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Linear Programming (LP)

Z|p = Max CtX
st. Ax < b
n
x € RY

LP is in P.

A is a m X n matrix,
where { ¢ is a n vector, and all data are rational.
b is a m vector,
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Linear Programming (LP)  Integer Programming (IP)

Z|p = Max CtX Z|\p — Mmax CtX
st. Ax < b st. Ax < b
x € R} x ezl
LP is in P. IP is NP-hard.

zZip 2 zjp

x € Z] optimal for LP = zjp = z;p

A is a m X n matrix,

where { ¢ is a n vector, and all data are rational.
b is a m vector,
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Example: an IP formulation for edge coloring

Given G = (V,E), let C ={1,..., A+ 1} be the set of possible colors,
and

» Variable ¢/ = 1 iff color i € C is used,

» Variable x/ = 1 iff color i € C is assigned to edge e € E.

mingc  Yiecc (
Yiccxe=1 Vee E (
seVe—m Xe <€ VveV, VieC (

¢’ €{0,1} vieC (

xi €{0,1} Vec E, VieC (

v

1) minimizes the number of colors used.

v

(1)

(2) ensures each edge is assigned a color.
> (3) enforces a proper coloring.
> (4) and (5) enforce integrality
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(Mixed) Integer Programming solvers main components

Presolvers
» Simplify problem (e.g. eliminate redundancy)
» Tighten LP bound (e.g. change coefficients)

Primal heuristics

» Find a feasible solution (e.g. starting from LP or IP solution)

Cutting planes
» Tighten LP bound

Branch & Bound

» Implicit enumeration using primal and dual bounds to prune nodes
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Outline of the B&B algorithm for MIP solving
Input: a MIP instance

1: Add the root node to the list of nodes to process

2: while the list of nodes is non empty do

3 Select™ the node to process

4 Solve the node’s LP

5: if the LP solution is integral then

6: Add the solution to the pool of solutions

7 else

8: if the node’'s LP bound is better than the primal bound then
9: Select™ an integer variable x with a fractional value x;p
10: Create two children where x < |x;p] or x > [x.p]

11 Add the children to the list of nodes

12: end if

13: end if

14: end while

15: Qutput the best primal solution
* using a node selector

using a branching rule

ok
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Discrete maths in two papers related to branching in MIP

An Abstract Model for Branching and its Application to
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Fooling MIP solvers

Find a family of MIP instances for which:
» There exists a small Branch & Bound tree

» MIP solvers produce big Branch & Bound trees
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Edge coloring problem

Without knowing Vizing, MIP solvers will still immediately find that they
need

> At least A colors
» At most A + 1 colors
Then they have to use branch-and-bound to decide between A and A + 1.
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Petersen graph

10 vertices

15 edges

degree 3

chromatic index \/ = 4

vV v vy

Good, but we want bigger graphs! And we can't add edges!
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Petersen graph

10 vertices

15 edges

degree 3

chromatic index \/ = 4

vV v vy

Good, but we want bigger graphs! And we can't add edges!
Find a family of snarks that

» has arbitrarily large graphs

> is easily constructible
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Modifying the Petersen graph

(a) Petersen graph (b) Graph Py (c) Graph P,
X =4 X = X' =3
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Input graphs

Figure: the graph Gz

szpl—i-(k—l)Pg
Gk has A =3 and ' = 4.
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A fixed-size Branch & Bound tree

Theorem

Given an optimal solution, there is a fixed-size Branch & Bound tree for
any k > 1.

Proof

» Solve instance /; — Branch & Bound tree Ty
» Solve I, by following T in the Branch & Bound tree T}
» Note that the global dual bound of T; is 4

» All constraints of /; are contained in or implied by /;, thus the global
dual bound of the tree Ty is 4
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Experimental results

CPLEX GUROBI SCIP
Size (k) | s n t s n t s n t
1 10 11 0 10 21 0 10 12 0
2 10 15 0 (10 23 0 10 19 1
4 10 38 0 |10 30 1 10 41 4
8 10 59 0 |10 50 3 10 79 10
16 9 302 3 |10 84 15 |10 263 23
32 7 213 11 |10 175 47 10 419 48
64 9 50 26 | 10 1921 424 9 1328 178
128 8 276 79 | 7 1470 1098 | 10 6542 808
256 6 1366 564 | 7 699 4182 | 8 6225 2041
512 2 3265 1700 | 7 198 3586 | 6 6125 6347
1024 2 1509 5501 | 3 112 16943 | 0 - -

Number of instances solved (s), and, for the instances solved, the
geometric means of the number of nodes (n) and time in seconds (t)
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State-of-the-art branching rule in MIP solvers

At a given node, a branching rule picks the variable to branch on.

