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n-1
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r=2
1 m52(K4):3
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If r is even and n is odd, then

[m_lJ—lgcms,(K,,) < lrnz—lJ
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Remaining cases?

Question

For what odd r and n does

cms, (Kp) = Vn; 1J

If r and n are odd, then

rm-1

cms, (K,) = [

J iff cmsn_l_,(Kn)z{MJ
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Sketch of the Construction: General r

m cms (Ky) =5 —
m Start with a matching decomposition My Mo---M,_1 of K,

m A subsequence of 3 —1 edges is of the form

er-e M1 M1 €i1--en1
— ~—_——
edges in M; edges in M,

m The matchings r spaces apart form the collections

MI)MI’+15"' M27MI’+25"' Md7Mr+da"'
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Further Generalisations

Let1<nm=ny=--=ny<nys1 <---<ng. Then

if "1 r or (1) below, holds
er(’Cnh 7nk) 1 | ( )
rmp —1 otherwise

and
rny if nt=1 | r

rni —1 otherwise

(s e Bl (o))

Cmsr(lcnl,..,,nk ) = {

where




The End

Thanks for listening!
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