Finitely forcible graph limits are universal

Jacob Cooper Dan Král' Taísa Martins

University of Warwick

Monash University - Discrete Maths Research Group

Graph limits

- Approximate asymptotic properties of large graphs
- Extremal combinatorics/computer science:
 flag algebra method, property testing
 large networks, e.g. the internet, social networks...
- The 'limit' of a convergent sequence of graphs is represented by an analytic object called a graphon

- Convergence for dense graphs $(|E| = \Omega(|V|^2))$
- d(H, G) = probability |H|-vertex subgraph of G is H
- A sequence $(G_n)_{n\in\mathbb{N}}$ of graphs is convergent if $d(H,G_n)$ converges for every H

- Convergence for dense graphs $(|E| = \Omega(|V|^2))$
- d(H, G) = probability |H|-vertex subgraph of G is H
- A sequence $(G_n)_{n\in\mathbb{N}}$ of graphs is convergent if $d(H,G_n)$ converges for every H
 - complete graphs K_n

- Convergence for dense graphs $(|E| = \Omega(|V|^2))$
- d(H, G) = probability |H|-vertex subgraph of G is H
- A sequence $(G_n)_{n\in\mathbb{N}}$ of graphs is convergent if $d(H,G_n)$ converges for every H
 - complete graphs K_n
 - Erdős-Rényi random graphs $G_{n,p}$

- Convergence for dense graphs $(|E| = \Omega(|V|^2))$
- d(H, G) = probability |H|-vertex subgraph of G is H
- A sequence $(G_n)_{n\in\mathbb{N}}$ of graphs is convergent if $d(H,G_n)$ converges for every H
 - complete graphs K_n
 - Erdős-Rényi random graphs $G_{n,p}$
 - any sequence of sparse graphs

- Convergence for dense graphs $(|E| = \Omega(|V|^2))$
- d(H, G) = probability |H|-vertex subgraph of G is H
- A sequence $(G_n)_{n\in\mathbb{N}}$ of graphs is convergent if $d(H,G_n)$ converges for every H
 - complete graphs K_n
 - Erdős-Rényi random graphs $G_{n,p}$
 - any sequence of sparse graphs

- Convergence for dense graphs $(|E| = \Omega(|V|^2))$
- d(H, G) = probability |H|-vertex subgraph of G is H
- A sequence $(G_n)_{n\in\mathbb{N}}$ of graphs is convergent if $d(H,G_n)$ converges for every H
 - complete graphs K_n
 - Erdős-Rényi random graphs $G_{n,p}$
 - any sequence of sparse graphs

Limit object: graphon

- Graphon: measurable function $W: [0,1]^2 \rightarrow [0,1]$, s.t. $W(x,y) = W(y,x) \ \forall x,y \in [0,1]$
- W-random graph of order n: n random points $x_i \in [0,1]$, edge probability $W(x_i,x_i)$

Limit object: graphon

- Graphon: measurable function $W: [0,1]^2 \rightarrow [0,1]$, s.t. $W(x,y) = W(y,x) \ \forall x,y \in [0,1]$
- W-random graph of order n: n random points $x_i \in [0,1]$, edge probability $W(x_i,x_j)$
- d(H, W) = probability W random graph of order |H| is H

Limit object: graphon

- Graphon: measurable function $W: [0,1]^2 \rightarrow [0,1]$, s.t. $W(x,y) = W(y,x) \ \forall x,y \in [0,1]$
- W-random graph of order n: n random points $x_i \in [0,1]$, edge probability $W(x_i,x_j)$
- d(H, W) = probability W random graph of order |H| is H
- W is a limit of $(G_n)_{n\in\mathbb{N}}$ if $d(H,W)=\lim_{n\to\infty}d(H,G_n)\ \forall\ H$
 - Every convergent sequence of graphs has a limit
 - W-random graphs converge to W with probability one

