
An Introduction to Tries

Kevin Leckey

Monash University

21.09.2015



Introduction CS Background

Given: Words, e.g. in binary code

Ξ1 = 11010 . . . , Ξ2 = 00011 . . . , Ξ3 = 01101 . . . ,

Ξ4 = 00000 . . . , Ξ5 = 11111 . . . , Ξ6 = 11100 . . .

Task: Storage that allows fast search and insert/delete operations

→ Use tree-like data structures such as a Trie (Information retrieval)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 2 / 19



Introduction CS Background

Given: Words, e.g. in binary code

Ξ1 = 11010 . . . , Ξ2 = 00011 . . . , Ξ3 = 01101 . . . ,

Ξ4 = 00000 . . . , Ξ5 = 11111 . . . , Ξ6 = 11100 . . .

Task: Storage that allows fast search and insert/delete operations

→ Use tree-like data structures such as a Trie (Information retrieval)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 2 / 19



Introduction CS Background

Given: Words, e.g. in binary code

Ξ1 = 11010 . . . , Ξ2 = 00011 . . . , Ξ3 = 01101 . . . ,

Ξ4 = 00000 . . . , Ξ5 = 11111 . . . , Ξ6 = 11100 . . .

Task: Storage that allows fast search and insert/delete operations

→ Use tree-like data structures such as a Trie

(Information retrieval)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 2 / 19



Introduction CS Background

Given: Words, e.g. in binary code

Ξ1 = 11010 . . . , Ξ2 = 00011 . . . , Ξ3 = 01101 . . . ,

Ξ4 = 00000 . . . , Ξ5 = 11111 . . . , Ξ6 = 11100 . . .

Task: Storage that allows fast search and insert/delete operations

→ Use tree-like data structures such as a Trie (Information retrieval)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 2 / 19



Introduction CS Background

Constructing a Trie

Ξ1 = 11010 . . . , Ξ2 = 00011 . . . , Ξ3 = 01101 . . . ,

Ξ4 = 00000 . . . , Ξ5 = 11111 . . . , Ξ6 = 11100 . . .

Ξ4 Ξ2 Ξ3 Ξ1 Ξ6 Ξ5

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 3 / 19



Introduction CS Background

Constructing a Trie

Ξ1 = 11010 . . . , Ξ2 = 00011 . . . , Ξ3 = 01101 . . . ,

Ξ4 = 00000 . . . , Ξ5 = 11111 . . . , Ξ6 = 11100 . . .

Ξ4 Ξ2 Ξ3 Ξ1 Ξ6 Ξ5

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 3 / 19



Introduction CS Background

Constructing a Trie

Ξ1 = 11010 . . . , Ξ2 = 00011 . . . , Ξ3 = 01101 . . . ,

Ξ4 = 00000 . . . , Ξ5 = 11111 . . . , Ξ6 = 11100 . . .

Ξ4 Ξ2 Ξ3

Ξ1

Ξ6 Ξ5

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 3 / 19



Introduction CS Background

Constructing a Trie

Ξ1 = 11010 . . . , Ξ2 = 00011 . . . , Ξ3 = 01101 . . . ,

Ξ4 = 00000 . . . , Ξ5 = 11111 . . . , Ξ6 = 11100 . . .

Ξ4 Ξ2 Ξ3 Ξ1 Ξ6 Ξ5

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 3 / 19



Introduction CS Background

Constructing a Trie

Ξ1 = 11010 . . . , Ξ2 = 00011 . . . , Ξ3 = 01101 . . . ,

Ξ4 = 00000 . . . , Ξ5 = 11111 . . . , Ξ6 = 11100 . . .

Ξ4

Ξ4

Ξ2

Ξ2

Ξ3

Ξ3

Ξ1

Ξ1

Ξ6

Ξ6

Ξ5

Ξ5

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 3 / 19



Introduction CS Background

Searching

Search for Ξ1 = 11010 . . .

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Searching cost = Depth of Ξ1

= 3
= Shortest prefix of Ξ1 not shared by Ξ2, . . . ,Ξ6

Worst case = Height of the Trie

= 4

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 4 / 19



Introduction CS Background

Searching

Search for Ξ1 = 11010 . . .

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Searching cost = Depth of Ξ1

= 3
= Shortest prefix of Ξ1 not shared by Ξ2, . . . ,Ξ6

Worst case = Height of the Trie

= 4

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 4 / 19



Introduction CS Background

Searching

Search for Ξ1 = 11010 . . .

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Searching cost = Depth of Ξ1

= 3
= Shortest prefix of Ξ1 not shared by Ξ2, . . . ,Ξ6

Worst case = Height of the Trie

= 4

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 4 / 19



Introduction CS Background

Searching

Search for Ξ1 = 11010 . . .

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Searching cost = Depth of Ξ1

= 3
= Shortest prefix of Ξ1 not shared by Ξ2, . . . ,Ξ6

Worst case = Height of the Trie

= 4

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 4 / 19



Introduction CS Background

Searching

Search for Ξ1 = 11010 . . .

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Searching cost = Depth of Ξ1

= 3
= Shortest prefix of Ξ1 not shared by Ξ2, . . . ,Ξ6

Worst case = Height of the Trie

= 4

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 4 / 19



Introduction CS Background

Searching

Search for Ξ1 = 11010 . . .

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Searching cost = Depth of Ξ1

= 3
= Shortest prefix of Ξ1 not shared by Ξ2, . . . ,Ξ6

Worst case = Height of the Trie

= 4

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 4 / 19



Introduction CS Background

Searching

Search for Ξ1 = 11010 . . .

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Searching cost = Depth of Ξ1

= 3

= Shortest prefix of Ξ1 not shared by Ξ2, . . . ,Ξ6

Worst case = Height of the Trie

= 4

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 4 / 19



Introduction CS Background

Searching

Search for Ξ1 = 11010 . . .

