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Graphs

A graph is a set of vertices V (can be taken to be {1,2, . . . ,n})
and edges E , where each edge is an element of V × V . We
assume all graphs in this talk are simple, which means that
(a,a) /∈ E and E has no repeated elements, and undirected,
which means that (a,b) and (b,a) represent the same edge.



Distance-transitive graphs

Let d(x , z) denote the length of the shortest path between x
and z within G. A graph is distance-transitive if, whenever there
are points X1, z1, x2, z2 such that d(x1, z1) = d(x2, z2), there is
an automorphism γ of G such that γ(x1) = x2, γ(z1) = z2. An
automorphism is a bijection from the vertex set of G to itself,
with the property that γ(u) ∼ γ(v) if, and only if, u ∼ v .



Distance-regular graphs

A graph is distance-regular if, for any points x and z within G,
the sizes of the following sets depends only on d(x , z):

B = {v |d(x , v) = d(x , z)− 1}
⋂
{v |d(z, v) = 1}

A = {v |d(x , v) = d(x , z)}
⋂
{v |d(z, v) = 1}

C = {v |d(x , v) = d(x , z) + 1}
⋂
{v |d(z, v) = 1}

If a graph is distance transitive, it is distance regular. If
d(x , z) = i , we define bi ,ai , and ci to be the sizes of the three
sets above.



Distance-regular graphs - Examples

Hamming graphs:Let d ,q be positive integers. The vertex set
is elements of {1,2, . . . ,q}d . Two vertices are adjacent if they
differ in exactly one component. This family of graphs includes
the hypercubes.

Johnson graphs: Let k ≤ n be positive integers. The vertex
set is all subsets of {1,2, . . . ,n} of size k . Two vertices are
adjacent if their intersection has size k − 1.

The Hamming and Johnson graphs are important in coding
theory. In particular Hamming graphs arise naturally in the
study of error-correcting codes.
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Distance-regular graphs - Examples

Odd Graphs: Let n be a positive integer. The vertex set is all
subsets of {1,2, . . . ,2n − 1} of size n − 1. Two vertices are
adjacent if their intersection is empty.

Grassman Graphs: Let V be a vector space of dimension n
over the finite field F with q elements (q a prime power). The
vertices are the subspaces of dimension t (over F ) of V and
such two vertices are adjacent if their intersection is a vector
space of dimension t − 1. Grassman graphs are relevant to
certain questions in quantum physics.
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Cheeger constant

The Cheeger constant hG of a graph G is a prominent measure
of the connectivity of G, and is defined as

hG = inf
{E [S,Sc]

vol(S)
|S ⊂ V (G) with |S| ≤ |V (G)|

2

}
, (1)

where V (G) is the vertex set of G, vol(S) is the sum of the
valencies of the vertices in S, Sc is the complement of S in
V (G), |S| is the number of vertices in S, and for any sets A,B
we use E [A,B] to denote the number of edges in G which
connect a point in A with a point in B.



Graph eigenvalues

For a distance-regular graph G of diameter D, we will write
k = θ0 > θ1 > . . . > θD to describe the eigenvalues of the
adjacency matrix A of G, and refer to θ0, . . . , θD as simply the
eigenvalues of G.

The Laplacian matrix (sometimes referred to
as the normalized Laplacian) L = I − 1

k A will therefore have
eigenvalues 0 = λ0 < λ1 < . . . < λD, where the relationship
λi =

k−θi
k holds. We will refer to λ0, . . . , λD as the Laplacian

eigenvalues of G.
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The connection between eigenvalues and the Cheeger constant

Theorem

Let λ1 be the smallest positive eigenvalue of the Laplacian
matrix of G. Then

λ1

2
≤ hG ≤

√
λ1(2− λ1). (2)

The lower bound can be proved by eigenvalue interlacing.
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Our conjecture

Conjecture

Suppose G is a distance-regular graph, and λ1 is the smallest
positive eigenvalue of the Laplacian matrix of G. Then

λ1

2
≤ hG ≤ λ1. (3)

We do not have a complete proof of this, but we have proved it
in a number of cases.
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The following are the major known families of infinite families of
distance-regular graphs.

Johnson graphs.
Hamming graphs.
Doob graphs.
Halved n-cubes.
Folded n-cubes.
Folded halved 2n-cubes.
Odd graphs.
Doubled odd graphs.
Grassmann graphs.
Twisted Grassmann
graphs.

Doubled Grassman
graphs.
Bilinear forms graphs.
Alternating forms graphs.
Hermitian forms graphs.
Quadratic forms graph
Dual polar graphs and
Hemmeter graphs.
Half dual polar and
Ustimenko graphs.

We have proved the conjecture for all of these, except for the
doubled Grassman graphs with q = 2 or 3.
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Strongly regular graph

A distance-regular graph with diameter 2 is called strongly
regular.

We have proved the conjecture for all strongly regular
graphs. The following simple lemma took care of most of them.

Lemma: If G is a strongly regular graph, then
hG ≤ max( b1

k+1 ,
c2
k ).
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Graphs with small valency

The distance-regular graphs with valencies 3 and 4 are
completely classified, and we have verified the conjecture for all
of them except the following two graphs:

The flag graph of GH(2,2), with intersection array
{4,2,2,2,2,2;1,1,1,1,1,2}. Here λ1 = 3−

√
6

4 ≈ .138.
The incidence graph of GH(3,3), with intersection array
{4,3,3,3,3,3;1,1,1,1,1,4}. Here λ1 = 1

4 .

The question remains open for these.
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Other classes

We also proved the conjecture for several other classes of
distance-regular graphs. These are

Diameter 3 and bipartite or antipodal.
Incidence graphs of generalized quadrangles GQ(q,q)
with q 6= 3,4.
Incidence graphs of generalized hexagons GH(q,q) with
q 6= 3,4,5,7,8,9.
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