ F , we have

t(G ) ≈ ϕG−F t(F )

24 / 30



Multiple Variable Branching (MVB)
Input: n variables (li , ri ), i = 1, . . . , n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G , using each variable as many times as needed?

t(G ) =

1 if G ≤ 0

1 + min
1≤i≤n

(t(G − li ) + t(G − ri )) otherwise

We do not know if there exists a poly-time algorithm!
We define:

ϕ = lim
G→∞

z

√
t(G + z)

t(G )

where z is the least common multiple of all li and ri .

ϕ = min
i
ϕi

where ϕi is the SVB ratio of variable i .
For G ≥ F , we have

t(G ) ≈ ϕG−F t(F )

24 / 30



Multiple Variable Branching (MVB)
Input: n variables (li , ri ), i = 1, . . . , n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G , using each variable as many times as needed?

t(G ) =

1 if G ≤ 0

1 + min
1≤i≤n

(t(G − li ) + t(G − ri )) otherwise

We do not know if there exists a poly-time algorithm!
We define:

ϕ = lim
G→∞

z

√
t(G + z)

t(G )

where z is the least common multiple of all li and ri .

ϕ = min
i
ϕi

where ϕi is the SVB ratio of variable i .

For G ≥ F , we have
t(G ) ≈ ϕG−F t(F )

24 / 30



Multiple Variable Branching (MVB)
Input: n variables (li , ri ), i = 1, . . . , n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G , using each variable as many times as needed?

t(G ) =

1 if G ≤ 0

1 + min
1≤i≤n

(t(G − li ) + t(G − ri )) otherwise

We do not know if there exists a poly-time algorithm!
We define:

ϕ = lim
G→∞

z

√
t(G + z)

t(G )

where z is the least common multiple of all li and ri .

ϕ = min
i
ϕi

where ϕi is the SVB ratio of variable i .
For G ≥ F , we have

t(G ) ≈ ϕG−F t(F )
24 / 30



General Variable Branching (GVB)

Input: n variables (li , ri ), i = 1, . . . , n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G , branching on each variable i at most once on each
path from the root to a leaf?

GVB models B&B in MIP solvers under two hypotheses

I In GVB the primal gap is considered to be 0

I LP gains are fixed and known

Complexity of GVB

I is #P-hard (#Knapsack reduction)

I Under the conjecture that the Polynomial Hierarchy is proper, this
implies that GVB is not in NP or co-NP

25 / 30



General Variable Branching (GVB)

Input: n variables (li , ri ), i = 1, . . . , n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G , branching on each variable i at most once on each
path from the root to a leaf?

GVB models B&B in MIP solvers under two hypotheses

I In GVB the primal gap is considered to be 0

I LP gains are fixed and known

Complexity of GVB

I is #P-hard (#Knapsack reduction)

I Under the conjecture that the Polynomial Hierarchy is proper, this
implies that GVB is not in NP or co-NP

25 / 30



General Variable Branching (GVB)

Input: n variables (li , ri ), i = 1, . . . , n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G , branching on each variable i at most once on each
path from the root to a leaf?

GVB models B&B in MIP solvers under two hypotheses

I In GVB the primal gap is considered to be 0

I LP gains are fixed and known

Complexity of GVB

I is #P-hard (#Knapsack reduction)

I Under the conjecture that the Polynomial Hierarchy is proper, this
implies that GVB is not in NP or co-NP

25 / 30



#P-hardness proof by example

5x1 + 3x2 + 2x3 ≥ 5

“Big” number = 100 ≥ 5 + 3 + 2
Variables (100, 105), (100, 103), (100, 102), (100, 100) and G = 305

(x1 = 0) (x1 = 1)
0

100

200

300

400 400

302

402 402

203

303

403 403

305

105

205

305 307

208

308 310

26 / 30



#P-hardness proof by example

5x1 + 3x2 + 2x3 ≥ 5

“Big” number = 100 ≥ 5 + 3 + 2

Variables (100, 105), (100, 103), (100, 102), (100, 100) and G = 305

(x1 = 0) (x1 = 1)
0

100

200

300

400 400

302

402 402

203

303

403 403

305

105

205

305 307

208

308 310

26 / 30



#P-hardness proof by example

5x1 + 3x2 + 2x3 ≥ 5

“Big” number = 100 ≥ 5 + 3 + 2
Variables (100, 105), (100, 103), (100, 102)