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Searching cost = Depth of Ξ1

= 3

= Shortest prefix of Ξ1 not shared by Ξ2, . . . ,Ξ6

Worst case = Height of the Trie

= 4

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 4 / 19



Introduction CS Background

Searching

Search for Ξ1 = 11010 . . .

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Searching cost = Depth of Ξ1 = 3
= Shortest prefix of Ξ1 not shared by Ξ2, . . . ,Ξ6

Worst case = Height of the Trie

= 4

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 4 / 19



Introduction CS Background

Searching

Search for Ξ1 = 11010 . . .

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Searching cost = Depth of Ξ1 = 3
= Shortest prefix of Ξ1 not shared by Ξ2, . . . ,Ξ6

Worst case = Height of the Trie = 4

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 4 / 19



Introduction The Probabilistic Model

Input Model

Generate the words Ξ1,Ξ2, . . . to be stored → Probabilistic Model

The words Ξ1,Ξ2, . . . are independent and identically distributed

Each word Ξi = ξ1ξ2ξ3ξ4 . . . consists of letters ξ1, ξ2, . . . that are:

• independent, • P(ξj = 0) = 1/2 = P(ξj = 1)

More general models allow ξ1, ξ2, . . . to be dependent
(e.g. evolving as a Markov chain)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 5 / 19



Introduction The Probabilistic Model

Input Model

Generate the words Ξ1,Ξ2, . . . to be stored → Probabilistic Model

The words Ξ1,Ξ2, . . . are independent and identically distributed

Each word Ξi = ξ1ξ2ξ3ξ4 . . . consists of letters ξ1, ξ2, . . . that are:

• independent, • P(ξj = 0) = 1/2 = P(ξj = 1)

More general models allow ξ1, ξ2, . . . to be dependent
(e.g. evolving as a Markov chain)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 5 / 19



Introduction The Probabilistic Model

Input Model

Generate the words Ξ1,Ξ2, . . . to be stored → Probabilistic Model

The words Ξ1,Ξ2, . . . are independent and identically distributed

Each word Ξi = ξ1ξ2ξ3ξ4 . . . consists of letters ξ1, ξ2, . . . that are:

• independent, • P(ξj = 0) = 1/2 = P(ξj = 1)

More general models allow ξ1, ξ2, . . . to be dependent
(e.g. evolving as a Markov chain)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 5 / 19



Introduction The Probabilistic Model

Input Model

Generate the words Ξ1,Ξ2, . . . to be stored → Probabilistic Model

The words Ξ1,Ξ2, . . . are independent and identically distributed

Each word Ξi = ξ1ξ2ξ3ξ4 . . . consists of letters ξ1, ξ2, . . . that are:

• independent,

• P(ξj = 0) = 1/2 = P(ξj = 1)

More general models allow ξ1, ξ2, . . . to be dependent
(e.g. evolving as a Markov chain)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 5 / 19



Introduction The Probabilistic Model

Input Model

Generate the words Ξ1,Ξ2, . . . to be stored → Probabilistic Model

The words Ξ1,Ξ2, . . . are independent and identically distributed

Each word Ξi = ξ1ξ2ξ3ξ4 . . . consists of letters ξ1, ξ2, . . . that are:

• independent, • P(ξj = 0) = 1/2 = P(ξj = 1)

More general models allow ξ1, ξ2, . . . to be dependent
(e.g. evolving as a Markov chain)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 5 / 19



Introduction The Probabilistic Model

Input Model

Generate the words Ξ1,Ξ2, . . . to be stored → Probabilistic Model

The words Ξ1,Ξ2, . . . are independent and identically distributed

Each word Ξi = ξ1ξ2ξ3ξ4 . . . consists of letters ξ1, ξ2, . . . that are:

• independent, • P(ξj = 0) = 1/2 = P(ξj = 1)

More general models allow ξ1, ξ2, . . . to be dependent
(e.g. evolving as a Markov chain)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 5 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ1

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ1,Ξ2

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2

Ξ1

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ1,Ξ2

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2

Ξ1

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2 Ξ1

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ3

Ξ2 Ξ1

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2 Ξ1

Ξ3

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ4

Ξ2 Ξ1

Ξ3

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ4

Ξ2 Ξ1

Ξ3

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2 Ξ1,Ξ4

Ξ3

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2 Ξ4

Ξ1

Ξ3

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2

Ξ1 Ξ4

Ξ3

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ5

Ξ2

Ξ1 Ξ4

Ξ3

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2

Ξ1 Ξ4

Ξ3,Ξ5

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2

Ξ1 Ξ4

Ξ5

Ξ3

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2

Ξ1 Ξ4

Ξ3,Ξ5

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2

Ξ1 Ξ4

Ξ5

Ξ3

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Introduction The resulting random Tree

A recursive construction of the Trie

Ξ2

Ξ1 Ξ4 Ξ3 Ξ5

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 6 / 19



Analysis The Depth

Consider n words Ξ1, . . . ,Ξn. What is the depth of the vertex Ξ1?

Recall:
Depth Dn = Length of the shortest unique prefix of Ξ1 = ξ1ξ2ξ3 . . .

P(Dn ≤ k) = P(Ξ2, . . . ,Ξn do not start with ξ1 . . . ξk)

=

(
1−

(
1

2

)k
)n−1

Consequence:

P(Dn ≤ α log2(n)) =
(
1− n−α

)n−1

n→∞−→

{
1, if α > 1,

0, if α < 1.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 7 / 19



Analysis The Depth

Consider n words Ξ1, . . . ,Ξn. What is the depth of the vertex Ξ1?

Recall:
Depth Dn = Length of the shortest unique prefix of Ξ1 = ξ1ξ2ξ3 . . .

