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Correlation-immune functions

Suppose we have a secret Boolean function of n Boolean variables.

Suppose a malicious eavesdropper is able to observe function values while monitoring

any k of the variables.

We would like these observations to give the eavesdropper as little information

as possible.
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Correlation-immune functions

Suppose we have a secret Boolean function of n Boolean variables.

Suppose a malicious eavesdropper is able to observe function values while monitoring

any k of the variables.

We would like these observations to give the eavesdropper as little information

as possible.

The function is correlation-immune of order k if the function value is uncorrelated

with any k of the arguments.

Suppose the fraction λ of all 2n argument values give a function value 1. Then

correlation-immune means that if any arbitrary k of the arguments are fixed to arbitrary

values, the same fraction λ of the remaining 2n−k argument values give a function

value 1.

The weight of the function is λ2n — the number of argument lists that give function

value 1.

Correlation-immune functions 2



Example (Sloane): n = 12, k = 3, λ = 24/212, weight = 24 = 2k3.

The rows of the table give the argument lists for which the function value is 1.

0 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 0 0 0 1 0
0 0 0 1 0 1 1 1 0 0 0 1
0 1 0 0 1 0 1 1 1 0 0 0
0 0 1 0 0 1 0 1 1 1 0 0
0 0 0 1 0 0 1 0 1 1 1 0
0 0 0 0 1 0 0 1 0 1 1 1
0 1 0 0 0 1 0 0 1 0 1 1
0 1 1 0 0 0 1 0 0 1 0 1
0 1 1 1 0 0 0 1 0 0 1 0
0 0 1 1 1 0 0 0 1 0 0 1
0 1 0 1 1 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 1 1 0 1
1 1 1 0 1 0 0 0 1 1 1 0
1 0 1 1 0 1 0 0 0 1 1 1
1 1 0 1 1 0 1 0 0 0 1 1
1 1 1 0 1 1 0 1 0 0 0 1
1 1 1 1 0 1 1 0 1 0 0 0
1 0 1 1 1 0 1 1 0 1 0 0
1 0 0 1 1 1 0 1 1 0 1 0
1 0 0 0 1 1 1 0 1 1 0 1
1 1 0 0 0 1 1 1 0 1 1 0
1 0 1 0 0 0 1 1 1 0 1 1

This is an orthogonal array of 2 levels, 12 variables, 24 runs and strength 3.
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Our task

Since the weight is a multiple of 2k , let’s define it to be 2kq, where 0 ≤ q ≤ 2n−k .
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Our task

Since the weight is a multiple of 2k , let’s define it to be 2kq, where 0 ≤ q ≤ 2n−k .

Define N(n, k, q) to be the number of n-variable correlation-immune functions

of order k and weight 2kq.

Also define N(n, k) =
∑
q N(n, k, q).

We seek the asymptotic values of N(n, k, q) and N(n, k) as n →∞,

with k and q being some functions of n.
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Our task

Since the weight is a multiple of 2k , let’s define it to be 2kq, where 0 ≤ q ≤ 2n−k .

Define N(n, k, q) to be the number of n-variable correlation-immune functions

of order k and weight 2kq.

Also define N(n, k) =
∑
q N(n, k, q).

We seek the asymptotic values of N(n, k, q) and N(n, k) as n →∞,

with k and q being some functions of n.

Define

M =
k∑
i=0

(n
i

)
and Q =

k∑
i=1

i
(n
i

)
.

Theorem (Denisov, 1992)

If k ≥ 1 is a constant integer, then as n →∞,

N(n, k) ∼ 22n+Q−k(2n−1π)−(M−1)/2.
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Denisov’s method (translated)

For S ⊆ {1, 2, . . . , n}, let βS be the number of rows (β1, β2, . . . , βn) of the matrix

such that βi = 1 for i ∈ S. Also β∅ = 2kq (i.e., all the rows).

