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Linear Programming (LP)

Integer Programming (IP)

zLP = max ctx

s.t. Ax ≤ b

x ∈ Rn
+

LP is in P.

zIP = max ctx

s.t. Ax ≤ b

x ∈ Zn
+

IP is NP-hard.

zLP ≥ zIP

x ∈ Z n
+ optimal for LP ⇒ zIP = zLP

where


A is a m × n matrix,
c is a n vector,
b is a m vector,

and all data are rational.
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Example: an IP formulation for edge coloring
Given G = (V ,E ), let C = {1, . . . ,∆ + 1} be the set of possible colors,
and

I Variable c i = 1 iff color i ∈ C is used,

I Variable x ie = 1 iff color i ∈ C is assigned to edge e ∈ E .

minx ,c
∑

i∈C c i (1)∑
i∈C x ie = 1 ∀e ∈ E (2)∑
u∈V ,e=uv x

i
e ≤ c i ∀v ∈ V , ∀i ∈ C (3)

c i ∈ {0, 1} ∀i ∈ C (4)
x ie ∈ {0, 1} ∀e ∈ E , ∀i ∈ C (5)

I (1) minimizes the number of colors used.

I (2) ensures each edge is assigned a color.

I (3) enforces a proper coloring.

I (4) and (5) enforce integrality
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(Mixed) Integer Programming solvers main components

Presolvers

I Simplify problem (e.g. eliminate redundancy)

I Tighten LP bound (e.g. change coefficients)

Primal heuristics

I Find a feasible solution (e.g. starting from LP or IP solution)

Cutting planes

I Tighten LP bound

Branch & Bound

I Implicit enumeration using primal and dual bounds to prune nodes
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Outline of the B&B algorithm for MIP solving
Input: a MIP instance

1: Add the root node to the list of nodes to process
2: while the list of nodes is non empty do
3: Select∗ the node to process
4: Solve the node’s LP
5: if the LP solution is integral then
6: Add the solution to the pool of solutions
7: else
8: if the node’s LP bound is better than the primal bound then
9: Select∗∗ an integer variable x with a fractional value xLP

10: Create two children where x ≤ bxLPc or x ≥ dxLPe
11: Add the children to the list of nodes
12: end if
13: end if
14: end while
15: Output the best primal solution
∗ using a node selector
∗∗ using a branching rule
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Discrete maths in two papers related to branching in MIP
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Fooling MIP solvers

Find a family of MIP instances for which:

I There exists a small Branch & Bound tree

I MIP solvers produce big Branch & Bound trees
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Edge coloring problem

Without knowing Vizing, MIP solvers will still immediately find that they
need

I At least ∆ colors

I At most ∆ + 1 colors

Then they have to use branch-and-bound to decide between ∆ and ∆ + 1.
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Petersen graph

I 10 vertices
I 15 edges
I degree 3
I chromatic index χ′ = 4

Good, but we want bigger graphs! And we can’t add edges!

Find a family of snarks that

I has arbitrarily large graphs

I is easily constructible
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Modifying the Petersen graph

(a) Petersen graph
χ′ = 4

(b) Graph P1

χ′ = 4
(c) Graph P2

χ′ = 3
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Proof

ae

d

c

b

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or yellow
the “path” {b,c} cannot be blue or green
the “path” {a,b,e} cannot be blue
We want to split these “paths” by adding two vertices!
Split two edges: {b,d} or {b,e} or {c,e} → non-adjacent edges!
P2 can be colored using three colors but P1 cannot!
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Input graphs

Figure: the graph G3

Gk = P1 + (k − 1)P2

Gk has ∆ = 3 and χ′ = 4.
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A fixed-size Branch & Bound tree

Theorem
Given an optimal solution, there is a fixed-size Branch & Bound tree for
any k ≥ 1.

Proof

I Solve instance I1 → Branch & Bound tree T1

I Solve Ik by following T1 in the Branch & Bound tree Tk

I Note that the global dual bound of T1 is 4

I All constraints of I1 are contained in or implied by Ik , thus the global
dual bound of the tree Tk is 4
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Experimental results

CPLEX GUROBI SCIP
Size (k) s n t s n t s n t

1 10 11 0 10 21 0 10 12 0
2 10 15 0 10 23 0 10 19 1
4 10 38 0 10 30 1 10 41 4
8 10 59 0 10 50 3 10 79 10

16 9 302 3 10 84 15 10 263 23
32 7 213 11 10 175 47 10 419 48
64 9 50 26 10 1921 424 9 1328 178

128 8 276 79 7 1470 1098 10 6542 808
256 6 1366 564 7 699 4182 8 6225 2041
512 2 3265 1700 7 198 3586 6 6125 6347

1024 2 1509 5501 3 112 16943 0 - -

Number of instances solved (s), and, for the instances solved, the
geometric means of the number of nodes (n) and time in seconds (t)
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An abstract model for branching and its application to
Mixed Integer Programming
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State-of-the-art branching rule in MIP solvers
At a given node, a branching rule picks the variable to branch on.
The state-of-the-art branching rule is a hybrid of two branching rules that
aim at improving the dual bound.

Strong branching

For all fractional variables x , strong branching computes the LP values at
the children that would be created by branching on x .
Example: x1 = 0.2, x2 = 0.5 in the LP relaxation.