P(Dn ≤ k) = P(Ξ2, . . . ,Ξn do not start with ξ1 . . . ξk)

=

(
1−

(
1

2

)k
)n−1

Consequence:

P(Dn ≤ α log2(n)) =
(
1− n−α

)n−1

n→∞−→

{
1, if α > 1,

0, if α < 1.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 7 / 19



Analysis The Depth

Consider n words Ξ1, . . . ,Ξn. What is the depth of the vertex Ξ1?

Recall:
Depth Dn = Length of the shortest unique prefix of Ξ1 = ξ1ξ2ξ3 . . .

P(Dn ≤ k) = P(Ξ2, . . . ,Ξn do not start with ξ1 . . . ξk)

=

(
1−

(
1

2

)k
)n−1

Consequence:

P(Dn ≤ α log2(n)) =
(
1− n−α

)n−1

n→∞−→

{
1, if α > 1,

0, if α < 1.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 7 / 19



Analysis The Depth

Consider n words Ξ1, . . . ,Ξn. What is the depth of the vertex Ξ1?

Recall:
Depth Dn = Length of the shortest unique prefix of Ξ1 = ξ1ξ2ξ3 . . .

P(Dn ≤ k) = P(Ξ2, . . . ,Ξn do not start with ξ1 . . . ξk)

=

(
1−

(
1

2

)k
)n−1

Consequence:

P(Dn ≤ α log2(n)) =
(
1− n−α

)n−1

n→∞−→

{
1, if α > 1,

0, if α < 1.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 7 / 19



Analysis The Depth

Consider n words Ξ1, . . . ,Ξn. What is the depth of the vertex Ξ1?

Recall:
Depth Dn = Length of the shortest unique prefix of Ξ1 = ξ1ξ2ξ3 . . .

P(Dn ≤ k) = P(Ξ2, . . . ,Ξn do not start with ξ1 . . . ξk)

=

(
1−

(
1

2

)k
)n−1

Consequence:

P(Dn ≤ α log2(n)) =
(
1− n−α

)n−1

n→∞−→

{
1, if α > 1,

0, if α < 1.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 7 / 19



Analysis The Depth

Consider n words Ξ1, . . . ,Ξn. What is the depth of the vertex Ξ1?

Recall:
Depth Dn = Length of the shortest unique prefix of Ξ1 = ξ1ξ2ξ3 . . .

P(Dn ≤ k) = P(Ξ2, . . . ,Ξn do not start with ξ1 . . . ξk)

=

(
1−

(
1

2

)k
)n−1

Consequence:

P(Dn ≤ α log2(n)) =
(
1− n−α

)n−1 n→∞−→

{
1, if α > 1,

0, if α < 1.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 7 / 19



Analysis The Depth

Results on Dn

Shown on the previous slide:

Dn

log2(n)
P−→ 1 (n→∞)

Considering the previous slide more carefully:

P (Dn − log2(n) < x) ≈
(

1− 2−x

n

)n−1
n→∞−→ e−2

−x

(Limit is a Gumbel distribution known from extreme value theory)

Thm (Knuth ’72): E[Dn] = log2(n) + Ψ(log2(n)) + o(1)
with periodic function Ψ

Thm (Szpankowski ’86): Var(Dn) ∼ Φ(log2(n))
with periodic function Φ

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 8 / 19



Analysis The Depth

Results on Dn

Shown on the previous slide:

Dn

log2(n)
P−→ 1 (n→∞)

Considering the previous slide more carefully:

P (Dn − log2(n) < x) ≈
(

1− 2−x

n

)n−1
n→∞−→ e−2

−x

(Limit is a Gumbel distribution known from extreme value theory)

Thm (Knuth ’72): E[Dn] = log2(n) + Ψ(log2(n)) + o(1)
with periodic function Ψ

Thm (Szpankowski ’86): Var(Dn) ∼ Φ(log2(n))
with periodic function Φ

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 8 / 19



Analysis The Depth

Results on Dn

Shown on the previous slide:

Dn

log2(n)
P−→ 1 (n→∞)

Considering the previous slide more carefully:

P (Dn − log2(n) < x) ≈
(

1− 2−x

n

)n−1
n→∞−→ e−2

−x

(Limit is a Gumbel distribution known from extreme value theory)

Thm (Knuth ’72): E[Dn] = log2(n) + Ψ(log2(n)) + o(1)
with periodic function Ψ

Thm (Szpankowski ’86): Var(Dn) ∼ Φ(log2(n))
with periodic function Φ

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 8 / 19



Analysis The Depth

Results on Dn

Shown on the previous slide:

Dn

log2(n)
P−→ 1 (n→∞)

Considering the previous slide more carefully:

P (Dn − log2(n) < x) ≈
(

1− 2−x

n

)n−1
n→∞−→ e−2

−x

(Limit is a Gumbel distribution known from extreme value theory)

Thm (Knuth ’72): E[Dn] = log2(n) + Ψ(log2(n)) + o(1)
with periodic function Ψ

Thm (Szpankowski ’86): Var(Dn) ∼ Φ(log2(n))
with periodic function Φ

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 8 / 19



Analysis The Height

Consider n words Ξ1, . . . ,Ξn. What is the height of the resulting Trie?

Def: Height Hn = max{Dn(Ξi ) : i = 1, . . . , n}.

The result P(Dn ≤ k) = (1− 2−k)n−1 implies:

P (Hn > α log2(n)) =

P (Dn(Ξi ) > α log2(n) for some i ∈ {1, . . . , n})
≤ n · P (Dn > α log2(n))

≤ n ·
(
1−

(
1− n−α

)n)
≤ n2−α

Consequence: P (Hn > α log2(n))→ 0 for α > 2

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 9 / 19



Analysis The Height

Consider n words Ξ1, . . . ,Ξn. What is the height of the resulting Trie?

Def: Height Hn = max{Dn(Ξi ) : i = 1, . . . , n}.