Then the matrix is that of a correlation-immune function of weight 2kq iff

βS = 2k−|S|q for |S| ≤ k.

Correlation-immune functions 5



Denisov’s method (translated)

For S ⊆ {1, 2, . . . , n}, let βS be the number of rows (β1, β2, . . . , βn) of the matrix

such that βi = 1 for i ∈ S. Also β∅ = 2kq (i.e., all the rows).

Then the matrix is that of a correlation-immune function of weight 2kq iff

βS = 2k−|S|q for |S| ≤ k.

Consider ∏
β∈{0,1}n

(
1 +

∏
|S|≤k

x
∏
i∈S βi

S

)
,

where {xS | S ⊆ {1, 2, . . . , n} } are indeterminates.

Then N(n, k, q) is the coefficient of the monomial∏
|S|≤k

x2k−|S|q
S .

Denisov extracts N(n, k) by Fourier inversion.
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The inversion integral is concentrated at two equivalent places, where it is approxi-

mately gaussian.

Expansion near the critical points together with bounds away from the critical points

establishes the asymptotics.
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The inversion integral is concentrated at two equivalent places, where it is approxi-

mately gaussian.

Expansion near the critical points together with bounds away from the critical points

establishes the asymptotics.

Denisov’s retraction

In 2000, Denisov published a retraction of his 1992 result.

He wrote that he had “made a mistake”, and gave a new asymptotic value of N(n, k).
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The inversion integral is concentrated at two equivalent places, where it is approxi-

mately gaussian.

Expansion near the critical points together with bounds away from the critical points

establishes the asymptotics.

Denisov’s retraction

In 2000, Denisov published a retraction of his 1992 result.

He wrote that he had “made a mistake”, and gave a new asymptotic value of N(n, k).

This is unfortunate, since the 1992 result is correct and the 2000 result is

incorrect!
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Alternative approach

For a boolean function g(x1, . . . , xn), the Walsh transform of g is the real-valued

function ĝ over {0, 1}n defined by

ĝ(w1, . . . , wn) =
∑

(x1,...,xn)∈{0,1}n
g(x1, . . . , xn)(−1)w1x1+···+wnxn.

It is known that g is correlation-immune of order k iff ĝ(w1, . . . , wn) = 0 whenever

the number of 1s in w1, . . . , wn is between 1 and k.
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Alternative approach

For a boolean function g(x1, . . . , xn), the Walsh transform of g is the real-valued

function ĝ over {0, 1}n defined by

ĝ(w1, . . . , wn) =
∑

(x1,...,xn)∈{0,1}n
g(x1, . . . , xn)(−1)w1x1+···+wnxn.

It is known that g is correlation-immune of order k iff ĝ(w1, . . . , wn) = 0 whenever

the number of 1s in w1, . . . , wn is between 1 and k.

Put R = λ/(1− λ). Define

F (x) =
∏

α∈{±1}n

(
1 + R

∏
|S|≤k

xαSS

)
,

where

αS =
∏
i∈S
αi .

Theorem: N(n, k, q) is the constant term of (Rx∅)
−2kqF (x).
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Apply the Cauchy coefficient formula, using unit circles as contours, and change

variables as xS = e iθS for each S.

Then

N(n, k, q) =
(1 + R)2n

(2π)MR2kq
I(n, k, q),

where

I(n, k, q) =

∫ π

−π
· · ·
∫ π

−π
G(θ) dθ,

G(θ) = e−i2
kqθ∅

∏
α∈{±1}n

1 + Re i fα(θ)

1 + R
,

fα(θ) =
∑
|S|≤k

αSθS.