, (100, 100) and G = 305

(x1 = 0) (x1 = 1)
0

100

200

300

400 400

302

402 402

203

303

403 403

305

105

205

305 307

208

308 310

26 / 30



#P-hardness proof by example

5x1 + 3x2 + 2x3 ≥ 5

“Big” number = 100 ≥ 5 + 3 + 2
Variables (100, 105), (100, 103), (100, 102), (100, 100)

and G = 305

(x1 = 0) (x1 = 1)
0

100

200

300

400 400

302

402 402

203

303

403 403

305

105

205

305 307

208

308 310

26 / 30



#P-hardness proof by example

5x1 + 3x2 + 2x3 ≥ 5

“Big” number = 100 ≥ 5 + 3 + 2
Variables (100, 105), (100, 103), (100, 102), (100, 100) and G = 305

(x1 = 0) (x1 = 1)
0

100

200

300

400 400

302

402 402

203

303

403 403

305

105

205

305 307

208

308 310

26 / 30



#P-hardness proof by example

5x1 + 3x2 + 2x3 ≥ 5

“Big” number = 100 ≥ 5 + 3 + 2
Variables (100, 105), (100, 103), (100, 102), (100, 100) and G = 305

(x1 = 0) (x1 = 1)
0

100

200

300

400 400

302

402 402

203

303

403 403

305

105

205

305 307

208

308 310

26 / 30



#P-hardness proof by example

5x1 + 3x2 + 2x3 ≥ 5

“Big” number = 100 ≥ 5 + 3 + 2
Variables (100, 105), (100, 103), (100, 102), (100, 100) and G = 305

(x1 = 0) (x1 = 1)
0

100

200

300

400 400

302

402 402

203

303

403 403

305

105

205

305 307

208

308 310

26 / 30



#P-hardness proof by example

5x1 + 3x2 + 2x3 ≥ 5

“Big” number = 100 ≥ 5 + 3 + 2
Variables (100, 105), (100, 103), (100, 102), (100, 100) and G = 305

(x1 = 0) (x1 = 1)
0

100

200

300

400 400

302

402 402

203

303

403 403

305

105

205

305 307

208

308 310

26 / 30



#P-hardness proof by example

5x1 + 3x2 + 2x3 ≥ 5

“Big” number = 100 ≥ 5 + 3 + 2
Variables (100, 105), (100, 103), (100, 102), (100, 100) and G = 305

(x1 = 0) (x1 = 1)
0

100

200

300

400 400

302

402 402

203

303

403 403

305

105

205

305 307

208

308 310

26 / 30



#P-hardness proof by example

5x1 + 3x2 + 2x3 ≥ 5

“Big” number = 100 ≥ 5 + 3 + 2
Variables (100, 105), (100, 103), (100, 102), (100, 100) and G = 305

(x1 = 0) (x1 = 1)
0

100

200

300

400 400

302

402 402

203

303

403 403

305

105

205

305 307

208

308 310

26 / 30



The ratio (ϕ) scoring function

Simple version

Branch on the variable i with smallest ϕi (root of p(x) = x ri − x r−li − 1)

Faster version

I Filter out variables with “dominated” gains

I Compute ϕ∗ as the ratio of the best variable according to product

I For each variable i , test pi (ϕ
∗) > 0

I If true, compute the root ϕi of pi and update ϕ∗ = ϕi

Note: the only parameter is the maximum number of iterations to
approximate ϕi .

27 / 30



The ratio (ϕ) scoring function

Simple version

Branch on the variable i with smallest ϕi (root of p(x) = x ri − x r−li − 1)

Faster version

I Filter out variables with “dominated” gains

I Compute ϕ∗ as the ratio of the best variable according to product

I For each variable i , test pi (ϕ
∗) > 0

I If true, compute the root ϕi of pi and update ϕ∗ = ϕi

Note: the only parameter is the maximum number of iterations to
approximate ϕi .

27 / 30



The ratio (ϕ) scoring function

020406080100
0

500

1,000

1,500

left gain

ri
gh

t
ga

in

linear
product
ratio

Right gains as a function of the left gain such that the score is constant

28 / 30



Numerical results: summary

General improvements in time and number of nodes

I ∼ 5% in B&B simulations for large gaps

I ∼ 2% on MIPLIB “benchmark” instances

I ∼ 5% on MIPLIB “tree” test set

29 / 30



Why read the paper?

I One of the first theoretical studies of B&B

I Open complexity and approximation problems

I Many possible extensions

I Theory that yields direct experimental improvements

http://arxiv.org/abs/1511.01818
To appear in Mathematical Programming series A.

30 / 30

http://arxiv.org/abs/1511.01818

