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Introduction

Given: Words, e.g. in binary code

=; =11010..., =, =00011..., =3=01101...,
=, =00000..., IZs5=11111..., Z¢=11100...
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Constructing a Trie
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Constructing a Trie

=; =11010..., = =00011..., =3=01101...,
=4 =00000..., =5=11111..., = =11100...
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Constructing a Trie
=; =11010..., = =00011..., =3=01101...,
=, =00000..., Z5=11111..., Z¢=11100...
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el e
Searching

Search for =Z; = 11010...
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el e
Searching

Search for =; = 11010. ..

@ Searching cost = Depth of =3
= Shortest prefix of =1 not shared by =»,..., =6
@ Worst case = Height of the Trie
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el e
Searching

Search for =; = 11010. ..

@ Searching cost = Depth of =; = 3
= Shortest prefix of =1 not shared by =»,..., =6
@ Worst case = Height of the Trie = 4
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Input Model

Generate the words =1, =, ... to be stored — Probabilistic Model
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Input Model

Generate the words =1, =, ... to be stored — Probabilistic Model

@ The words =1, =5, ... are independent and identically distributed
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UGS
Input Model

Generate the words =1, =, ... to be stored — Probabilistic Model
@ The words =1, =5, ... are independent and identically distributed

o Each word =; = £1£>63&, . . . consists of letters &1, &>, ... that are:
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UGS
Input Model

Generate the words =1, =, ... to be stored — Probabilistic Model
@ The words =1, =5, ... are independent and identically distributed
o Each word =; = £1£>63&, . . . consists of letters &1, &>, ... that are:

e independent, e P(§=0)=1/2=P(=1)

More general models allow £1,&>, ... to be dependent
(e.g. evolving as a Markov chain)
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A recursive construction of the Trie
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Analysis

Consider n words =1,...,=,. What is the depth of the vertex =;7
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Consider n words =1,...,=,. What is the depth of the vertex =;7

Recall:
Depth D, = Length of the shortest unique prefix of =3 = £1£63. ..
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Recall:
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Consider n words =1,...,=,. What is the depth of the vertex =;7

Recall:
Depth D, = Length of the shortest unique prefix of =3 = £1£63. ..

P(D, < k) =P(=»,...,=, do not start with & ... &)
1 k n—1
()
2
Consequence:

P(Dn < alogz(n)) — (1 _ n—a)n—l
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Consider n words =1,...,=,. What is the depth of the vertex =;7

Recall:
Depth D, = Length of the shortest unique prefix of =1 = £1&3. ..

P(D, < k) = P(=,, ...,=, do not start with & ... &)
k n—1
(1 (1
-(+-6))

Consequence:

1, ifa>1,

P(Dy < alogy(n)) = (1—n*)"" =¥ {0 if o < 1
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Results on D,

@ Shown on the previous slide:
Dn P

—Iog2(n) —1 (n— o)
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Results on D,

@ Shown on the previous slide:

D (o)
log,(n)

o Considering the previous slide more carefully:
9—x n—1 B
P (D, — logy(n) < x) =~ (1 - —) T e
n

(Limit is a Gumbel distribution known from extreme value theory)
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Results on D,

@ Shown on the previous slide:

D,
=B (= o)
log,(n)

@ Considering the previous slide more carefully:

9—x n—1 B
P (D, — logy(n) < x) = (1 - ) T e
n

(Limit is a Gumbel distribution known from extreme value theory)
o Thm (Knuth ’72): E[D,] = log,(n) + W(log,(n)) + o(1)
with periodic function W

e Thm (Szpankowski '86): Var(D,) ~ ®(log,(n))
with periodic function ¢
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Consider n words =1, ...,=,. What is the height of the resulting Trie?
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Consider n words =1, ...,=,. What is the height of the resulting Trie?
Def: Height H, = max{D,(=;) : i=1,...,n}.
The result P(D, < k) = (1 — 27%)"1 implies:

P (Hp > alogy(n)) =

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 9 /19



Consider n words =1, ...,=,. What is the height of the resulting Trie?
Def: Height H, = max{D,(=;) : i=1,...,n}.
The result P(D, < k) = (1 — 27%)"1 implies:

P(H, > alogy(n)) =P (Dn(Zi) > alogy(n) for some i € {1,...,n})

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015

9/19



Consider n words =1, ...,=,. What is the height of the resulting Trie?
Def: Height H, = max{D,(=;) : i=1,...,n}.
The result P(D, < k) = (1 — 27%)"1 implies:
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Consider n words =1, ...,=,. What is the height of the resulting Trie?
Def: Height H, = max{D,(=;) : i=1,...,n}.
The result P(D, < k) = (1 — 27%)"1 implies:

P (H, > alogy(n)) = P(Dp(Zi) > alogy(n)
<n-P(D, > alog,(n))

<n (1 (1))

for some i € {1,...,n})

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 9 /19



Consider n words =1, ...,=,. What is the height of the resulting Trie?
Def: Height H, = max{D,(=;) : i=1,...,n}.
The result P(D, < k) = (1 — 27%)"1 implies:

P (H, > alogy(n)) = P(Dp(Zi) > alogy(n)
n-P(Dp > alogy(n))

0 (1= (1= 0)")

n2—a

for some i € {1,...,n})

(VAN VAN VAN
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Consider n words =1, ...,=,. What is the height of the resulting Trie?
Def: Height H, = max{D,(=;) : i=1,...,n}.

