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Kn is the graph with n vertices and every possible edge.
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A labelling is a bijective function ` ∶ E → {1,2, . . . , ∣E ∣}.
ms(`) = max{s ∶ every s consecutive edges are a matching}
ms(G) = max

`
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Sketch of the Construction: General r

cmsr(Kn) = rn
2 − 1

Start with a matching decomposition M1M2⋯Mn−1 of Kn

A subsequence of rn
2 − 1 edges is of the form

e1⋯ ej
´¹¹¹¹¹¸¹¹¹¹¹¹¶

edges in Mi

Mi+1⋯Mi+r−1 ej+1⋯ en−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
edges in Mi+r

The matchings r spaces apart form the collections

M1,Mr+1, . . . M2,Mr+2, . . . ⋯ Md ,Mr+d , . . .
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Further Generalisations

Theorem

If n ≤ m, then

msr(Kn,m) = cmsr(Kn,m) =
⎧⎪⎪⎨⎪⎪⎩

rn if n < m

rn − 1 if n = m

Theorem

If n1 < n2 ≤ ⋯ ≤ nk , then

msr(Kn1,n2,...,nk ) = cmsr(Kn1,n2,...,nk ) = rn1



Further Generalisations

Theorem

Let 1 ≤ n1 = n2 = ⋯ = nu < nu+1 ≤ ⋯ ≤ nk .

Then
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The End

Thanks for listening!
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