An abstract model for branching and its application to
Mixed Integer Programming

Pierre Le Bodic

Joint work with George Nemhauser
School of Industrial and Systems Engineering
Georgia Institute of Technology
Grant FA9550-12-1-0151 of the Air Force Office of Scientific Research

Grant CCF-1415460 of the National Science Foundation

Discrete Maths Seminar, Monash University
August 1 2016

1/30

Linear Programming (LP)

Z|p = Max CtX
st. Ax < b
n
x € RY

LP is in P.

A is a m X n matrix,
where { ¢ is a n vector, and all data are rational.
b is a m vector,

2/ 30

Linear Programming (LP) Integer Programming (IP)

Z|p = Max CtX Z|\p — Mmax CtX
st. Ax < b st. Ax < b
x € R} x ezl
LP is in P. IP is NP-hard.

A is a m X n matrix,
where { ¢ is a n vector, and all data are rational.
b is a m vector,

2/ 30

Linear Programming (LP) Integer Programming (IP)

Z|p = Max CtX Z|\p — Mmax CtX
st. Ax < b st. Ax < b
x € R} x ezl
LP is in P. IP is NP-hard.

zZip 2 zjp

A is a m X n matrix,
where { ¢ is a n vector, and all data are rational.
b is a m vector,

2/ 30

Linear Programming (LP) Integer Programming (IP)

Z|p = Max CtX Z|\p — Mmax CtX
st. Ax < b st. Ax < b
x € R} x ezl
LP is in P. IP is NP-hard.

zZip 2 zjp

x € Z] optimal for LP = zjp = z;p

A is a m X n matrix,

where { ¢ is a n vector, and all data are rational.
b is a m vector,

2/ 30

Example: an IP formulation for edge coloring

Given G = (V,E), let C ={1,..., A+ 1} be the set of possible colors,
and

» Variable ¢/ = 1 iff color i € C is used,

» Variable x/ = 1 iff color i € C is assigned to edge e € E.

mingc Yiecc (
Yiccxe=1 Vee E (
seVe—m Xe <€ VveV, VieC (

¢’ €{0,1} vieC (

xi €{0,1} Vec E, VieC (

v

1) minimizes the number of colors used.

v

(1)

(2) ensures each edge is assigned a color.
> (3) enforces a proper coloring.
> (4) and (5) enforce integrality

3/30

(Mixed) Integer Programming solvers main components

Presolvers
» Simplify problem (e.g. eliminate redundancy)
» Tighten LP bound (e.g. change coefficients)

Primal heuristics

» Find a feasible solution (e.g. starting from LP or IP solution)

Cutting planes
» Tighten LP bound

Branch & Bound

» Implicit enumeration using primal and dual bounds to prune nodes

4 /30

Outline of the B&B algorithm for MIP solving
Input: a MIP instance

1: Add the root node to the list of nodes to process

2: while the list of nodes is non empty do

3 Select™ the node to process

4 Solve the node’s LP

5: if the LP solution is integral then

6: Add the solution to the pool of solutions

7 else

8: if the node’'s LP bound is better than the primal bound then
9: Select™ an integer variable x with a fractional value x;p
10: Create two children where x < |x;p] or x > [x.p]

11 Add the children to the list of nodes

12: end if

13: end if

14: end while

15: Qutput the best primal solution
* using a node selector

using a branching rule

ok
5/ 30

Discrete maths in two papers related to branching in MIP

An Abstract Model for Branching and its Application to

the date of receipt and acceptance should be inserted later

Abstract The selection of branching variables is key component of branch-
and-bound algorithms for solving Mixed-Integer Programming (MIP) prob-
lems since the quality of the selection procedure is likely to have a significant
ate-of-the-art. procedures base
the selection of variables on their “LP gains”, which s the dual bound im-
provement obtained after branching on a variable. There are various ways of
selecting variables depending on their LP gains. However, all methods are
< paper we present a theoretical model for the
. It is based upon an abstraction of MIPs to a
simpler setting in which it is possible to analytically evaluate the dual bound
s how the analytical

improvement of choosing a given variable. We then discu
results can be used to choose branching variables for MIPs, and we give exper-
imental results that demonstrate the effectiveness of the method on MIPLIB
2010 “tree” instances where we achieve a 5% geometric average time and node
improvement, over the default rule of SCIP, a state-of-the-art MIP solver.