The result P(Dn ≤ k) = (1− 2−k)n−1 implies:

P (Hn > α log2(n)) =

P (Dn(Ξi ) > α log2(n) for some i ∈ {1, . . . , n})
≤ n · P (Dn > α log2(n))

≤ n ·
(
1−

(
1− n−α

)n)
≤ n2−α

Consequence: P (Hn > α log2(n))→ 0 for α > 2

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 9 / 19



Analysis The Height

Consider n words Ξ1, . . . ,Ξn. What is the height of the resulting Trie?

Def: Height Hn = max{Dn(Ξi ) : i = 1, . . . , n}.

The result P(Dn ≤ k) = (1− 2−k)n−1 implies:

P (Hn > α log2(n)) =

P (Dn(Ξi ) > α log2(n) for some i ∈ {1, . . . , n})
≤ n · P (Dn > α log2(n))

≤ n ·
(
1−

(
1− n−α

)n)
≤ n2−α

Consequence: P (Hn > α log2(n))→ 0 for α > 2

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 9 / 19



Analysis The Height

Consider n words Ξ1, . . . ,Ξn. What is the height of the resulting Trie?

Def: Height Hn = max{Dn(Ξi ) : i = 1, . . . , n}.

The result P(Dn ≤ k) = (1− 2−k)n−1 implies:

P (Hn > α log2(n)) = P (Dn(Ξi ) > α log2(n) for some i ∈ {1, . . . , n})

≤ n · P (Dn > α log2(n))

≤ n ·
(
1−

(
1− n−α

)n)
≤ n2−α

Consequence: P (Hn > α log2(n))→ 0 for α > 2

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 9 / 19



Analysis The Height

Consider n words Ξ1, . . . ,Ξn. What is the height of the resulting Trie?

Def: Height Hn = max{Dn(Ξi ) : i = 1, . . . , n}.

The result P(Dn ≤ k) = (1− 2−k)n−1 implies:

P (Hn > α log2(n)) = P (Dn(Ξi ) > α log2(n) for some i ∈ {1, . . . , n})
≤ n · P (Dn > α log2(n))

≤ n ·
(
1−

(
1− n−α

)n)
≤ n2−α

Consequence: P (Hn > α log2(n))→ 0 for α > 2

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 9 / 19



Analysis The Height

Consider n words Ξ1, . . . ,Ξn. What is the height of the resulting Trie?

Def: Height Hn = max{Dn(Ξi ) : i = 1, . . . , n}.

The result P(Dn ≤ k) = (1− 2−k)n−1 implies:

P (Hn > α log2(n)) = P (Dn(Ξi ) > α log2(n) for some i ∈ {1, . . . , n})
≤ n · P (Dn > α log2(n))

≤ n ·
(
1−

(
1− n−α

)n)

≤ n2−α

Consequence: P (Hn > α log2(n))→ 0 for α > 2

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 9 / 19



Analysis The Height

Consider n words Ξ1, . . . ,Ξn. What is the height of the resulting Trie?

Def: Height Hn = max{Dn(Ξi ) : i = 1, . . . , n}.

The result P(Dn ≤ k) = (1− 2−k)n−1 implies:

P (Hn > α log2(n)) = P (Dn(Ξi ) > α log2(n) for some i ∈ {1, . . . , n})
≤ n · P (Dn > α log2(n))

≤ n ·
(
1−

(
1− n−α

)n)
≤ n2−α

Consequence: P (Hn > α log2(n))→ 0 for α > 2

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 9 / 19



Analysis The Height

Consider n words Ξ1, . . . ,Ξn. What is the height of the resulting Trie?

Def: Height Hn = max{Dn(Ξi ) : i = 1, . . . , n}.

The result P(Dn ≤ k) = (1− 2−k)n−1 implies:

P (Hn > α log2(n)) = P (Dn(Ξi ) > α log2(n) for some i ∈ {1, . . . , n})
≤ n · P (Dn > α log2(n))

≤ n ·
(
1−

(
1− n−α

)n)
≤ n2−α

Consequence: P (Hn > α log2(n))→ 0 for α > 2

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 9 / 19



Analysis The Height

Results on Hn

Partly proven on the previous slide:

Hn

2 log2(n)
P−→ 1

Thm (Devroye ’84):

lim
n→∞

P(Hn − 2 log2(n)− 1 ≤ x) = exp(−2−x), x ∈ R

Thm (Regnier ’82):

E[Hn] ∼ 2 log2(n) (n→∞)

(Flajolet, Steyaert ’82 → periodic second order term)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 10 / 19



Analysis The Height

Results on Hn

Partly proven on the previous slide:

Hn

2 log2(n)
P−→ 1

Thm (Devroye ’84):

lim
n→∞

P(Hn − 2 log2(n)− 1 ≤ x) = exp(−2−x), x ∈ R

Thm (Regnier ’82):

E[Hn] ∼ 2 log2(n) (n→∞)

(Flajolet, Steyaert ’82 → periodic second order term)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 10 / 19



Analysis The Height

Results on Hn

Partly proven on the previous slide:

Hn

2 log2(n)
P−→ 1

Thm (Devroye ’84):

lim
n→∞

P(Hn − 2 log2(n)− 1 ≤ x) = exp(−2−x), x ∈ R

Thm (Regnier ’82):

E[Hn] ∼ 2 log2(n) (n→∞)

(Flajolet, Steyaert ’82 → periodic second order term)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 10 / 19



Analysis The Height

Summary: Typical depth: log2(n), height: 2 log2(n).

Profile (Park, Hwang, Nicodème, Szpankowski):

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

log2
n

log n +O(1)

log2 n+O(1)

2 log2 n+O(1)

log2
n

log n +O(1)

log2 n+O(1)

2 log2 n+O(1)

(External nodes/Leaves) (Internal nodes)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 11 / 19



Analysis The Height

Summary: Typical depth: log2(n), height: 2 log2(n).

