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Graphs

A graph is a set of vertices V (can be taken to be {1,2, . . . ,n})
and edges E , where each edge is an element of V × V . We
assume all graphs in this talk are simple, which means that
(a,a) /∈ E and E has no repeated elements, and undirected,
which means that (a,b) and (b,a) represent the same edge.



Random Walks

The degree of a vertex of a graph is the number of edges
containing that vertex. A random walk is a process in which a
walker moves on the vertices of a graph, at each stage moving
to the adjacent vertices with probability 1/d , where d is the
degree of the current vertex. Formally, a random walk is a
random process Xn with independent increments on the
vertices of the graph, with conditional probabilities

P(Xn+1 = b|Xn = a) =

{
1

deg(a)
if a ∼ b

0 if a � b .
(1)
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Some interesting questions regarding random walks

1 On finite graphs:
Let V1,V0 be subsets of the vertex set V . Starting from
point a, what is the probability that we hit set V1 before set
V0?
What is the expected amount of time until the entire graph
is covered?
Does the random walk approach some stable distribution
as we let it go forever?

2 On infinite graphs:
Starting from a point a, is there a nonzero probability that
the random walk will never return?
If the walk must return, what is the expected return time?
What is the expected distance from the origin at any time?



Integer Lattice

We will consider the integer lattice in n dimensions. This is the
infinite graph whose vertices are the set of elements of Zn, with
the edge set defined by {a1, . . . ,an} ∼ {b1, . . . ,bn} if there
exists j such that |aj − bj | = 1 and ai = bi for i 6= j . For
example, we have the 2-dimensional lattice:



Recurrence vs. transience on Zn

Probably the most fundamental question regarding random
walk on Zn is the question of recurrence: Must a random walk
on Zn return to its starting point with probability 1?

Pólya’s Theorem: Random walk is recurrent on Z1,Z2, and
transient on Zn for n ≥ 3.

We will prove this fact using the concept of electric resistance.
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Electric resistance on a graph

Suppose that a graph is taken to represent an electric circuit,
where each edge has unit resistance. We imagine that we
attach one pole of a battery to a vertex z0, and the other pole to
another vertex z1, so that z0 is at voltage 0 and z1 is at voltage
1. All other points z receive a voltage V (z), which can be
calculated using Ohm’s Law and Kirchoff’s Current Law.

Ohm’s Law: Voltage is equal to current times resistance.

V = IR (2)

Kirchoff’s Current Law: The sum of the currents entering and
leaving any point other than v0 and v1 is 0.



Harmonic functions on a graph

As a consequence of Ohm’s and Kirchoff’s Laws, the voltage
function on G is harmonic. That is, for v 6= v0, v1, We have

V (z) =
1

deg(z)

∑
x∼z

V (x) (3)

The following is an example:



Connection with random walks

Let g(z) = Pz(v1beforev0) denote the probability that a random
walk, started at z, strikes v1 before hitting v0. Random walk has
no memory, so

Pz(v1 before v0) =
1
d

Px1(z1 before z0)+. . .+
1
d

Pxd (z1 before z0)

(4)
where x1, . . . , xd are the points adjacent to z. This is the same
definition as before, so g(z) is a harmonic function as well on
G − {z0, z1}. Given boundary values and a finite graph, there is
exactly one possible harmonic function, so we see that g(z) is
equal to V (z).



Effective resistance

Due to Ohm’s Law, V = IR, the amount of current flowing
between two adjacent vertices is given by the difference in
voltage. We can therefore measure the amount of current
flowing from z0 to z1 by summing the voltages of vertices
adjacent to z0. The reciprocal of the amount of current flowing
is called the effective resistance, and is a metric on the graph.
In the example below, the effective resistance between z0 and
z1 is 286/308.



Intuition I

Resistances in series add. The effective resistance between z0
and z1 is 3.



Intuition II

Resistances in parallel satisfy 1
R =

∑
i

1
Ri

. The effective
resistance between z0 and z1 is 1/3.



Intuition III

The following graphs all have effective resistances of 1 between
the red and green vertices.



Variable resistances

We may also place resistances other than 1 on each edge, to
create a different problem. The same rules apply, so that the
resistance between the red and green vertices below is 1.