Here θ is a vector of the variables θS, |S| ≤ k, in arbitrary order.
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Analysis of the domain of integration

The integrand

G(θ) = e−i2
kqθ∅

∏
α∈{±1}n

1 + Re i fα

1 + R

has greatest absolute value 1 when

fα = fα(θ) =
∑
|S|≤k

αSθS

is a multiple of 2π for each S. When does that happen?
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Analysis of the domain of integration

The integrand

G(θ) = e−i2
kqθ∅

∏
α∈{±1}n

1 + Re i fα

1 + R

has greatest absolute value 1 when

fα = fα(θ) =
∑
|S|≤k

αSθS

is a multiple of 2π for each S. When does that happen?

Define the difference operator

δjf(α1,...,αj ,...,αn) = f(α1,...,αj ,...,αn) − f(α1,...,−αj ,...,αn).

and in general δS =
∏
j∈S δj .

If each fα is a multiple of 2π, then so are all the differences. Now we compute

δSfα = 2|S|
∑
T⊇S

αTθT .

and apply this with decreasing |S|.
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Conclusion:

|G(θ)| = 1 iff there are integers jS such that∑
T⊇S

θT = 2−|S|+1jSπ

for every S ⊆ {1, 2, . . . , n} with |S| ≤ k.

There are 2Q such critical points, where Q =
∑k
i=1 i

(
n

i

)
.
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Conclusion:

|G(θ)| = 1 iff there are integers jS such that∑
T⊇S

θT = 2−|S|+1jSπ

for every S ⊆ {1, 2, . . . , n} with |S| ≤ k.

There are 2Q such critical points, where Q =
∑k
i=1 i

(
n

i

)
.

Define the critical region R to be the set of points θ such that,

for some critical point θ̂

|θS − θ̂S| ≤ ∆(2n)−|S|

for each S, where ∆ = 2−n/2+k+3λ−1/2nk+1/2M1/2.

These 2Q cuboids are disjoint and equivalent.
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The integrand outside the critical region

If θ is not in the critical region,

|G(θ)| < exp
(
−4

5
nM

)
.
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The integrand outside the critical region

If θ is not in the critical region,

|G(θ)| < exp
(
−4

5
nM

)
.

Proof:

(1) There is some S such that, outside the critical region, δSfα is at

least (2− e1/2)∆n−|S| from any multiple of 2π for all α.

(2) Divide the 2n vectors α into 2n−|S| classes of size 2|S|, where two vectors

are in the same class iff they agree outside S.

(3) For each class, ∏
α

∣∣∣∣1 + Re i fα

1 + R

∣∣∣∣ ≤ exp(−stuff ).

(4) That does it.
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The integrand inside the critical region

Since the 2Q components of the critical region are all equivalent, consider the

component containing the origin.

If θ is in the critical region near the origin,

G(θ) = exp
(
−1

2
λ(1− λ)2n

∑
|S|≤k

θ2
S +O(λ2n∆3)

)
.

Correlation-immune functions 12



The integrand inside the critical region

Since the 2Q components of the critical region are all equivalent, consider the

component containing the origin.

If θ is in the critical region near the origin,

G(θ) = exp
(
−1

2
λ(1− λ)2n

∑
|S|≤k

θ2
S +O(λ2n∆3)

)
.

Proof:

Use Taylor expansion.

The linear term vanishes thanks to the choice of R.

Correlation-immune functions 12



Conclusion

Theorem: If ω
(
25kn6k+3M3

)
≤ q ≤ 2n−k − ω

(
25kn6k+3M3

)
, then

N(n, k, q) ∼
2Q−(n+1)M/2

πM/2
(
λλ(1− λ)(1−λ)

)2n+M/2
.

This allows some values of q if k ≤ cn/ log n (compared to constant k for Denisov).

In that case:

N(n, k) ∼ 22n+Q−k(2n−1π)−(M−1)/2.
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More on the case k = 1

A balanced colouring of a hypercube is a colouring with two colours such that the

center of mass is at the center of the hypercube.

0 0 0 0
1 0 0 0
0 1 1 0
1 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 1

This corresponds to colouring according to the value of f (x1, x2, . . . , xn) for a correlation-

immune function of order 1.