Profile (Park, Hwang, Nicodème, Szpankowski):

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

log2
n

log n +O(1)

log2 n+O(1)

2 log2 n+O(1)

log2
n

log n +O(1)

log2 n+O(1)

2 log2 n+O(1)

(External nodes/Leaves) (Internal nodes)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 11 / 19



Analysis The External Path Length

Consider n words Ξ1, . . . ,Ξn. External Path Length:

Ln :=
n∑

i=1

Dn,i , Dn,i = Dn(Ξi ).

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Example: L6 = 2 + 3 + 4 · 4 = 21

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 12 / 19



Analysis The External Path Length

Consider n words Ξ1, . . . ,Ξn. External Path Length:

Ln :=
n∑

i=1

Dn,i , Dn,i = Dn(Ξi ).

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Example: L6 = 2 + 3 + 4 · 4 = 21

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 12 / 19



Analysis The External Path Length

Consider n words Ξ1, . . . ,Ξn. External Path Length:

Ln :=
n∑

i=1

Dn,i , Dn,i = Dn(Ξi ).

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Example: L6 = 2 + 3 + 4 · 4 = 21

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 12 / 19



Analysis The External Path Length

A Recursion for Ln

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Kn = # words starting with 0

Ln
d
=

LKn + L̃n−Kn + n

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 13 / 19



Analysis The External Path Length

A Recursion for Ln

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Kn = # words starting with 0

Ln
d
=

LKn + L̃n−Kn + n

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 13 / 19



Analysis The External Path Length

A Recursion for Ln

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Kn = # words starting with 0

Ln
d
=

LKn + L̃n−Kn + n

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 13 / 19



Analysis The External Path Length

A Recursion for Ln

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Kn = # words starting with 0

Ln
d
=

LKn + L̃n−Kn + n

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 13 / 19



Analysis The External Path Length

A Recursion for Ln

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Kn = # words starting with 0

Ln
d
= LKn

+ L̃n−Kn + n

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 13 / 19



Analysis The External Path Length

A Recursion for Ln

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Kn = # words starting with 0

Ln
d
= LKn + L̃n−Kn

+ n

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 13 / 19



Analysis The External Path Length

A Recursion for Ln

Ξ4 Ξ2

Ξ3

Ξ1

Ξ6 Ξ5

Kn = # words starting with 0

Ln
d
= LKn + L̃n−Kn + n

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 13 / 19



Analysis The External Path Length

The Contraction Method in a Nutshell

Aim: Find a limit law for Ln (after rescaling properly)

Ln
d
= LKn + L̃n−Kn + n

1. Rescaling: Xn = (Ln − E[Ln])/
√

Var(Ln)

Xn
d
= An,1XKn + An,2X̃n−Kn + bn

2. Find the Limits: (An,1,An,2, bn) −→

X
d
=

1√
2
X +

1√
2
X̃ (1)

3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.
4. Contraction: Find a metric such that (1) corresponds to the fixed
point of a contracting map.
5. Convergence: Prove convergence with respect to that metric.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 14 / 19



Analysis The External Path Length

The Contraction Method in a Nutshell

Aim: Find a limit law for Ln (after rescaling properly)

Ln
d
= LKn + L̃n−Kn + n

1. Rescaling: Xn = (Ln − E[Ln])/
√
Var(Ln)

Xn
d
= An,1XKn + An,2X̃n−Kn + bn

2. Find the Limits: (An,1,An,2, bn) −→

X
d
=

1√
2
X +

1√
2
X̃ (1)

3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.
4. Contraction: Find a metric such that (1) corresponds to the fixed
point of a contracting map.
5. Convergence: Prove convergence with respect to that metric.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 14 / 19



Analysis The External Path Length

The Contraction Method in a Nutshell

Aim: Find a limit law for Ln (after rescaling properly)

Ln
d
= LKn + L̃n−Kn + n

1. Rescaling: Xn = (Ln − E[Ln])/
√
Var(Ln)

Xn
d
= An,1XKn + An,2X̃n−Kn + bn

2. Find the Limits: (An,1,An,2, bn) −→

X
d
=

1√
2
X +

1√
2
X̃ (1)

3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.
4. Contraction: Find a metric such that (1) corresponds to the fixed
point of a contracting map.
5. Convergence: Prove convergence with respect to that metric.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 14 / 19



Analysis The External Path Length

The Contraction Method in a Nutshell

Aim: Find a limit law for Ln (after rescaling properly)

Ln
d
= LKn + L̃n−Kn + n

1. Rescaling: Xn = (Ln − E[Ln])/
√
Var(Ln)

Xn
d
= An,1XKn + An,2X̃n−Kn + bn

2. Find the Limits: (An,1,An,2, bn) −→ ???

X
d
=

1√
2
X +

1√
2
X̃ (1)

3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.
4. Contraction: Find a metric such that (1) corresponds to the fixed
point of a contracting map.
5. Convergence: Prove convergence with respect to that metric.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 14 / 19



Analysis The External Path Length

The Contraction Method in a Nutshell

Aim: Find a limit law for Ln (after rescaling properly)

Ln
d
= LKn + L̃n−Kn + n

1. Rescaling: Xn = (Ln − E[Ln])/
√
Var(Ln)

Xn
d
= An,1XKn + An,2X̃n−Kn + bn

2. Find the Limits: (An,1,An,2, bn) −→ ((
√

2)−1, (
√

2)−1, 0)

X
d
=

1√
2
X +

1√
2
X̃ (1)

3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.
4. Contraction: Find a metric such that (1) corresponds to the fixed
point of a contracting map.
5. Convergence: Prove convergence with respect to that metric.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 14 / 19



Analysis The External Path Length

The Contraction Method in a Nutshell

Aim: Find a limit law for Ln (after rescaling properly)

Ln
d
= LKn + L̃n−Kn + n

1. Rescaling: Xn = (Ln − E[Ln])/
√
Var(Ln)

Xn
d
= An,1XKn + An,2X̃n−Kn + bn

2. Find the Limits: (An,1,An,2, bn) −→ ((
√

2)−1, (
√

2)−1, 0)

X
d
=

1√
2
X +

1√
2
X̃ (1)

3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.
4. Contraction: Find a metric such that (1) corresponds to the fixed
point of a contracting map.
5. Convergence: Prove convergence with respect to that metric.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 14 / 19



Analysis The External Path Length

The Contraction Method in a Nutshell

Aim: Find a limit law for Ln (after rescaling properly)

Ln
d
= LKn + L̃n−Kn + n

1. Rescaling: Xn = (Ln − E[Ln])/
√
Var(Ln)

Xn
d
= An,1XKn + An,2X̃n−Kn + bn

2. Find the Limits: (An,1,An,2, bn) −→ ((
√

2)−1, (
√

2)−1, 0)

X
d
=

1√
2
X +

1√
2
X̃ (1)

3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.