0

5 10

0

2 8

x1 = 0 x1 = 1 x2 = 0 x2 = 1

Pseudocost branching

For all fractional variables x , pseudocost branching imitates strong
branching using historical information provided by strong branching and
(actual) branching.
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Branch & Bound abstract model for MIP solving

Variable = pair (l , r) of two > 0 integers with l ≤ r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap1 closed at a node = value at that node

Gap closed by the B&B tree = minimum gap at a leaf

0

l1

l1 + l2

l1 + l2 + l3 l1 + l2 + r3

l1 + r2

r1

r1 + l3 r1 + r3

Tree-size = 9

1In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.
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Single Variable Branching (SVB)

Input: one variable (l , r), an integer G and an integer k, all positive.
Question: Is the size of the Branch & Bound tree that closes the gap G ,
repeatedly using the given variable, at most k?

Example: variable (2, 5) and gap G = 6.

0

2

4

6 9

7

5

7 10

Treesize = 9
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Motivation: state-of-the-art scoring functions
At a given node, we have to branch on a variable given mutliple variables
x with gains (lx , rx). ⇒ scoring functions

0

10 10

0

2 50

x1 = 0 x1 = 1 x2 = 1 x2 = 2

Linear function:

(1− µ)× lx + µ× rx

(
µ =

1

6

)
Product function:

lx × rx

−34% nodes

−14% time

Variables (10, 10) and (2, 50) have the same score for both functions!
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Motivation: variable (10, 10) vs (2, 49) for SVB
The linear and product functions both score (10, 10) higher than (2, 49).

0
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20 20

0

2

4 51

49

51 98

0 10 20 30 40

0

20

40

gap

tr
ee

si
ze

0 20 40 60 80 100

0

1,000

2,000

gap

At gap G = 1000, the relative difference in treesize is 323 millions.
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Complexity results for SVB

Notation
t(G ) = treesize to close G with (l , r)
Is t(G ) ≤ k?

Recursion

t(G ) =

{
1 if G ≤ 0

1 + t(G − l) + t(G − r) otherwise

Pseudo-polynomial!

Closed-form formula (CFF)

t(G ) = 1 + 2×
dG

r
e∑

h=1

(
h + dG−(h−1)×r

l e − 1

h

)
Proof: group leaves that are reached by “turning” right h times together.

O(log2(k)) is polynomial, but still big in practice!
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Asymptotic case results for SVB
I For variable (1, 2), the growth rate t(G+1)

t(G) of the tree tends to 1+
√

5
2

I The sequence t(G+1)
t(G) does not converge for all variables. We use:

ϕ = lim
G→∞

l

√
t(G + l)

t(G )

ϕ is the unique > 1 root of the polynomial p(x) = x r − x r−l − 1
I We have the bounds r

√
2 ≤ ϕ ≤ l

√
2

I A numerical approximation of ϕr is given by the fixed-point iteration

f (x) = 1 +
1

x
l
r − 1

I For G ≥ F , we have
t(G ) ≈ ϕG−F t(F )

I Given two variables x and y and a “large” G , ϕx < ϕy implies that
branching on x leads to a smaller treesize.
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Single Variable Branching

(10, 10), (2, 49)

, (2, 49) or (10, 10)
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ϕ(10,10) ≈ 1.071, ϕ(2,49) ≈ 1.049

I For a gap of G = 1000, only a relative difference of 1.798 between
red and green treesizes.

I Variable (2, 49) is branched on at every node where the gap left to
close is at least 31.

23 / 30



Multiple Variable Branching
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Multiple Variable Branching (MVB)
Input: n variables (li , ri ), i = 1, . . . , n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G , using each variable as many times as needed?

t(G ) =

1 if G ≤ 0

1 + min
1≤i≤n

(t(G − li ) + t(G − ri )) otherwise

We do not know if there exists a poly-time algorithm!

We define:

ϕ = lim
G→∞

z

√
t(G + z)

t(G )

where z is the least common multiple of all li and ri .

ϕ = min
i
ϕi

where ϕi is the SVB ratio of variable i .
For G ≥ F , we have

t(G ) ≈ ϕG−F t(F )
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General Variable Branching (GVB)

Input: n variables (li , ri ), i = 1, . . . , n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G , branching on each variable i at most once on each
path from the root to a leaf?

GVB models B&B in MIP solvers under two hypotheses

I In GVB the primal gap is considered to be 0

I LP gains are fixed and known

Complexity of GVB

I is #P-hard (#Knapsack reduction)

I Under the conjecture that the Polynomial Hierarchy is proper, this
implies that GVB is not in NP or co-NP
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#P-hardness proof by example

5x1 + 3x2 + 2x3 ≥ 5

“Big” number = 100 ≥ 5 + 3 + 2
Variables (100, 105), (100, 103), (100, 102), (100, 100) and G = 305

(x1 = 0) (x1 = 1)
0

100

200

300

400 400

302

402 402

203

303

403 403

305

105

205

305 307

208

308 310
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The ratio (ϕ) scoring function

Simple version

Branch on the variable i with smallest ϕi (root of p(x) = x ri − x r−li − 1)

Faster version

I Filter out variables with “dominated” gains

I Compute ϕ∗ as the ratio of the best variable according to product

I For each variable i , test pi (ϕ
∗) > 0

I If true, compute the root ϕi of pi and update ϕ∗ = ϕi

Note: the only parameter is the maximum number of iterations to
approximate ϕi .
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The ratio (ϕ) scoring function
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Numerical results: summary

General improvements in time and number of nodes

I ∼ 5% in B&B simulations for large gaps

I ∼ 2% on MIPLIB “benchmark” instances

I ∼ 5% on MIPLIB “tree” test set
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Why read the paper?

I One of the first theoretical studies of B&B

I Open complexity and approximation problems

I Many possible extensions

I Theory that yields direct experimental improvements

http://arxiv.org/abs/1511.01818
To appear in Mathematical Programming series A.
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