Examples of graph limits

• The sequence of complete bipartite graphs, $(K_{n,n})_{n\in\mathbb{N}}$

• The sequence of random graphs, $(G_{n,1/2})_{n\in\mathbb{N}}$

Finitely forcible graphons

• A graphon W is finitely forcible if $\exists H_1 ... H_k$ s.t $d(H_i, W') = d(H_i, W) \implies d(H, W') = d(H, W) \forall H$

- 1. Thomason (87), Chung, Graham and Wilson (89)
- 2. Lovász and Sós (2008)
- 3. Diaconis, Holmes and Janson (2009)
- 4. Lovász and Szegedy (2011)

Motivation

Conjecture (Lovász and Szegedy, 2011)
 The space of typical vertices of a finitely forcible graphon is compact.

Conjecture (Lovász and Szegedy, 2011)
 The space of typical vertices of a finitely forcible graphon is finite dimensional.

Motivation

- Conjecture (Lovász and Szegedy, 2011)
 The space of typical vertices of a finitely forcible graphon is compact.
 - Theorem (Glebov, Král', Volec, 2013) T(W) can fail to be locally compact
- Conjecture (Lovász and Szegedy, 2011)
 The space of typical vertices of a finitely forcible graphon is finite dimensional.
 - Theorem (Glebov, Klimošová, Kráľ', 2014) T(W) can have a part homeomorphic to $[0,1]^{\infty}$
 - Theorem (Cooper, Kaiser, Král', Noel, 2015) \exists finitely forcible W such that every ε -regular partition has at least $2^{\varepsilon^{-2}/\log\log\varepsilon^{-1}}$ parts (for inf. many $\varepsilon \to 0$).

Previous Constructions

Universal Construction Theorem

- Theorem (Cooper, Král', M.)
 Every graphon is a subgraphon of a finitely forcible graphon.
 - Existence of a finitely forcible graphon that is non-compact, infinite dimensional, etc
 - For every non-decreasing function $f: \mathbb{R} \to \mathbb{R}$ tending to ∞ , \exists finitely forcible W and positive reals ε_i tending to 0 such that every weak ε_i -regular partition of W has at least $2^{\Omega\left(\frac{\varepsilon_i^{-2}}{f(\varepsilon_i^{-1})}\right)} \text{ parts.}$

Ingredients of the proof

- Partitioned graphons
 - vertices with only finitely many degrees
 - parts with vertices of the same degree
- Decorated constraints
 - method for constraining partitioned graphons
 - density constraints rooted in the parts
 - based on notions related to flag algebras
- Encoding a graphon as a real number in [0,1]
 - forcing W by fixing its density in dyadic subsquares

A graphon as a real number

Unique representation by densities on dyadic squares

- 4-tuple map $\delta : (d, s, t, k) \to \{0, 1\}$
 - dyadic square: $\left[\frac{s}{2^d}, \frac{s+1}{2^d}\right] \times \left[\frac{t}{2^d}, \frac{t+1}{2^d}\right]$
 - k-th bit in the standard binary representation of the density of W in the dyadic square
 - 0, otherwise

•
$$\varphi: \mathbb{N}^4 \to \mathbb{N}$$
 (bijection), $\sigma: \mathcal{W} \to [0,1]$

$$\sigma(W)$$
 j-th bit = $\delta(\varphi^{-1}(j))$

Sketch of the construction

Universal construction

Universality × Meager set

- Theorem (Cooper, Král', M.)
 Every graphon is a subgraphon of a finitely forcible graphon.
- Theorem (Lovász and Szegedy, 2011)
 Finitely forcible graphons form a meager set in the space of all graphons.
- Analogy:
 - $\phi: \mathcal{W} \to [0,1]^{\mathbb{N}}$ (injection)
 - $S \subseteq [0,1]$ measurable
 - $\phi(W[S \times S])$: projection of $\phi(W)$ in a subspace of $[0,1]^{\mathbb{N}}$
 - e.g. $H = \{ (\mathcal{C}(x,y),z) \mid (x,y,z) \in \mathbb{R}^3, \mathcal{C} \text{ is a space-filling curve} \}$

Thank you for your attention!