4. Contraction: Find a metric such that (1) corresponds to the fixed
point of a contracting map.
5. Convergence: Prove convergence with respect to that metric.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 14 / 19



Analysis The External Path Length

The Contraction Method in a Nutshell

Aim: Find a limit law for Ln (after rescaling properly)

Ln
d
= LKn + L̃n−Kn + n

1. Rescaling: Xn = (Ln − E[Ln])/
√
Var(Ln)

Xn
d
= An,1XKn + An,2X̃n−Kn + bn

2. Find the Limits: (An,1,An,2, bn) −→ ((
√

2)−1, (
√

2)−1, 0)

X
d
=

1√
2
X +

1√
2
X̃ (1)

3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.
4. Contraction: Find a metric such that (1) corresponds to the fixed
point of a contracting map.

5. Convergence: Prove convergence with respect to that metric.

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 14 / 19



Analysis The External Path Length

The Contraction Method in a Nutshell

Aim: Find a limit law for Ln (after rescaling properly)

Ln
d
= LKn + L̃n−Kn + n

1. Rescaling: Xn = (Ln − E[Ln])/
√
Var(Ln)

Xn
d
= An,1XKn + An,2X̃n−Kn + bn

2. Find the Limits: (An,1,An,2, bn) −→ ((
√

2)−1, (
√

2)−1, 0)

X
d
=

1√
2
X +

1√
2
X̃ (1)

3. Solution to (1): Existence of a solution to (1). Here: Normal
distribution with mean 0.
4. Contraction: Find a metric such that (1) corresponds to the fixed
point of a contracting map.
5. Convergence: Prove convergence with respect to that metric.
Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 14 / 19



Analysis The External Path Length

Results on Ln

Thm (Jacquet, Regnier ’88; Neininger, Rüschendorf 2004):

Ln − E[Ln]√
Var(Ln)

d−→ N (0, 1)

From the analysis of Dn:

E[Ln] = E

[
n∑

i=1

Dn(Ξi )

]

= nE[Dn] = n log2(n) + nΨ(log2(n)) + o(n)

Thm (Kirschenhofer, Prodinger ’86):

Var(Ln) = nΨ̃(log2(n)) + O(log2(n))

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 15 / 19



Analysis The External Path Length

Results on Ln

Thm (Jacquet, Regnier ’88; Neininger, Rüschendorf 2004):

Ln − E[Ln]√
Var(Ln)

d−→ N (0, 1)

From the analysis of Dn:

E[Ln] = E

[
n∑

i=1

Dn(Ξi )

]

= nE[Dn] = n log2(n) + nΨ(log2(n)) + o(n)

Thm (Kirschenhofer, Prodinger ’86):

Var(Ln) = nΨ̃(log2(n)) + O(log2(n))

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 15 / 19



Analysis The External Path Length

Results on Ln

Thm (Jacquet, Regnier ’88; Neininger, Rüschendorf 2004):

Ln − E[Ln]√
Var(Ln)

d−→ N (0, 1)

From the analysis of Dn:

E[Ln] = E

[
n∑

i=1

Dn(Ξi )

]
= nE[Dn]

= n log2(n) + nΨ(log2(n)) + o(n)

Thm (Kirschenhofer, Prodinger ’86):

Var(Ln) = nΨ̃(log2(n)) + O(log2(n))

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 15 / 19



Analysis The External Path Length

Results on Ln

Thm (Jacquet, Regnier ’88; Neininger, Rüschendorf 2004):

Ln − E[Ln]√
Var(Ln)

d−→ N (0, 1)

From the analysis of Dn:

E[Ln] = E

[
n∑

i=1

Dn(Ξi )

]
= nE[Dn] = n log2(n) + nΨ(log2(n)) + o(n)

Thm (Kirschenhofer, Prodinger ’86):

Var(Ln) = nΨ̃(log2(n)) + O(log2(n))

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 15 / 19



Analysis The External Path Length

Results on Ln

Thm (Jacquet, Regnier ’88; Neininger, Rüschendorf 2004):

Ln − E[Ln]√
Var(Ln)

d−→ N (0, 1)

From the analysis of Dn:

E[Ln] = E

[
n∑

i=1

Dn(Ξi )

]
= nE[Dn] = n log2(n) + nΨ(log2(n)) + o(n)

Thm (Kirschenhofer, Prodinger ’86):

Var(Ln) = nΨ̃(log2(n)) + O(log2(n))

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 15 / 19



Summary

Trie:

tree-like data structure to store words

position of a word in the tree ↔ path given by shortest unique prefix

Performance:

Consider input: n independent words, each word is a sequence of
’coin tosses’

Typical search/insert time (depth): around log2(n)
Worst search/insert time (height): around 2 log2(n)
Construction cost (path length): around n log2(n)

Input model not very realistic, what about more general input models?

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 16 / 19



Summary

Trie:

tree-like data structure to store words

position of a word in the tree ↔ path given by shortest unique prefix

Performance:

Consider input: n independent words, each word is a sequence of
’coin tosses’

Typical search/insert time (depth): around log2(n)
Worst search/insert time (height): around 2 log2(n)
Construction cost (path length): around n log2(n)

Input model not very realistic, what about more general input models?

