The Cheeger constant for distance-regular graphs

Greg Markowsky (joint work with Jacobus Koolen and Zhi Qiao)

August 9, 2019

Graphs

A *graph* is a set of vertices $V(\text{can be taken to be } \{1,2,\ldots,n\})$ and edges E, where each edge is an element of $V \times V$. We assume all graphs in this talk are *simple*, which means that $(a,a) \notin E$ and E has no repeated elements, and *undirected*, which means that (a,b) and (b,a) represent the same edge.

Distance-transitive graphs

Let d(x,z) denote the length of the shortest path between x and z within G. A graph is *distance-transitive* if, whenever there are points X_1, z_1, x_2, z_2 such that $d(x_1, z_1) = d(x_2, z_2)$, there is an automorphism γ of G such that $\gamma(x_1) = x_2, \gamma(z_1) = z_2$. An automorphism is a bijection from the vertex set of G to itself, with the property that $\gamma(u) \sim \gamma(v)$ if, and only if, $u \sim v$.

Distance-regular graphs

A graph is *distance-regular* if, for any points x and z within G, the sizes of the following sets depends only on d(x, z):

$$B = \{v | d(x, v) = d(x, z) - 1\} \bigcap \{v | d(z, v) = 1\}$$

$$A = \{v | d(x, v) = d(x, z)\} \bigcap \{v | d(z, v) = 1\}$$

$$C = \{v | d(x, v) = d(x, z) + 1\} \bigcap \{v | d(z, v) = 1\}$$

If a graph is distance transitive, it is distance regular. If d(x, z) = i, we define b_i , a_i , and c_i to be the sizes of the three sets above.

Hamming graphs:Let d, q be positive integers. The vertex set is elements of $\{1, 2, \dots, q\}^d$. Two vertices are adjacent if they differ in exactly one component. This family of graphs includes the hypercubes.

Hamming graphs:Let d, q be positive integers. The vertex set is elements of $\{1, 2, \dots, q\}^d$. Two vertices are adjacent if they differ in exactly one component. This family of graphs includes the hypercubes.

Johnson graphs: Let $k \le n$ be positive integers. The vertex set is all subsets of $\{1, 2, ..., n\}$ of size k. Two vertices are adjacent if their intersection has size k-1.

Hamming graphs:Let d, q be positive integers. The vertex set is elements of $\{1, 2, \ldots, q\}^d$. Two vertices are adjacent if they differ in exactly one component. This family of graphs includes the hypercubes.

Johnson graphs: Let $k \le n$ be positive integers. The vertex set is all subsets of $\{1, 2, ..., n\}$ of size k. Two vertices are adjacent if their intersection has size k-1.

The Hamming and Johnson graphs are important in coding theory. In particular Hamming graphs arise naturally in the study of error-correcting codes.

Odd Graphs: Let n be a positive integer. The vertex set is all subsets of $\{1, 2, ..., 2n - 1\}$ of size n - 1. Two vertices are adjacent if their intersection is empty.

Odd Graphs: Let n be a positive integer. The vertex set is all subsets of $\{1, 2, ..., 2n - 1\}$ of size n - 1. Two vertices are adjacent if their intersection is empty.

Grassman Graphs: Let V be a vector space of dimension n over the finite field F with q elements (q a prime power). The vertices are the subspaces of dimension t (over F) of V and such two vertices are adjacent if their intersection is a vector space of dimension t-1. Grassman graphs are relevant to certain questions in quantum physics.

Cheeger constant

The Cheeger constant h_G of a graph G is a prominent measure of the connectivity of G, and is defined as

$$h_G = \inf \left\{ \frac{E[S, S^c]}{\operatorname{vol}(S)} | S \subset V(G) \text{ with } |S| \le \frac{|V(G)|}{2} \right\},$$
 (1)

where V(G) is the vertex set of G, vol(S) is the sum of the valencies of the vertices in S, S^c is the complement of S in V(G), |S| is the number of vertices in S, and for any sets A, B we use E[A, B] to denote the number of edges in G which connect a point in A with a point in B.

Graph eigenvalues

For a distance-regular graph G of diameter D, we will write $k = \theta_0 > \theta_1 > \ldots > \theta_D$ to describe the eigenvalues of the adjacency matrix A of G, and refer to $\theta_0, \ldots, \theta_D$ as simply the eigenvalues of G.

Graph eigenvalues

For a distance-regular graph G of diameter D, we will write $k=\theta_0>\theta_1>\ldots>\theta_D$ to describe the eigenvalues of the adjacency matrix A of G, and refer to θ_0,\ldots,θ_D as simply the eigenvalues of G. The Laplacian matrix (sometimes referred to as the normalized Laplacian) $L=I-\frac{1}{k}A$ will therefore have eigenvalues $0=\lambda_0<\lambda_1<\ldots<\lambda_D$, where the relationship $\lambda_i=\frac{k-\theta_i}{k}$ holds.

Graph eigenvalues

For a distance-regular graph G of diameter D, we will write $k=\theta_0>\theta_1>\ldots>\theta_D$ to describe the eigenvalues of the adjacency matrix A of G, and refer to θ_0,\ldots,θ_D as simply the eigenvalues of G. The Laplacian matrix (sometimes referred to as the normalized Laplacian) $L=I-\frac{1}{k}A$ will therefore have eigenvalues $0=\lambda_0<\lambda_1<\ldots<\lambda_D$, where the relationship $\lambda_i=\frac{k-\theta_i}{k}$ holds. We will refer to $\lambda_0,\ldots,\lambda_D$ as the Laplacian eigenvalues of G.

