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Courcelle’s Theorem

Courcelle’s Theorem (1990)

Let ϕ be a sentence in MS2, the monadic second-order logic of
graphs.

Let G be a class of graphs with bounded tree-width.

There is a polynomial-time algorithm that tests graphs in G and
decides whether they satisfy ϕ.



Tree-width

High tree-width Low tree-width



Monadic second-order logic

∃E1 ∀v ∃e1 ∃e2 (e1 ∈ E1 ∧ e2 ∈ E1 ∧ e1 6= e2

∧ inc(v , e1) ∧ inc(v , e2)

∧ ∀e3 (e3 ∈ E1 ∧ e3 6= e1 ∧ e3 6= e2 → ¬ inc(v , e3)))

∧ ∀V1 ∀V2

(∃v1 ∃v2 (v1 ∈ V1 ∧ v2 ∈ V2)

∧ ∀v (v ∈ V1 ∨ v ∈ V2 ∧ ¬(v ∈ V1 ∧ v ∈ V2)))

→
(∃e (e ∈ E1 ∧ ∃v1 ∃v2

(v1 ∈ V1 ∧ v2 ∈ V2 ∧ inc(v1, e) ∧ inc(v2, e))))

“There exists a set of edges, E1, such that every vertex is incident
with exactly two edges in E1, and whenever (V1,V2) is a partition of
the vertices, there is an edge in E1 that is incident with vertices in
both V1 and V2.”
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In other words, the graph is hamiltonian.



Courcelle’s Theorem

Courcelle’s Theorem (1990)

Let ϕ be a sentence in MS2, the monadic second-order logic of
graphs.

Let G be a class of graphs with bounded tree-width.

There is a polynomial-time algorithm that tests graphs in G and
decides whether they satisfy ϕ.

Courcelle’s Theorem means that we can test intractable properties
efficiently, if we limit the structural complexity of the input graph.



Matroids

A matroid is a structured hypergraph (set-system).

Definition

A matroid is a pair, (E , I), where E is a finite set (the ground set),
and I is a family of subsets (the independent sets), satisfying:

I ∅ ∈ I,

I I1 ∈ I and I2 ⊆ I1 implies I2 ∈ I,

I I1, I2 ∈ I and |I2| < |I1| implies there exists e ∈ I1 − I2 such
that I2 ∪ {e} ∈ I.

Definition

A maximal independent set is a basis. A subset of E that is not
independent is dependent. A minimal dependent set is a circuit.
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Graphic matroids

Example

Let G be a graph with edge set E . Then

(E , {I ⊆ E : G [I ] does not contain a cycle})

is a graphic matroid.

The bases of a graphic matroid are maximal forests. The circuits
are cycles in the graph.



Representable matroids

Example

Let F be a field. Let E be a finite subset of the vector space Fn.
Then

(E , {I ⊆ E : I is linearly independent})

is an F-representable matroid.
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Matroids and the Robertson-Seymour project

Statements about graphs are sometimes special cases of more
general statements about matroids.

The Graphs Minors Project of Robertson and Seymour provides a
qualitative structural description of any proper minor-closed class
of graphs.

Among other consequences, we can deduce that in any infinite
collection of graphs, one is isomorphic to a minor of another.

Geelen, Gerards, and Whittle have now established a qualitative
structural description of any proper minor-closed class of
F-representable matroids, when F is a finite field.

We can deduce that in any infinite collection of F-representable
matroids, one is isomorphic to a minor of another.
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Hliněný’s Theorem

Hliněný’s Theorem (2006)

Let ϕ be a sentence in MS0, the monadic second-order logic of
matroids.

Let M be a class of F-representable matroids with bounded
branch-width, where F is a finite field.

There is a polynomial-time algorithm that tests matroids in M and
decides whether they satisfy ϕ.



Monadic second-order logic

∀X1∀X2 (Ind(X1) ∧ X2 ⊆ X1 → Ind(X2))

This expresses the second matroid axiom: every subset of an
independent set is independent.
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Tree automata

A tree automaton consists of a set of states (colours)

and a distinguished subset of accepting states.
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Automatic set-systems

Given an automaton with two distinguished colours that encode
subsets, there is a corresponding set-system on the leaf-set of any
tree.

What families of set-systems arise in this way?

Definition

Let M be family of set-systems.

Assume there is an automaton, A, and for every (E , I) ∈M, there
is a tree, TM , with leaf-set E , such that A accepts the subsets in I
and rejects the subsets not in I.

Then we say that M is automatic.

What families of set-systems are automatic?
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Characterising automatic set-systems

Theorem

Let M be a family of set-systems. Then M is automatic if and
only if it has bounded decomposition-width.



Decomposition-width

Definition

Let (E , I) be a set-system, and let (U,V ) be a partition of E .

We define ∼U , an equivalence relation on subsets of U.

Subsets X ,X ′ ⊆ U satisfy X ∼U X ′ if, whenever Z is a subset of
V , both X ∪ Z and X ′ ∪ Z are in I, or neither are.
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Decomposition-width

A decomposition of a set-system (E , I) is a bijection between E and
the leaves of a tree where every non-leaf vertex has degree three.



Decomposition-width

A decomposition of a set-system (E , I) is a bijection between E and
the leaves of a tree where every non-leaf vertex has degree three.

A displayed set is any set corresponding to the leaves in a connected
component created by deleting an edge of the tree.



Characterising automatic set-systems

Theorem

Let M be a family of set-systems. Then M is automatic if and
only if it has bounded decomposition-width.

Definition

If M has bounded decomposition-width, then there is an integer,
K , and for every M = (E , I) ∈M, we have a decomposition of M
such that whenever U is a displayed set, then ∼U has at most K
equivalence classes.

An equivalent notion of decomposition-width was discussed by Král
and Strozecki.
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Tree automata and Hliněný’s Theorem

If M is an automatic family of set-systems, then there is an
automaton, A, and for every (E , I) ∈M, there is a tree, TM , with
leaf-set E , such that A accepts the subsets in I and rejects the
subsets not in I.

In this case, we can quickly test whether a subset of E is in I:
colour the leaves appropriately, and then just run A.

We can use a bootstrapping procedure to build an automaton that
will quickly test any given MS0 sentence for set-systems in M.

This explains why tree automata are at the heart of Hliněný’s
Theorem.

The challenge is constructing TM , given M ∈M.
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Our conclusions

We have reproved Courcelle’s Theorem and Hliněný’s Theorem.

We have developed general tools which we can use to extend
Hliněný’s Theorem to new classes.

We have done this for the following classes.

I Gain-graphic matroids (with gain labels from a finite group)

I Bicircular matroids

I Lattice-path matroids

I Principal transversal matroids

We have some negative results: if F is an infinite field, then
Hliněný’s Theorem cannot extend to the class of F-representable
matroids. Nor can it extend to the class of gain-graphic matroids
over an infinite group (assuming P 6= NP).



Our conclusions

We have reproved Courcelle’s Theorem and Hliněný’s Theorem.
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Hliněný’s Theorem to new classes.

We have done this for the following classes.

I Gain-graphic matroids (with gain labels from a finite group)

I Bicircular matroids

I Lattice-path matroids

I Principal transversal matroids

We have some negative results: if F is an infinite field, then
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