Keywords Branch and Bound, Abstract Model, Mixed Integer Programming,

anuscript
Noname manuscript No.
Operations Resech eters 320152 (will be inserted by the editor)
Contents st availble at ScenceDirect 1
5 2
Operations Research Letters 3
4
joural homepage: wwwelsevier comfocatelor! 5 N r
s Mixed Integer Programming
7
How important are branching decisions: Fooling MIP solvers ®<m,m 9 Pierre Le Bodic - George Nemhauser
Pierre Le Bodic*, George L. Nemhauser 10
i Techology 765 Ferst Drve VW, Alanta, GA 50332-0205, 11
Untd St 12
13
ARTICLE INFO ABSTRACT 14
e 1
ot e how the mputince of electinggod b arbles by cxBEng iy of ances o 1
Recived i vt o e 17
2ifaimary 2015
HEdam20ls o e o e cncode e e oo el on 3 oy o o coning o sl 165
Avabieonne 11 March 2015 Pubied by revierny. 19
Topurde 20
o e rocamcg sl 21 effect on the size of the enumeration tree.
ok ndex
24
25 evaluated empirically. In th
1. Introduction size. Finally, we explain this behavior for SCIP, a state-of-the-art 26, selection of branching variable
open-source MIP solver. 27
Mixed Integer Programming (MIP) solvers depend on branch-
ing rules to implicitly search the solution space. Numerous . Instances 28
experimental results (see exg. [2]) provide a good notion of their 29
performances. However, lite literature has been dedicated to We build IP instances encading the chromati index problem on ~ 39
thearetical results on MIP branching. One notable exception is specific input graphs using a simple mathemarical mode
Ji [9]. for which a pure al- 31
gorthm provably requires 3 treesize that is exponential in the 1 Th chromatic index problem 32
number of variables. By contrast, branching i satisfiability (SA 33
salvers has been studied in a theoretial seting Lberatore [12] e b a simple graph. A properedge olring (we supposeall 34
esof '35 Complexit

Iy of inst

tree size is NP-hard. Ouang [15] provides a f

', Algorithm Analysis

The x

6/ 30

Fooling MIP solvers

Find a family of MIP instances for which:
» There exists a small Branch & Bound tree

» MIP solvers produce big Branch & Bound trees

7/ 30

Edge coloring problem

Without knowing Vizing, MIP solvers will still immediately find that they
need

> At least A colors
» At most A + 1 colors
Then they have to use branch-and-bound to decide between A and A + 1.

8 /30

Petersen graph

10 vertices

15 edges

degree 3

chromatic index \/ = 4

vV v vy

Good, but we want bigger graphs! And we can't add edges!

9/ 30

Petersen graph

10 vertices

15 edges

degree 3

chromatic index \/ = 4

vV v vy

Good, but we want bigger graphs! And we can't add edges!
Find a family of snarks that

» has arbitrarily large graphs

> is easily constructible

9/ 30

Modifying the Petersen graph

(a) Petersen graph (b) Graph Py (c) Graph P,
X =4 X = X' =3

10 / 30

Proof

11/30

Proof

11/30

Proof

11/30

Proof

11/30

Proof

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or

11/30

Proof

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or
the “path” {b,c} cannot be blue or

11/30

Proof

Based only on the coloring of the inside edges,
the “path” {d,e} cannot be blue or
the “path” {b,c} cannot be blue or
the “path” {a,b,e} cannot be blue

11/30

Proof

Based only on the coloring of the inside edges,

the “path” {d,e} cannot be blue or

the “path” {b,c} cannot be blue or

the “path” {a,b,e} cannot be blue

We want to split these “paths” by adding two vertices!

11/30

Proof

e | a
(—
d /\ / b

Based only on the coloring of the inside edges,

the “path” {d,e} cannot be blue or

the “path” {b,c} cannot be blue or

the “path” {a,b,e} cannot be blue

We want to split these “paths” by adding two vertices!

Split two edges: {b,d} or {b,e} or {c,e} — non-adjacent edges!