Rayleigh’s monotonicity law

Rayleigh’s monotonicity law: If the resistances of one or more
edges in a graph are increased, the resistance in the new graph
between any pair of points must be at least the resistance
between the pair in the old graph.

Of course, this also implies the reverse, that if the resistances
of one or more edges in a graph are decreased, the resistance
in the new graph between any pair of points must be at most
the resistance between the pair in the old graph.



Rayleigh’s monotonicity law

Suppose the middle graph below is our original graph. Then the
resistance between the red and green vertices is less in the two
graphs on the left and more in the two graphs on the right.



Recurrence vs. transience on infinite graphs.

In light of what has come before, we can determine whether a
random walk is recurrent or transient by choosing a set Fn of
vertices far from the origin which separate the origin from
infinity. We can then find the harmonic function gn(x) which is 0
at the origin and 1 on Fn. The probability that a random walk
will return to the origin before hitting Fn will then be given by

1
deg O

∑
x∼O

gn(x) (5)

By Ohm’s law this is equal to

1
(deg O)(resistance between O and Fn)

(6)

So if the resistance between O and Fn is finite, the random
walk is transient, but if it is infinite, the random walk is recurrent.



Recurrence in Z1

Let Fn be the set {n,n}. The resistance between 0 and Fn is
given by n

2 , as is illustrated by the picture below. This clearly
−→∞ as n −→∞, so the walk is recurrent.



Recurrence in Z2

Let Fn be the set {(x , y) : |x | = n or |y | = n}. The sets F1 and
F2 are shown below in purple and green. Let us note that, by
Rayleigh’s Monotonicity Theorem, the resistance between 0
and Fn will be greater than that obtained by considering Z2 with
each set Fn "shorted out". That is, each edge with both
endpoints lying in the same Fn is given a resistance 0.



Recurrence in Z2

The number of edges between Fn−1 and Fn is given by
4(2n − 1). The graph with the 0 resistances is therefore
equivalent to the following graph:

We see that the resistance between 0 and FN is
∑N

n=1
1

4(2n−1) .
This sum diverges as n −→∞, so we conclude that, as with Z1,
random walk is recurrent on Z2.



Transience in Z3

The situation in Z3 is more difficult. We must show that the
resistance between 0 and any distant set is always bounded. It
suffices to show that there is an infinite, connected subgraph of
Z3 in which the resistance between any two points is bounded
by a constant. It can be shown that the following tree, with
certain vertices identified, can be embedded in Z3. The
resistance of this tree can be calculated to be finite.



Embedding the tree in Z3
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Distance-transitive graphs

Let d(x , z) denote the length of the shortest path between x
and z within G. A graph is distance-transitive if, whenever there
are points X1, z1, x2, z2 such that d(x1, z1) = d(x2, z2), there is
an automorphism γ of G such that γ(x1) = x2, γ(z1) = z2. An
automorphism is a bijection from the vertex set of G to itself,
with the property that γ(u) ∼ γv if, and only if, u ∼ v .



Distance-regular graphs

A graph is distance-regular if, for any points x and z within G,
the sizes of the following sets depends only on d(x , z):

B = {v |d(x , v) = d(x , z)− 1}
⋂
{v |d(z, v) = 1}

A = {v |d(x , v) = d(x , z)}
⋂
{v |d(z, v) = 1}

C = {v |d(x , v) = d(x , z) + 1}
⋂
{v |d(z, v) = 1}

If a graph is distance transitive, it is distance regular. If
d(x , z) = i , we define bi ,ai , and ci to be the sizes of the three
sets above.



Distance-regular graphs - Examples

Hamming graphs:Let d ,q be positive integers. The vertex set
is elements of {1,2, . . . ,q}d . Two vertices are adjacent if they
differ in exactly one component. These graphs have found
applications in computer science.

Johnson graphs: Let k ≤ n be positive integers. The vertex
set are all subsets of {1,2, . . . ,n} of size k . Two vertices are
adjacent if their intersection has size k − 1.