The state-of-the-art branching rule is a hybrid of two branching rules that
aim at improving the dual bound.
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At a given node, a branching rule picks the variable to branch on.

The state-of-the-art branching rule is a hybrid of two branching rules that
aim at improving the dual bound.

Strong branching

For all fractional variables x, strong branching computes the LP values at
the children that would be created by branching on x.

Example: x; =0.2,xo = 0.5 in the LP relaxation.
0 0
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State-of-the-art branching rule in MIP solvers

At a given node, a branching rule picks the variable to branch on.

The state-of-the-art branching rule is a hybrid of two branching rules that
aim at improving the dual bound.

Strong branching

For all fractional variables x, strong branching computes the LP values at
the children that would be created by branching on x.

Example: x; =0.2,xo = 0.5 in the LP relaxation.

0 0

X1=0/ \Xlzl X2=0/ \ngl

5 10 2 8

Pseudocost branching

For all fractional variables x, pseudocost branching imitates strong
branching using historical information provided by strong branching and
(actual) branching.
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Branch & Bound abstract model for MIP solving

Variable = pair (/, r) of two > 0 integers with / < r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap' closed at a node = value at that node

'In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.
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Variable = pair (/, r) of two > 0 integers with / < r

B&B tree = binary tree with a variable at each inner node
(Absolute) Gap' closed at a node = value at that node
Gap closed by the B&B tree = minimum gap at a leaf
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Branch & Bound abstract model for MIP solving

Variable = pair (/, r) of two > 0 integers with / < r

B&B tree = binary tree with a variable at each inner node
(Absolute) Gap' closed at a node = value at that node
Gap closed by the B&B tree = minimum gap at a leaf

h rn
/ AN / AN
h+h h+nr n+h n+rnr

/ AN
h+h+h h+hb+rs

Tree-size = 9

'In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.
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SINGLE VARIABLE BRANCHING (SVB)
Input: one variable (/,r), an integer G and an integer k, all positive.

Question: s the size of the Branch & Bound tree that closes the gap G,
repeatedly using the given variable, at most k7
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SINGLE VARIABLE BRANCHING (SVB)
Input: one variable (/,r), an integer G and an integer k, all positive.
Question: s the size of the Branch & Bound tree that closes the gap G,

repeatedly using the given variable, at most k7

Example: variable (2,5) and gap G = 6.

Treesize = 9
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Motivation: state-of-the-art scoring functions
At a given node, we have to branch on a variable given mutliple variables
x with gains (I, rx). = scoring functions

0 0

X1=0/ \Xlzl X2=1/ \X2=2

10 10 2 50
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Motivation: state-of-the-art scoring functions

At a given node, we have to branch on a variable given mutliple variables

x with gains (Ix, r¢). = scoring functions

0 0

X1 :O/ \Xlz 1 X2 :1/ \X2: 2

10 10 2 50
Linear function:

1
(L= p) X e+ X 1y <M26>
—34% nodes
Product function: —14% time
L X ry

Variables (10, 10) and (2,50) have the same score for both functions!
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Motivation: variable (10, 10) vs (2,49) for SVB
The linear and product functions both score (10, 10) higher than (2, 49).
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Motivation: variable (10, 10) vs (2,49) for SVB
The linear and product functions both score (10, 10) higher than (2, 49).

treesize

40

20

20
gap

2,000

1,000 |

T
—

gap

60

80

L
100

At gap G = 1000, the relative difference in treesize is 323 millions.
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Complexity results for SVB

Notation
t(G) = treesize to close G with (/,r)
Is t(G) < k?
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Complexity results for SVB

Notation
t(G) = treesize to close G with (/,r)
Is t(G) < k?

Recursion
1 if G<O0
tHG) = "= =
1+t(G—1)+t(G—r) otherwise
Pseudo-polynomial!