11/30

Proof

Based only on the coloring of the inside edges,

the “path” {d,e} cannot be blue or

the “path” {b,c} cannot be blue or

the “path” {a,b,e} cannot be blue

We want to split these “paths” by adding two vertices!

Split two edges: {b,d} or {b,e} or {c,e} — non-adjacent edges!
P> can be colored using three colors but P; cannot!

11/30

Proof

Based only on the coloring of the inside edges,

the “path” {d,e} cannot be blue or

the “path” {b,c} cannot be blue or

the “path” {a,b,e} cannot be blue

We want to split these “paths” by adding two vertices!

Split two edges: {b,d} or {b,e} or {c,e} — non-adjacent edges!
P> can be colored using three colors but P; cannot!

11/30

Input graphs

Figure: the graph Gz

szpl—i-(k—l)Pg
Gk has A =3 and ' = 4.

12 /30

A fixed-size Branch & Bound tree

Theorem

Given an optimal solution, there is a fixed-size Branch & Bound tree for
any k > 1.

Proof

» Solve instance /; — Branch & Bound tree Ty
» Solve I, by following T in the Branch & Bound tree T}
» Note that the global dual bound of T; is 4

» All constraints of /; are contained in or implied by /;, thus the global
dual bound of the tree Ty is 4

13 /30

Experimental results

CPLEX GUROBI SCIP
Size (k) | s n t s n t s n t
1 10 11 0 10 21 0 10 12 0
2 10 15 0 (10 23 0 10 19 1
4 10 38 0 |10 30 1 10 41 4
8 10 59 0 |10 50 3 10 79 10
16 9 302 3 |10 84 15 |10 263 23
32 7 213 11 |10 175 47 10 419 48
64 9 50 26 | 10 1921 424 9 1328 178
128 8 276 79 | 7 1470 1098 | 10 6542 808
256 6 1366 564 | 7 699 4182 | 8 6225 2041
512 2 3265 1700 | 7 198 3586 | 6 6125 6347
1024 2 1509 5501 | 3 112 16943 | 0 - -

Number of instances solved (s), and, for the instances solved, the
geometric means of the number of nodes (n) and time in seconds (t)

14 /30

An abstract model for branching and its application to

Mixed Integer Programming

WO~ WwN

Noname manuscript No.
(will be inserted by the editor)

An Abstract Model for Branching and its Application to
Mixed Integer Programming

Pierre Le Bodic - George Nemhauser

the date of receipt and acceptance should be inserted later

Abstract The selection of branching variables is a key component of branch-
and-bound algorithms for solving Mixed-Integer Programming (MIP) prob-
lems since the quality of the selection procedure is likely to have a significant

15 / 30

State-of-the-art branching rule in MIP solvers

At a given node, a branching rule picks the variable to branch on.

The state-of-the-art branching rule is a hybrid of two branching rules that
aim at improving the dual bound.

16 / 30

State-of-the-art branching rule in MIP solvers

At a given node, a branching rule picks the variable to branch on.

The state-of-the-art branching rule is a hybrid of two branching rules that
aim at improving the dual bound.

Strong branching

For all fractional variables x, strong branching computes the LP values at
the children that would be created by branching on x.

Example: x; =0.2,xo = 0.5 in the LP relaxation.
0 0

X1=0/ \Xlzl X2=0/ \ngl

5 10 2 8

16 / 30

State-of-the-art branching rule in MIP solvers

At a given node, a branching rule picks the variable to branch on.

The state-of-the-art branching rule is a hybrid of two branching rules that
aim at improving the dual bound.

Strong branching

For all fractional variables x, strong branching computes the LP values at
the children that would be created by branching on x.

Example: x; =0.2,xo = 0.5 in the LP relaxation.

0 0

X1=0/ \Xlzl X2=0/ \ngl

5 10 2 8

Pseudocost branching

For all fractional variables x, pseudocost branching imitates strong
branching using historical information provided by strong branching and
(actual) branching.