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 16 / 19



Summary

Trie:

tree-like data structure to store words

position of a word in the tree ↔ path given by shortest unique prefix

Performance:

Consider input: n independent words, each word is a sequence of
’coin tosses’

Typical search/insert time (depth): around log2(n)
Worst search/insert time (height): around 2 log2(n)
Construction cost (path length): around n log2(n)

Input model not very realistic, what about more general input models?

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 16 / 19



Summary

Trie:

tree-like data structure to store words

position of a word in the tree ↔ path given by shortest unique prefix

Performance:

Consider input: n independent words, each word is a sequence of
’coin tosses’

Typical search/insert time (depth): around log2(n)

Worst search/insert time (height): around 2 log2(n)
Construction cost (path length): around n log2(n)

Input model not very realistic, what about more general input models?

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 16 / 19



Summary

Trie:

tree-like data structure to store words

position of a word in the tree ↔ path given by shortest unique prefix

Performance:

Consider input: n independent words, each word is a sequence of
’coin tosses’

Typical search/insert time (depth): around log2(n)
Worst search/insert time (height): around 2 log2(n)

Construction cost (path length): around n log2(n)

Input model not very realistic, what about more general input models?

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 16 / 19



Summary

Trie:

tree-like data structure to store words

position of a word in the tree ↔ path given by shortest unique prefix

Performance:

Consider input: n independent words, each word is a sequence of
’coin tosses’

Typical search/insert time (depth): around log2(n)
Worst search/insert time (height): around 2 log2(n)
Construction cost (path length): around n log2(n)

Input model not very realistic, what about more general input models?

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 16 / 19



Summary

Trie:

tree-like data structure to store words

position of a word in the tree ↔ path given by shortest unique prefix

Performance:

Consider input: n independent words, each word is a sequence of
’coin tosses’

Typical search/insert time (depth): around log2(n)
Worst search/insert time (height): around 2 log2(n)
Construction cost (path length): around n log2(n)

Input model not very realistic, what about more general input models?

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 16 / 19



The Markov Source Model

Markov Model

Generate n words Ξ1, . . . ,Ξn such that

the words Ξ1, . . . ,Ξn are independent and identically distributed

Each word Ξk = ξ1ξ2ξ3 . . . has letters (ξj)j≥1 which are a Markov
chain on {0, 1}, i.e. for some µ = (µ0, µ1) and P = (pij)i ,j∈{0,1}

• P(ξ1 = a) = µa, • P(ξj+1 = a|ξ1, . . . , ξj) = pξja

More general (Markov Model with k-dependency):
distribution of ξj depends only on the previous k letters for some fixed k

Even more general: Dynamical Sources Model by Vallée

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 17 / 19



The Markov Source Model

Markov Model

Generate n words Ξ1, . . . ,Ξn such that

the words Ξ1, . . . ,Ξn are independent and identically distributed

Each word Ξk = ξ1ξ2ξ3 . . . has letters (ξj)j≥1 which are a Markov
chain on {0, 1}, i.e. for some µ = (µ0, µ1) and P = (pij)i ,j∈{0,1}

• P(ξ1 = a) = µa, • P(ξj+1 = a|ξ1, . . . , ξj) = pξja

More general (Markov Model with k-dependency):
distribution of ξj depends only on the previous k letters for some fixed k

Even more general: Dynamical Sources Model by Vallée

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 17 / 19



The Markov Source Model

Markov Model

Generate n words Ξ1, . . . ,Ξn such that

the words Ξ1, . . . ,Ξn are independent and identically distributed

Each word Ξk = ξ1ξ2ξ3 . . . has letters (ξj)j≥1 which are a Markov
chain on {0, 1}, i.e. for some µ = (µ0, µ1) and P = (pij)i ,j∈{0,1}

• P(ξ1 = a) = µa, • P(ξj+1 = a|ξ1, . . . , ξj) = pξja

More general (Markov Model with k-dependency):
distribution of ξj depends only on the previous k letters for some fixed k

Even more general: Dynamical Sources Model by Vallée

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 17 / 19



The Markov Source Model

Markov Model

Generate n words Ξ1, . . . ,Ξn such that

the words Ξ1, . . . ,Ξn are independent and identically distributed

Each word Ξk = ξ1ξ2ξ3 . . . has letters (ξj)j≥1 which are a Markov
chain on {0, 1}, i.e. for some µ = (µ0, µ1) and P = (pij)i ,j∈{0,1}

• P(ξ1 = a) = µa,

• P(ξj+1 = a|ξ1, . . . , ξj) = pξja

More general (Markov Model with k-dependency):
distribution of ξj depends only on the previous k letters for some fixed k

Even more general: Dynamical Sources Model by Vallée

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 17 / 19



The Markov Source Model

Markov Model

Generate n words Ξ1, . . . ,Ξn such that

the words Ξ1, . . . ,Ξn are independent and identically distributed

Each word Ξk = ξ1ξ2ξ3 . . . has letters (ξj)j≥1 which are a Markov
chain on {0, 1}, i.e. for some µ = (µ0, µ1) and P = (pij)i ,j∈{0,1}

• P(ξ1 = a) = µa, • P(ξj+1 = a|ξ1, . . . , ξj) = pξja

More general (Markov Model with k-dependency):
distribution of ξj depends only on the previous k letters for some fixed k

Even more general: Dynamical Sources Model by Vallée

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 17 / 19



The Markov Source Model

Markov Model

Generate n words Ξ1, . . . ,Ξn such that

the words Ξ1, . . . ,Ξn are independent and identically distributed

Each word Ξk = ξ1ξ2ξ3 . . . has letters (ξj)j≥1 which are a Markov
chain on {0, 1}, i.e. for some µ = (µ0, µ1) and P = (pij)i ,j∈{0,1}