The result P(D, < k) = (1 — 27%)"1 implies:

P(H, > alogy(n)) =P (Dn(Zi) > alogy(n) for some i € {1,...,n})
<n-P(D, >alog2( )
<o (1 (1-n))
< n2—a

Consequence: P (H, > «log,(n)) — 0 for o > 2
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Results on H,

@ Partly proven on the previous slide:

Hn P
2log,(n)
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Results on H,

@ Partly proven on the previous slide:

Hn P
2logy(n)

e Thm (Devroye '84):

lim P(H, —2logy(n) —1 < x)=exp(—27%), x€R

n—o0

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015

10 / 19



Results on H,

@ Partly proven on the previous slide:

Hn P
2logy(n)

e Thm (Devroye '84):
nIi_)rT;oIP’(H,, —2logy(n) —1 < x)=exp(—27%), x€R
e Thm (Regnier '82):
E[Hn] ~ 2loga(n) (0 — o0)

(Flajolet, Steyaert '82 — periodic second order term)
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Analysis

Summary: Typical depth: log,(n), height: 2log,(n).
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Summary: Typical depth: log,(n), height: 2log,(n).

Profile (Park, Hwang, Nicodeme, Szpankowski):

log, % +0(1)

2logy n+ O(1)

(External nodes/Leaves)

Kevin Leckey (Monash University)

logy n+ O(1)

2logy n+ O(1)

(Internal nodes)

An Introduction to Tries

21.09.2015
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Consider n words =1, ...,=,. External Path Length:

Ly:= Dn,i» Dn,i = Dn(Ei)-
i=1
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Consider n words =1, ...,=,. External Path Length:

)

L,:= Dy, Dpi = Dn(Zi).
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Consider n words =1, ...,=,. External Path Length:

)

L,:= Dy, Dpi = Dn(Zi).

Example: [ =2+4+3+4-4=21
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A Recursion for L,
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A Recursion for L,

K, = # words starting with 0

Ln g LK,, + Zn—Kn
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A Recursion for L,

K, = # words starting with 0

L, g LK,, + Zn—Kn +n
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The Contraction Method in a Nutshell

Aim: Find a limit law for L, (after rescaling properly)

L2 Lk, + Lok, +n
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The External Path Length
The Contraction Method in a Nutshell

Aim: Find a limit law for L, (after rescaling properly)
L, g LK,, + Zn—K,, +n
1. Rescaling: X, = (L, — E[L,])/+/Var(L,)
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The External Path Length
The Contraction Method in a Nutshell

Aim: Find a limit law for L, (after rescaling properly)
L, g LK,, + Zn—K,, +n
1. Rescaling: X, = (L, — E[L,])/+/Var(L,)

Xn g An,1XKn + An,2)?n—K,, + bn
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The External Path Length
The Contraction Method in a Nutshell

Aim: Find a limit law for L, (after rescaling properly)
Lo Ly, + Lok, +n
1. Rescaling: X, = (L, — E[L,])/+/Var(L,)
X, < An1 Xk, + An,2>~<n—K,, + b,

2. Find the Limits: (A, 1, A2, by) — 777
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The External Path Length
The Contraction Method in a Nutshell

Aim: Find a limit law for L, (after rescaling properly)
Lo Ly, + Lok, +n
1. Rescaling: X, = (L, — E[L,])/+/Var(L,)
X, < An1 Xk, + An,2)?n—K,, + b,

2. Find the Limits: (A, 1,An2,b,) — ((v2)71,(v2)71,0)

1 1 &

d
X< X+-—X
V2§ V2
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The External Path Length
The Contraction Method in a Nutshell

Aim: Find a limit law for L, (after rescaling properly)
Ly L lx + Lk +n
1. Rescaling: X, = (L, — E[L,])/+/Var(L,)
X, < An1 Xk, + An,2)?n—K,, + b,

2. Find the Limits: (A,1,An2, b)) — ((vV2)71,(vV2)71,0)
1 1 <
— X+ —=X
V2 V2
3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.

x4
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The External Path Length
The Contraction Method in a Nutshell

Aim: Find a limit law for L, (after rescaling properly)
Ly ZLiy + 10k +n
1. Rescaling: X, = (L, — E[L,])/+/Var(L,)
X, < An1Xk, + An,2)~<n—K,, + by

2. Find the Limits: (A1, Anz, by) — ((vV2)71, (v2)~1,0)
d 1 1 <
X=—=X+—=X 1
N (1)
3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.

4. Contraction: Find a metric such that (1) corresponds to the fixed
point of a contracting map.
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The External Path Length
The Contraction Method in a Nutshell

Aim: Find a limit law for L, (after rescaling properly)
Ly ZLiy + 10k +n
1. Rescaling: X, = (L, — E[L,])/+/Var(L,)
X, < An1Xk, + An,2)~<n—K,, + by

2. Find the Limits: (An1,An2, by) — ((vV2)71, (v2)71,0)

d 1 1 ~
X=—"X+—X
V2 V2

3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.