16 / 30

Branch & Bound abstract model for MIP solving

Variable = pair (/, r) of two > 0 integers with / < r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap' closed at a node = value at that node

'In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30

Branch & Bound abstract model for MIP solving

Variable = pair (/, r) of two > 0 integers with / < r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap' closed at a node = value at that node

0

. / \

'In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30

Branch & Bound abstract model for MIP solving

Variable = pair (/, r) of two > 0 integers with / < r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap' closed at a node = value at that node

0
h / \ n
/ AN
h+h h+nr

'In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30

Branch & Bound abstract model for MIP solving

Variable = pair (/, r) of two > 0 integers with / < r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap' closed at a node = value at that node

h rn
/ AN
h+h h+nr
/ AN

h+h+h h+hb+rs

'In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30

Branch & Bound abstract model for MIP solving

Variable = pair (/, r) of two > 0 integers with / < r
B&B tree = binary tree with a variable at each inner node
(Absolute) Gap' closed at a node = value at that node

h n
/ AN / AN
h+b h+nmr n+Ah n—+n
/S AN

h+h+h h+hb+rs

'In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30

Branch & Bound abstract model for MIP solving

Variable = pair (/, r) of two > 0 integers with / < r

B&B tree = binary tree with a variable at each inner node
(Absolute) Gap' closed at a node = value at that node
Gap closed by the B&B tree = minimum gap at a leaf

h rn
/ AN / AN
h+h h+nr n+h n+rnr

/ AN
h+h+h h+hb+rs

'In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30

Branch & Bound abstract model for MIP solving

Variable = pair (/, r) of two > 0 integers with / < r

B&B tree = binary tree with a variable at each inner node
(Absolute) Gap' closed at a node = value at that node
Gap closed by the B&B tree = minimum gap at a leaf

h rn
/ AN / AN
h+h h+nr n+h n+rnr

/ AN
h+h+h h+hb+rs

Tree-size = 9

'In MIP solvers, the (absolute) gap is the difference between the primal and the dual
bound.

17 / 30

SINGLE VARIABLE BRANCHING (SVB)
Input: one variable (/,r), an integer G and an integer k, all positive.

Question: s the size of the Branch & Bound tree that closes the gap G,
repeatedly using the given variable, at most k7

18 / 30

SINGLE VARIABLE BRANCHING (SVB)
Input: one variable (/,r), an integer G and an integer k, all positive.
Question: s the size of the Branch & Bound tree that closes the gap G,

repeatedly using the given variable, at most k7

Example: variable (2,5) and gap G = 6.

Treesize = 9

18 / 30

Motivation: state-of-the-art scoring functions
At a given node, we have to branch on a variable given mutliple variables
x with gains (I, rx). = scoring functions

0 0

X1=0/ \Xlzl X2=1/ \X2=2

10 10 2 50

19 /30

Motivation: state-of-the-art scoring functions

At a given node, we have to branch on a variable given mutliple variables
x with gains (I, rx). = scoring functions

0 0
X1 :0/ \xl: 1 X2 :1/ \Xg: 2
10 10 2 50
Linear function:
1
(L= p) X e+ X 1y <M26>

19 /30

Motivation: state-of-the-art scoring functions

At a given node, we have to branch on a variable given mutliple variables
x with gains (I, rx). = scoring functions

0 0

X1=0/ \Xlzl X2=1/ \X2=2

10 10 2 50

Linear function:

1
(L= p) X e+ X 1y <M26>

Product function:

L X ry

19 /30

Motivation: state-of-the-art scoring functions

At a given node, we have to branch on a variable given mutliple variables
x with gains (Ix, r¢). = scoring functions

0 0

X1 :0/ \Xl: 1 X2 :1/ \)(2: 2

10 10 2 50
Linear function:

1
(L= p) X e+ X 1y <M26>
—34% nodes
Product function: —14% time
L X ry

19 /30

Motivation: state-of-the-art scoring functions

At a given node, we have to branch on a variable given mutliple variables

x with gains (Ix, r¢). = scoring functions

0 0

X1 :O/ \Xlz 1 X2 :1/ \X2: 2

10 10 2 50
Linear function:

1
(L= p) X e+ X 1y <M26>
—34% nodes
Product function: —14% time
L X ry

Variables (10, 10) and (2,50) have the same score for both functions!

19 /30

Motivation: variable (10, 10) vs (2,49) for SVB
The linear and product functions both score (10, 10) higher than (2, 49).