The connection between eigenvalues and the Cheeger constant

Theorem

Let λ_1 be the smallest positive eigenvalue of the Laplacian matrix of G. Then

$$\frac{\lambda_1}{2} \le h_G \le \sqrt{\lambda_1(2 - \lambda_1)}. \tag{2}$$

The connection between eigenvalues and the Cheeger constant

Theorem

Let λ_1 be the smallest positive eigenvalue of the Laplacian matrix of G. Then

$$\frac{\lambda_1}{2} \le h_G \le \sqrt{\lambda_1(2 - \lambda_1)}. \tag{2}$$

The lower bound can be proved by eigenvalue interlacing.

Our conjecture

Conjecture

Suppose G is a distance-regular graph, and λ_1 is the smallest positive eigenvalue of the Laplacian matrix of G. Then

$$\frac{\lambda_1}{2} \le h_G \le \lambda_1. \tag{3}$$

Our conjecture

Conjecture

Suppose G is a distance-regular graph, and λ_1 is the smallest positive eigenvalue of the Laplacian matrix of G. Then

$$\frac{\lambda_1}{2} \le h_G \le \lambda_1. \tag{3}$$

We do not have a complete proof of this, but we have proved it in a number of cases.

The following are the major known families of infinite families of distance-regular graphs.

- Johnson graphs.
- Hamming graphs.
- Doob graphs.
- Halved n-cubes.
- Folded n-cubes.
- Folded halved 2n-cubes.
- Odd graphs.
- Doubled odd graphs.
- Grassmann graphs.
- Twisted Grassmann graphs.

- Doubled Grassman graphs.
- Bilinear forms graphs.
- Alternating forms graphs.
- Hermitian forms graphs.
- Quadratic forms graph
- Dual polar graphs and Hemmeter graphs.
- Half dual polar and Ustimenko graphs.

The following are the major known families of infinite families of distance-regular graphs.

- Johnson graphs.
- Hamming graphs.
- Doob graphs.
- Halved n-cubes.
- Folded n-cubes.
- Folded halved 2n-cubes.
- Odd graphs.
- Doubled odd graphs.
- Grassmann graphs.
- Twisted Grassmann graphs.

We have proved the conjecture for all of these, except for the doubled Grassman graphs with q = 2 or 3.

- Doubled Grassman graphs.
- Bilinear forms graphs.
- Alternating forms graphs.
- Hermitian forms graphs.
- Quadratic forms graph
- Dual polar graphs and Hemmeter graphs.
- Half dual polar and Ustimenko graphs.

Strongly regular graph

A distance-regular graph with diameter 2 is called *strongly regular*.

Strongly regular graph

A distance-regular graph with diameter 2 is called *strongly regular*. We have proved the conjecture for all strongly regular graphs.

Strongly regular graph

A distance-regular graph with diameter 2 is called *strongly regular*. We have proved the conjecture for all strongly regular graphs. The following simple lemma took care of most of them.

Lemma: If *G* is a strongly regular graph, then $h_G \leq \max(\frac{b_1}{k+1}, \frac{c_2}{k})$.

Graphs with small valency

The distance-regular graphs with valencies 3 and 4 are completely classified, and we have verified the conjecture for all of them except the following two graphs:

- The flag graph of GH(2,2), with intersection array $\{4,2,2,2,2,2;1,1,1,1,1,2\}$. Here $\lambda_1 = \frac{3-\sqrt{6}}{4} \approx .138$.
- The incidence graph of GH(3,3), with intersection array $\{4,3,3,3,3,3;1,1,1,1,1,4\}$. Here $\lambda_1 = \frac{1}{4}$.

Graphs with small valency

The distance-regular graphs with valencies 3 and 4 are completely classified, and we have verified the conjecture for all of them except the following two graphs:

- The flag graph of GH(2,2), with intersection array $\{4,2,2,2,2,2;1,1,1,1,1,2\}$. Here $\lambda_1 = \frac{3-\sqrt{6}}{4} \approx .138$.
- The incidence graph of GH(3,3), with intersection array $\{4,3,3,3,3,3;1,1,1,1,1,4\}$. Here $\lambda_1 = \frac{1}{4}$.

The question remains open for these.

Other classes

We also proved the conjecture for several other classes of distance-regular graphs. These are

- Diameter 3 and bipartite or antipodal.
- Incidence graphs of generalized quadrangles GQ(q, q) with $q \neq 3, 4$.
- Incidence graphs of generalized hexagons GH(q, q) with $q \neq 3, 4, 5, 7, 8, 9$.

References

- F. Chung, Spectral Graph Theory, 1994.
- N. Biggs, Algebraic Graph Theory, 1993.
- A. Brouwer, A. Cohen, and A. Neumaier, *Distance-regular graphs*, 1989.
- C. Godsil and G. Royle, Algebraic Graph Theory, 1993.
- J. Koolen, G. Markowsky, Z. Qiao *On the Cheeger constant for distance-regular graphs*, arXiv:1103.2810.