• P(ξ1 = a) = µa, • P(ξj+1 = a|ξ1, . . . , ξj) = pξja

More general (Markov Model with k-dependency):
distribution of ξj depends only on the previous k letters for some fixed k

Even more general: Dynamical Sources Model by Vallée

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 17 / 19



The Markov Source Model

Markov Model

Generate n words Ξ1, . . . ,Ξn such that

the words Ξ1, . . . ,Ξn are independent and identically distributed

Each word Ξk = ξ1ξ2ξ3 . . . has letters (ξj)j≥1 which are a Markov
chain on {0, 1}, i.e. for some µ = (µ0, µ1) and P = (pij)i ,j∈{0,1}

• P(ξ1 = a) = µa, • P(ξj+1 = a|ξ1, . . . , ξj) = pξja

More general (Markov Model with k-dependency):
distribution of ξj depends only on the previous k letters for some fixed k

Even more general: Dynamical Sources Model by Vallée

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 17 / 19



The Markov Source Model

Effect on Depth and related parameters:
Are there very ’typical’ long prefixes for the source (e.g. because paa is
very large)?

→ Depth/Height gets very large

Entropy in the Markov Source Model:

H = π0 (−p00 log(p00)− p01 log(p01)) + π1 (−p10 log(p10)− p11 log(p11))

with stationary distribution

(π0, π1) =

(
p10

p10 + p01
,

p01
p10 + p01

)

Depth for Markov Sources:

E[Dn] ∼ 1

H
log(n)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 18 / 19



The Markov Source Model

Effect on Depth and related parameters:
Are there very ’typical’ long prefixes for the source (e.g. because paa is
very large)? → Depth/Height gets very large

Entropy in the Markov Source Model:

H = π0 (−p00 log(p00)− p01 log(p01)) + π1 (−p10 log(p10)− p11 log(p11))

with stationary distribution

(π0, π1) =

(
p10

p10 + p01
,

p01
p10 + p01

)

Depth for Markov Sources:

E[Dn] ∼ 1

H
log(n)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 18 / 19



The Markov Source Model

Effect on Depth and related parameters:
Are there very ’typical’ long prefixes for the source (e.g. because paa is
very large)? → Depth/Height gets very large

Entropy in the Markov Source Model:

H = π0 (−p00 log(p00)− p01 log(p01)) + π1 (−p10 log(p10)− p11 log(p11))

with stationary distribution

(π0, π1) =

(
p10

p10 + p01
,

p01
p10 + p01

)

Depth for Markov Sources:

E[Dn] ∼ 1

H
log(n)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 18 / 19



The Markov Source Model

Effect on Depth and related parameters:
Are there very ’typical’ long prefixes for the source (e.g. because paa is
very large)? → Depth/Height gets very large

Entropy in the Markov Source Model:

H = π0 (−p00 log(p00)− p01 log(p01)) + π1 (−p10 log(p10)− p11 log(p11))

with stationary distribution

(π0, π1) =

(
p10

p10 + p01
,

p01
p10 + p01

)

Depth for Markov Sources:

E[Dn] ∼ 1

H
log(n)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 18 / 19



The Markov Source Model

Results for the Markov Source Model

Depth: Jacquet, Szpankowski ’89

Height: Szpankowski ’91

External Pathlength: L., Neininger, Szpankowski (SODA 2013)

Dynamical Sources: Clément, Flajolet, Vallée 2001

Some related problems:

PATRICIA Tries and Digital Search Trees (Thesis L.→ Pathlength)

Radix-Sort and -Select (Thesis L.)

Lempel-Ziv Parsing Scheme (data compression)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 19 / 19



The Markov Source Model

Results for the Markov Source Model

Depth: Jacquet, Szpankowski ’89

Height: Szpankowski ’91

External Pathlength: L., Neininger, Szpankowski (SODA 2013)

Dynamical Sources: Clément, Flajolet, Vallée 2001

Some related problems:

PATRICIA Tries and Digital Search Trees (Thesis L.→ Pathlength)

Radix-Sort and -Select (Thesis L.)

Lempel-Ziv Parsing Scheme (data compression)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 19 / 19



The Markov Source Model

Results for the Markov Source Model

Depth: Jacquet, Szpankowski ’89

Height: Szpankowski ’91

External Pathlength: L., Neininger, Szpankowski (SODA 2013)

Dynamical Sources: Clément, Flajolet, Vallée 2001

Some related problems:

PATRICIA Tries and Digital Search Trees (Thesis L.→ Pathlength)

Radix-Sort and -Select (Thesis L.)

Lempel-Ziv Parsing Scheme (data compression)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 19 / 19



The Markov Source Model

Results for the Markov Source Model

Depth: Jacquet, Szpankowski ’89

Height: Szpankowski ’91

External Pathlength: L., Neininger, Szpankowski (SODA 2013)

Dynamical Sources: Clément, Flajolet, Vallée 2001

Some related problems:

PATRICIA Tries and Digital Search Trees (Thesis L.→ Pathlength)

Radix-Sort and -Select (Thesis L.)

Lempel-Ziv Parsing Scheme (data compression)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 19 / 19



The Markov Source Model

Results for the Markov Source Model

Depth: Jacquet, Szpankowski ’89

Height: Szpankowski ’91

External Pathlength: L., Neininger, Szpankowski (SODA 2013)

Dynamical Sources: Clément, Flajolet, Vallée 2001

Some related problems:

PATRICIA Tries and Digital Search Trees (Thesis L.→ Pathlength)

Radix-Sort and -Select (Thesis L.)

Lempel-Ziv Parsing Scheme (data compression)

Kevin Leckey (Monash University) An Introduction to Tries 21.09.2015 19 / 19


	Introduction
	CS Background
	The Probabilistic Model
	The resulting random Tree

	Analysis
	The Depth
	The Height
	The External Path Length

	Summary
	The Markov Source Model