20 / 30

Motivation: variable (10, 10) vs (2,49) for SVB
The linear and product functions both score (10, 10) higher than (2, 49).

40

treesize
N
o
T

20 / 30

Motivation: variable (10, 10) vs (2,49) for SVB
The linear and product functions both score (10, 10) higher than (2, 49).

treesize

40

20

2,000

1,000 |

T
— 4

0 20

40 60
gap

20 / 30

Motivation: variable (10, 10) vs (2,49) for SVB
The linear and product functions both score (10, 10) higher than (2, 49).

treesize

40

20

20
gap

2,000

1,000 |

T
—

gap

60

80

L
100

At gap G = 1000, the relative difference in treesize is 323 millions.

20 / 30

Complexity results for SVB

Notation
t(G) = treesize to close G with (/,r)
Is t(G) < k?

21/ 30

Complexity results for SVB

Notation
t(G) = treesize to close G with (/,r)
Is t(G) < k?

Recursion
1 i <
{G) = if G <0
1+t(G—1)+t(G—r) otherwise

Pseudo-polynomial!

21/ 30

Complexity results for SVB

Notation
t(G) = treesize to close G with (/,r)
Is t(G) < k?

Recursion
1 if G<O0
tHG) = "= =
1+t(G—1)+t(G—r) otherwise
Pseudo-polynomial!

Closed-form formula (CFF)

—(h—1)xr
t(G)=1+2xZ<h+[G h/'TI]_1> m

Proof: group leaves that are reached by “turning” right h times together.
O(log?(k)) is polynomial, but still big in practice!

21/ 30

Asymptotic case results for SVB

» For variable (1,2), the growth rate t(t((;g)l) of the tree tends to 1*—2‘/5

22 /30

Asymptotic case results for SVB

» For variable (1,2), the growth rate t(t((;g)l) of the tree tends to 1*—2\/5

» The sequence t(t((;g)l) does not converge for all variables. We use:

e t(GHT)
°=dm A THe)

¢ is the unique > 1 root of the polynomial p(x) = x" — x"~/ — 1

22 /30

Asymptotic case results for SVB

» For variable (1,2), the growth rate t(t((;g)l) of the tree tends to 1*—2\/5

» The sequence t(t((;g)l) does not converge for all variables. We use:

e t(GHT)
°=dm A THe)

¢ is the unique > 1 root of the polynomial p(x) = x" — x"~/ — 1
» We have the bounds v/2 < p < V2

22 /30

Asymptotic case results for SVB

» For variable (1,2), the growth rate t(t((;g)l) of the tree tends to 1*—2\/5
» The sequence t(t((;g)l) does not converge for all variables. We use:
: t(G+1)
= lim (/2
77 e\ T t6)

¢ is the unique > 1 root of the polynomial p(x) = x" — x"~/ — 1
» We have the bounds v/2 < p < V2
» A numerical approximation of (" is given by the fixed-point iteration

1
f(X):1+ 1
xr—1

22 /30

Asymptotic case results for SVB

» For variable (1,2), the growth rate t(t((;g)l) of the tree tends to 1*—2\/5

» The sequence t(t((;g)l) does not converge for all variables. We use:

e t(GHT)
°=dm A THe)

¢ is the unique > 1 root of the polynomial p(x) = x" — x"~/ — 1
» We have the bounds v/2 < p < V2
» A numerical approximation of (" is given by the fixed-point iteration

1
f(X):1+ 1
xr—1

» For G > F, we have
t(G) ~ o Ft(F)

22 /30

Asymptotic case results for SVB

» For variable (1,2), the growth rate t(t((;g)l) of the tree tends to 1*—2\/5
» The sequence t(t((;g)l) does not converge for all variables. We use:
: t(G+1)
= lim (/2
77 e\ T t6)

¢ is the unique > 1 root of the polynomial p(x) = x" — x"~/ — 1
» We have the bounds v/2 < p < V2
» A numerical approximation of (" is given by the fixed-point iteration

1
f(X):1+ 1
xr—1

v

For G > F, we have
t(G) ~ o Ft(F)

» Given two variables x and y and a “large” G, px < ¢, implies that
branching on x leads to a smaller treesize.