4. Contraction: Find a metric such that (1) corresponds to the fixed
point of a contracting map.

5. Convergence: Prove convergence with respect to that metric.
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Results on L,
e Thm (Jacquet, Regnier '88; Neininger, Riischendorf 2004):

Lo —ElL] 4, N(0,1)
Var(L,) ’
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PAED
i=1

E[L,] = E
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Results on L,

e Thm (Jacquet, Regnier '88; Neininger, Riischendorf 2004):

Lo —ElLa] N(0,1)
Var(Lp) ’

@ From the analysis of D,:

PAED

i=1

E[L,] =E = nE[D,] = nlogy(n) + n¥(log,(n)) + o(n)

e Thm (Kirschenhofer, Prodinger '86):

Var(L,) = nW(log,(n)) + O(log?(n))
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Summary

Trie:

@ tree-like data structure to store words
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Trie:
@ tree-like data structure to store words

@ position of a word in the tree <> path given by shortest unique prefix

Performance:

o Consider input: n independent words, each word is a sequence of
'coin tosses’
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o Consider input: n independent words, each word is a sequence of
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o Typical search/insert time (depth): around log,(n)
e Worst search/insert time (height): around 2log,(n)
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Performance:

o Consider input: n independent words, each word is a sequence of
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Trie:
@ tree-like data structure to store words

@ position of a word in the tree <> path given by shortest unique prefix

Performance:

o Consider input: n independent words, each word is a sequence of
'coin tosses’

o Typical search/insert time (depth): around log,(n)
e Worst search/insert time (height): around 2log,(n)
o Construction cost (path length): around nlog,(n)

@ Input model not very realistic, what about more general input models?
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Markov Model

Generate n words =1, ..., =, such that

@ the words =1,...,=, are independent and identically distributed

e Each word =4 = £1£&3. .. has letters (&);>1 which are a Markov
chain on {0,1}, i.e. for some p = (po, 1) and P = (pj)i jefo,1}

.]P)(gl :a):iua' .]P)(fj-Fl:a|€1a"'a§j):p§ja
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Markov Model

Generate n words =1, ..., =, such that

@ the words =1,...,=, are independent and identically distributed

e Each word =4 = £1£&3. .. has letters (&);>1 which are a Markov
chain on {0,1}, i.e. for some p = (po, 1) and P = (pj)i jefo,1}

o P(&1 =a) = pa, o P(§ir1 = al61, ., &) = pga

More general (Markov Model with k-dependency):
distribution of {; depends only on the previous k letters for some fixed k
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Markov Model

Generate n words =1, ..., =, such that

@ the words =1,...,=, are independent and identically distributed

e Each word =4 = £1£&3. .. has letters (&);>1 which are a Markov
chain on {0,1}, i.e. for some p = (po, 1) and P = (pj)i jefo,1}

o P(&1 =a) = pa, o P(§ir1 = al61, ., &) = pga

More general (Markov Model with k-dependency):
distribution of {; depends only on the previous k letters for some fixed k

Even more general: Dynamical Sources Model by Vallée
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The Markov Source Model

Effect on Depth and related parameters:
Are there very 'typical’ long prefixes for the source (e.g. because p,, is
very large)?

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 18 /19



The Markov Source Model

Effect on Depth and related parameters:
Are there very 'typical’ long prefixes for the source (e.g. because p,, is
very large)? — Depth/Height gets very large

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 18 /19



The Markov Source Model

Effect on Depth and related parameters:
Are there very 'typical’ long prefixes for the source (e.g. because p,, is
very large)? — Depth/Height gets very large

Entropy in the Markov Source Model:

H = 7o (—poo log(poo) — po1 log(po1)) + 71 (—pio log(pio) — pi1log(pi1))

with stationary distribution

(7To,7r1)=< P10 Po1 )

pio + po1’ pio + po1
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The Markov Source Model

Effect on Depth and related parameters:
Are there very "typical’ long prefixes for the source (e.g. because p,, is
very large)? — Depth/Height gets very large

Entropy in the Markov Source Model:

H = 7o (—poo log(poo) — po1 log(po1)) + 71 (—pio log(pio) — pi1log(pi1))

with stationary distribution

(7To,7r1)=< P10 Po1 )

pio + po1’ pio + po1

Depth for Markov Sources:

E[D,] ~ o log(n)
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Results for the Markov Source Model

o Depth: Jacquet, Szpankowski '89
o Height: Szpankowski '91

e External Pathlength: L., Neininger, Szpankowski (SODA 2013)
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Results for the Markov Source Model

o Depth: Jacquet, Szpankowski '89
o Height: Szpankowski '91

e External Pathlength: L., Neininger, Szpankowski (SODA 2013)

Dynamical Sources: Clément, Flajolet, Vallée 2001

Some related problems:
e PATRICIA Tries and Digital Search Trees (Thesis L.— Pathlength)
e Radix-Sort and -Select (Thesis L.)

o Lempel-Ziv Parsing Scheme (data compression)
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