Petersen graph:
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Random Walks and Electric Resistance on Distance-regular
graphs

Distance-regular graphs are a very natural class of graphs
upon which to study random walks and electric resistance. This
is because, unlike most finite graphs, it is possible to explicitly
construct harmonic functions on a D-R graph. Suppose G is a
D-R graph with vertex set V , n vertices, diameter D, valency k ,
and intersection array (b0, . . . ,bD−1; c1, . . . , cD). For
0 ≤ i ≤ D − 1 define the numbers φi recursively by

φ0 = n − 1 (7)

φi =
ciφi−1 − k

bi

We refer to the φi ’s as Biggs potentials. It can be shown that
the φi ’s form a strictly decreasing positive sequence.



Harmonic functions on Distance-regular graphs I

With the φi ’s defined recursively as in the previous frame, if u
and v are adjacent define the following function:

It turns out that this function is harmonic on V − {u, v}!



Harmonic functions on Distance-regular graphs II

If u and v are not adjacent we can still construct a non-constant
function harmonic on V − {u, v}. For example, it d(u, v) = 3
add the following functions:

The resulting function is harmonic on V − {u, v}.



Resistance between vertices on Distance-regular graphs

Using these functions constructed by the potentials φi , the
resistance between two vertices of distance j can be explicitly
calculated. It is given by

2
∑

0≤i<j φi

nk
(8)

It is an interesting question, first posed by Biggs, as to whether
this quantity can be bounded for all D-R graphs.



Biggs’ conjecture

Let Ri be the effective resistance between any two points of
distance i in a distance-regular(or distance-transitive) graph G.
Biggs conjectured that Rd < 2R1, where d is the diameter of
G(i.e., largest possible distance between two points). Rd is the
maximal possible resistance, so this says that the resistance
between any pair of points in the graph is bounded by double
the smallest possible value.



Biggs’ conjecture is true- worst offenders

This conjecture is now proved, and the extremal graphs have
been identified.

Name RD
R1

=
φ0+...+φD−1

φ0

Biggs-Smith Graph 1.930693
Foster Graph 1.896067
Flag graph of GH(2,2) 1.882979
Tutte’s 12-Cage 1.872

The proof can be found in the paper "A Conjecture of Biggs
Concerning the Resistance of a Distance-Regular Graph" by
Markowsky and Koolen, appearing in the Electronic Journal of
Combinatorics.



Consequences

1. Numerous statements regarding random walks are
immediate, all of which are essentially equivalent to "random
walks move rapidly through distance-regular graphs".

2. Certain intersection arrays are ruled out. We don’t have a
really good example of one that is ruled out by this theorem
which is difficult to rule out by other, more well-known theorems
on D-R graphs.



An extension of Biggs’ conjecture

We(Markowsky, Koolen, Park) have proved

Theorem

φ2 + . . .+ φD−1 ≤ φ1 (9)

Except in for a small number of known cases, it can be shown
that

φ1

φ0
<

2
k

(10)

so that

RD

R1
< 1 +

4
k

(11)



Current and future work

It is tempting to hope that φm+1 + . . .+ φD−1 ≤ φm for all m.
However, the Biggs-Smith graph, with intersection array
(3,2,2,2,1,1,1;1,1,1,1,1,1,3), yields the following potentials.

φ0 = 101, φ1 = 49, φ2 = 23, φ3 = 10, φ4 = 7, φ5 = 4, φ6 = 1
(12)

Note that φ4 + φ5 + φ6 > φ3. Nonetheless, we have proved

Theorem
For any m ≥ 0,

φm+1 + . . .+ φD−1 < (3m + 3)φm (13)

We conjecture that the (3m + 3) can be replaced by a universal
constant.



Current and future work, continued

Let π0 be a probability distribution on the vertices of a graph.
After undergoing a step of random walk π0 is transformed into a
new probability density, π1. Repeating gives a sequence
π2, π3, π4, . . .. It is known that if the graph is not bipartite, then
πn converges to a steady state distribution π∞ as n −→∞. The
rate at which πn −→ π∞ is the speed of mixing. The theorems
we have proved should show that random walk is rapidly mixing
on distance-regular graphs, but so far we have not been able to
get as good results as we think should be possible.
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