22 /30

SINGLE VARIABLE BRANCHING

tree-size

40

20

(10,10), (2, 49)

2,000

1,000

20 30 40
gap

40 60
gap

23 /30

MULTIPLE VARIABLE BRANCHING
r(

tree-size

40

20

(10,10), (2,49), (2.49) o

2,000

1,000

10, 10)

20 30 40
gap

23 /30

MULTIPLE VARIABLE BRANCHING

(10,10), (2,49), (2,49) or (10, 10)

T T
40| 1 2,000} —
\
\
S \
& 20 1 1,000]
8
07 | | | | |] 07
0 10 20 30 40
gap

®(10,10) = 1.071, ¢(2,49) ~ 1.049

» For a gap of G = 1000, only a relative difference of 1.798 between
red and green treesizes.

23 / 30

MULTIPLE VARIABLE BRANCHING

(10,10), (2,49), (2,49) or (10, 10)

T T
40| 1 2,000 —
\
\
(o}
N
S 20| 1 1,000 —
5
0 B o
| | | |
0 10 20 30 40
gap

®(10,10) = 1.071, ¢(2,49) ~ 1.049

» For a gap of G = 1000, only a relative difference of 1.798 between
red and green treesizes.
» Variable (2,49) is branched on at every node where the gap left to

close is at least 31.
23 /30

MULTIPLE VARIABLE BRANCHING (MVB)

Input: nvariables (/;,r;),i =1,...,n, an integer G > 0, an integer k > 0.
Question: s there a Branch & Bound tree with at most k nodes that
closes the gap G, using each variable as many times as needed?

1 if G <0

1+ min. (t(G— 1)+ t(G—r;)) otherwise

t(G) =

We do not know if there exists a poly-time algorithm!

24 / 30

MULTIPLE VARIABLE BRANCHING (MVB)

Input: n variables (/;,r;),i =1,...,n, an integer G > 0, an integer k > 0.
Question: s there a Branch & Bound tree with at most k nodes that
closes the gap G, using each variable as many times as needed?

1 if G <0
t(G) = 1+ 1r<n.i2 (t(G— 1)+ t(G—r;)) otherwise
We do not know if there exists a poly-time algorithm!
We define:
. t(G +z)
= | e R——a [|
77 e\ T H(06)

where z is the least common multiple of all /; and r;.

24 / 30

MULTIPLE VARIABLE BRANCHING (MVB)

Input: n variables (/;,r;),i =1,...,n, an integer G > 0, an integer k > 0.
Question: s there a Branch & Bound tree with at most k nodes that
closes the gap G, using each variable as many times as needed?

1 if G <0
t(G) = . .
1+ min (t(G— 1)+ t(G—r;)) otherwise
We do not know if there exists a poly-time algorithm!
We define:
. t(G +z)
= | f S —— [|
77 e\ T H(06)
where z is the least common multiple of all /; and r;.
@ =mingp; g
]

where ¢; is the SVB ratio of variable /.

24 / 30

MULTIPLE VARIABLE BRANCHING (MVB)

Input: n variables (/;,r;),i =1,...,n, an integer G > 0, an integer k > 0.
Question: s there a Branch & Bound tree with at most k nodes that
closes the gap G, using each variable as many times as needed?

1 if G <0
t(G) = 1+ 1@2 (t(G— 1)+ t(G—r;)) otherwise
We do not know if there exists a poly-time algorithm!
We define:
. t(G +z)
= | f S —— [|
77 e\ T H(06)
where z is the least common multiple of all /; and r;.
@ =mingp; g
]
where ¢; is the SVB ratio of variable /.
For G > F, we have
t(G) ~ o®~Ft(F) m

24 / 30

GENERAL VARIABLE BRANCHING (GVB)

Input: 1 variables (/;,r;), i =1

,...,Nn, an integer G > 0, an integer k > 0.
Question:

Is there a Branch & Bound tree with at most k nodes that

closes the gap G, branching on each variable i at most once on each
path from the root to a leaf?