Closed-form formula (CFF)

—(h—1)xr
t(G)=1+2xZ<h+[G h/'TI ]_1> m

Proof: group leaves that are reached by “turning” right h times together.
O(log?(k)) is polynomial, but still big in practice!
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Asymptotic case results for SVB

» For variable (1,2), the growth rate t(t((;g)l) of the tree tends to 1*—2‘/5
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Asymptotic case results for SVB

» For variable (1,2), the growth rate t(t((;g)l) of the tree tends to 1*—2\/5
» The sequence t(t((;g)l) does not converge for all variables. We use:
: t(G+1)
= lim (/2
77 e\ T t6)

¢ is the unique > 1 root of the polynomial p(x) = x" — x"~/ — 1
» We have the bounds v/2 < p < V2
» A numerical approximation of (" is given by the fixed-point iteration

1
f(X):1+ 1
xr—1

v

For G > F, we have
t(G) ~ o Ft(F)

» Given two variables x and y and a “large” G, px < ¢, implies that
branching on x leads to a smaller treesize.
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SINGLE VARIABLE BRANCHING

tree-size
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MULTIPLE VARIABLE BRANCHING
r(

tree-size
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MULTIPLE VARIABLE BRANCHING

(10,10), (2,49), (2,49) or (10, 10)

T T
40| 1 2,000} —
\
\
S \
& 20 1 1,000 ]
8
07 | | | | | ] 07
0 10 20 30 40
gap

®(10,10) = 1.071,  ¢(2,49) ~ 1.049

» For a gap of G = 1000, only a relative difference of 1.798 between
red and green treesizes.
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MULTIPLE VARIABLE BRANCHING

(10,10), (2,49), (2,49) or (10, 10)

T T
40| 1 2,000 —
\
\
(o}
N
S 20| 1 1,000 —
5
0 B o
| | | |
0 10 20 30 40
gap

®(10,10) = 1.071,  ¢(2,49) ~ 1.049

» For a gap of G = 1000, only a relative difference of 1.798 between
red and green treesizes.
» Variable (2,49) is branched on at every node where the gap left to

close is at least 31.
23 /30



MULTIPLE VARIABLE BRANCHING (MVB)

Input: nvariables (/;,r;),i =1,...,n, an integer G > 0, an integer k > 0.
Question: s there a Branch & Bound tree with at most k nodes that
closes the gap G, using each variable as many times as needed?

1 if G <0

1+ min. (t(G— 1)+ t(G—r;)) otherwise

t(G) =

We do not know if there exists a poly-time algorithm!
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Input: n variables (/;,r;),i =1,...,n, an integer G > 0, an integer k > 0.
Question: s there a Branch & Bound tree with at most k nodes that
closes the gap G, using each variable as many times as needed?

1 if G <0
t(G) = 1+ 1@2 (t(G— 1)+ t(G—r;)) otherwise
We do not know if there exists a poly-time algorithm!
We define:
. t(G +z)
= | f S —— [ |
77 e\ T H(06)
where z is the least common multiple of all /; and r;.
@ =mingp; g
]
where ¢; is the SVB ratio of variable /.
For G > F, we have
t(G) ~ o®~Ft(F) m
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GENERAL VARIABLE BRANCHING (GVB)

Input: 1 variables (/;,r;), i =1

,...,Nn, an integer G > 0, an integer k > 0.
Question:

Is there a Branch & Bound tree with at most k nodes that

closes the gap G, branching on each variable i at most once on each
path from the root to a leaf?
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GENERAL VARIABLE BRANCHING (GVB)

Input: n variables (/;,r;),i =1,...,n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
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Input: n variables (/;,r;),i =1,...,n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G, branching on each variable i at most once on each
path from the root to a leaf?

GVB models B&B in MIP solvers under two hypotheses
» In GVB the primal gap is considered to be 0
» LP gains are fixed and known

Complexity of GVB

> is #P-hard (#Knapsack reduction) [ |

» Under the conjecture that the Polynomial Hierarchy is proper, this
implies that GVB is not in NP or co-NP
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The ratio () scoring function
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The ratio () scoring function

Simple version
Branch on the variable i with smallest ¢; (root of p(x) = x" — x"~ — 1)

Faster version

v

Filter out variables with “dominated” gains

» Compute * as the ratio of the best variable according to product
» For each variable i, test pi(¢*) >0

» If true, compute the root ¢; of p; and update p* = ;

Note: the only parameter is the maximum number of iterations to
approximate ;.
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The ratio () scoring function

1,500 -
c
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20 product
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left gain

Right gains as a function of the left gain such that the score is constant
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Numerical results: summary

General improvements in time and number of nodes

» ~ 5% in B&B simulations for large gaps
> ~ 2% on MIPLIB “benchmark” instances

> ~ 5% on MIPLIB “tree” test set
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Why read the paper?

» One of the first theoretical studies of B&B
» Open complexity and approximation problems

» Many possible extensions

v

Theory that yields direct experimental improvements

http://arxiv.org/abs/1511.01818
To appear in Mathematical Programming series A.
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