On the Erdős-Hajnal conjecture for trees

Anita Liebenau Monash University

joint work with Marcin Pilipczuk, and with Paul Seymour and Sophie Spirkl

Discrete Maths Seminar 2017

Introduction

Graph G, n vertices

 $\omega(G) = \max\{|S| \ : \ G[S] \text{ is a clique}\}$

 $\alpha(G) = \max\{|S| \ : \ G[S] \text{ is an independent set}\}$

Typical graphs

all graphs on n vertices:

But also: almost all graphs contain all "small" subgraphs.

"Containing small subgraphs"

 $\rightarrow G$ contains H as an induced subgraph

Induced copy of ${\cal H}$

"Containing small subgraphs"

 $\rightarrow G$ contains H as an induced subgraph

Not an induced copy of H

Typical graphs

Fix k. Let n be large. All graphs on n vertices:

H-free graphs

Fix graph H.

- $lue{G}$ is H-free if it does not contain H as an induced subgraph

The Erdős-Hajnal conjecture

$$hom(G) = \max\{\alpha(G), \omega(G)\}\$$

Theorem (Erdős & Hajnal, 1989)

For every graph H there exists a constant c=c(H) such that every H-free graph G on n vertices satisfies

$$hom(G) \geqslant e^{c(H)\sqrt{\log n}}.$$

Conjecture (Erdős & Hajnal, 1977)

For every graph H there exists a constant c=c(H) such that every H-free graph G on n vertices satisfies

$$hom(G) \geqslant e^{c(H)\log n} = n^{c(H)}.$$

The Erdős-Hajnal conjecture

is known to be true if

- $H = K_k$ (for every $k \geqslant 2$)
- $v(H) \leq 4$
- v(H) = 5 and H is not one of those:

■ *H* is obtained through the "Substitution method"

The substitution method

- Alon, Pach, Solymosi (2001)
- lacktriangleq H, H' graphs that satisfy the EH conjecture

Weakening the conjecture

lacktriangle forbid both H and H^c (the complement) as induced subgraphs

Symmetric EH conjecture (Gyarfas 1997, Chudnovsky 2014)

For every graph H there exists a constant c=c(H) such that every $(H,H^{\rm c})\text{-free}$ graph on n vertices satisfies

$$hom(G) \geqslant n^{c(H)}.$$

Weakening the conjecture

• forbid both H and H^c (the complement) as induced subgraphs

Symmetric EH conjecture (Gyarfas 1997, Chudnovsky 2014)

For every graph H there exists a constant c=c(H) such that every $(H,H^{\rm c})$ -free graph on n vertices satisfies

$$hom(G) \geqslant n^{c(H)}.$$

The symmetric EH conjecture is known to be true for H if

- the EH conjecture is true for *H*;
- $H = P_k$ (any $k \geqslant 1$; Bousquet, Lagoutte, Thomassé 2015)
- $H = H_k$ (any $k \geqslant 1$; Choromanski, Falik, L, Patel, Pilizcuk 2015+)
- Still open: C₅

Proving something stronger

Strong Sparse EH-property

A graph H has the strong sparse EH-property if there exists $\varepsilon>0$ such that every H-free graph G on $n\geq 2$ vertices

- lacktriangle either has $\Delta(G) \geqslant \varepsilon n$, or
- there are two disjoint sets $A, B \subseteq V(G)$ such that $E(A, B) = \emptyset$ and $|A|, |B| \geqslant \varepsilon n$.

Proving something stronger

Sparse Strong EH-property

A graph H has the sparse strong EH-property if there exists $\varepsilon>0$ such that every H-free graph G on $n\geq 2$ vertices

- lacktriangle either has $\Delta(G) \geqslant \varepsilon n$, or
- there are two disjoint sets $A, B \subseteq V(G)$ such that $E(A, B) = \emptyset$ and $|A|, |B| \geqslant \varepsilon n$.
- Sparse strong EH-property ⇒ symmetric EH conjecture.
- H has sparse strong EH-property $\Longrightarrow H$ is acyclic.
- $H = P_k$ has the sparse strong EH-property (Bousquet, Lagoutte, Thomassé 2015)
- $H = H_k$ has the sparse strong EH-property (Choromanski, Falik, L, Patel, Pilizcuk 2015+)

Symmetric EH for trees

Conjecture

A graph H has the sparse strong EH-property $\Longleftrightarrow H$ is a forest.

Symmetric EH for trees

Conjecture

A graph H has the sparse strong EH-property $\iff H$ is a forest.

■ A caterpillar subdivision is a tree in which all vertices of degree $\geqslant 3$ lie on a common path.

Theorem (L, Pilipzcuk, Seymour, Spirkl 2017+)

Every caterpillar subdivision has the sparse strong EH-property.