25 / 30

GENERAL VARIABLE BRANCHING (GVB)

Input: n variables (/;,r;),i =1,...,n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G, branching on each variable i at most once on each

path from the root to a leaf?
GVB models B&B in MIP solvers under two hypotheses

» In GVB the primal gap is considered to be 0

» LP gains are fixed and known

25 / 30

GENERAL VARIABLE BRANCHING (GVB)

Input: n variables (/;,r;),i =1,...,n, an integer G > 0, an integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that
closes the gap G, branching on each variable i at most once on each
path from the root to a leaf?

GVB models B&B in MIP solvers under two hypotheses
» In GVB the primal gap is considered to be 0
» LP gains are fixed and known

Complexity of GVB

> is #P-hard (#Knapsack reduction) [|

» Under the conjecture that the Polynomial Hierarchy is proper, this
implies that GVB is not in NP or co-NP

25 / 30

#P-hardness proof by example

5x1+ Xxo+2x3>5

26 / 30

#P-hardness proof by example

5x1+ xo+2x3>5
“Big" number =100 >5+ +2

26 / 30

#P-hardness proof by example

5x1 + xo +2x3 > 5

“Big" number =100 >5+ 42
Variables (100, 105), (100,10), (100, 102)

26 / 30

#P-hardness proof by example

5x1 + xo +2x3 > 5

“Big" number =100 >5+ 42
Variables (100, 105), (100, 10), (100, 102), (100, 100)

26 / 30

#P-hardness proof by example

5x1 + xo +2x3 > 5

“Big" number =100 >5+ 42
Variables (100, 105), (100, 10), (100, 102), (100, 100) and G = 305

26 / 30

#P-hardness proof by example

5x1 + xo +2x3 > 5

“Big" number =100 >5+ 42
Variables (100, 105), (100, 10), (100, 102), (100, 100) and G = 305

26 / 30

#P-hardness proof by example

5x1 + xo +2x3 > 5

“Big" number =100 >5+ 42
Variables (100, 105), (100, 10), (100, 102), (100, 100) and G = 305

0

(W W)

100 105

26 / 30

#P-hardness proof by example

5x1 + xo +2x3 > 5

“Big" number =100 >5+ 42
Variables (100, 105), (100, 10), (100, 102), (100, 100) and G = 305

0

(W W)

105

200/100\203 / \

205 208

26 / 30

#P-hardness proof by example

5x1+ xo+2x3>5

“Big" number =100 >5+ 42
Variables (100, 105), (100, 10), (100, 102), (100, 100) and G = 305

0

(W Nzl)
100 105
200 203 205 208

300 302 303 305 305 307 308 310

26 / 30

#P-hardness proof by example

5x1+ xo+2x3>5

“Big" number =100 >5+ 42
Variables (100, 105), (100, 10), (100, 102), (100, 100) and G = 305

0

(W Nzl)
100 105
200 203 205 208

300 302 303 305 305 307 308 310
AAYA

400 400 402 402 403 403

26 / 30

The ratio () scoring function

Simple version
Branch on the variable i with smallest ¢; (root of p(x) = x" — x"~ — 1)

27 / 30

The ratio () scoring function

Simple version
Branch on the variable i with smallest ¢; (root of p(x) = x" — x"~ — 1)

Faster version

v

Filter out variables with “dominated” gains

» Compute * as the ratio of the best variable according to product
» For each variable i, test pi(¢*) >0

» If true, compute the root ¢; of p; and update p* = ;

Note: the only parameter is the maximum number of iterations to
approximate ;.

27 / 30

The ratio () scoring function

1,500 -
c
'® 1,000 |- y
® linear
20 product
500 | ratio

100 80 60 40 20 O
left gain

Right gains as a function of the left gain such that the score is constant

28 / 30

Numerical results: summary

General improvements in time and number of nodes

» ~ 5% in B&B simulations for large gaps
> ~ 2% on MIPLIB “benchmark” instances

> ~ 5% on MIPLIB “tree” test set

29 / 30

Why read the paper?

» One of the first theoretical studies of B&B
» Open complexity and approximation problems

» Many possible extensions

v

Theory that yields direct experimental improvements

http://arxiv.org/abs/1511.01818
To appear in Mathematical Programming series A.

30 / 30

http://arxiv.org/abs/1511.01818