Palmer, Read and Robinson did an exact enumeration (1992) but it seems unsuitable

for asymptotics.
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Naive estimate (2q uses of first colour):

Choose, uniformly at random, a set of 2q distinct elements of {0, 1}n. The event of

any particular column having exactly q 0s and q 1s has probability

(2n−1

q

)2/(2n

2q

)
.

Therefore, if these n events are close to being independent,

N(n, 1, q) ∼
(2n

2q

)
(2n−1

q

)2
(2n

2q

)

n

.
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Naive estimate (2q uses of first colour):

Choose, uniformly at random, a set of 2q distinct elements of {0, 1}n. The event of

any particular column having exactly q 0s and q 1s has probability

(2n−1

q

)2/(2n

2q

)
.

Therefore, if these n events are close to being independent,

N(n, 1, q) ∼
(2n

2q

)
(2n−1

q

)2
(2n

2q

)

n

.

For small q, actually q = o(2n/2), we can estimate N(n, 1, q) probabilistically: make

each column randomly with q zeros and q ones. Then use Bonferroni to show that

the rows are distinct with probability 1− o(1).
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(2n−1
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)
.

Therefore, if these n events are close to being independent,

N(n, 1, q) ∼
(2n

2q

)
(2n−1

q

)2
(2n

2q

)

n

.

For small q, actually q = o(2n/2), we can estimate N(n, 1, q) probabilistically: make

each column randomly with q zeros and q ones. Then use Bonferroni to show that

the rows are distinct with probability 1− o(1).

Larger q is covered by the analytic results.
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Naive estimate (2q uses of first colour):

Choose, uniformly at random, a set of 2q distinct elements of {0, 1}n. The event of

any particular column having exactly q 0s and q 1s has probability

(2n−1

q

)2/(2n

2q

)
.

Therefore, if these n events are close to being independent,

N(n, 1, q) ∼
(2n

2q

)
(2n−1

q

)2
(2n

2q

)

n

.

For small q, actually q = o(2n/2), we can estimate N(n, 1, q) probabilistically: make

each column randomly with q zeros and q ones. Then use Bonferroni to show that

the rows are distinct with probability 1− o(1).

Larger q is covered by the analytic results.

Conclusion: The naive estimate is correct for all q.
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Extensions

(1) Correlation-immune functions can be defined over sets other than {0, 1}.
The asymptotic techniques can be generalized (but hasn’t been, yet).

Correlation-immune functions 16



Extensions

(1) Correlation-immune functions can be defined over sets other than {0, 1}.
The asymptotic techniques can be generalized (but hasn’t been, yet).

(2) A Hadamard matrix is an n × n matrix H over {−1,+1} such that HTH = nI.

-1 1 1 1 1 -1 -1 -1
1 -1 1 1 -1 1 -1 -1
1 1 -1 1 -1 -1 1 -1
1 1 1 -1 -1 -1 -1 1
1 -1 -1 -1 -1 1 1 1

-1 1 -1 -1 1 -1 1 1
-1 -1 1 -1 1 1 -1 1
-1 -1 -1 1 1 1 1 -1

Hadamard conjecture: A Hadamard matrix exists iff n = 2 or n is a multiple of 4.
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Extensions

(1) Correlation-immune functions can be defined over sets other than {0, 1}.
The asymptotic techniques can be generalized (but hasn’t been, yet).

(2) A Hadamard matrix is an n × n matrix H over {−1,+1} such that HTH = nI.

-1 1 1 1 1 -1 -1 -1
1 -1 1 1 -1 1 -1 -1
1 1 -1 1 -1 -1 1 -1
1 1 1 -1 -1 -1 -1 1
1 -1 -1 -1 -1 1 1 1

-1 1 -1 -1 1 -1 1 1
-1 -1 1 -1 1 1 -1 1
-1 -1 -1 1 1 1 1 -1

Hadamard conjecture: A Hadamard matrix exists iff n = 2 or n is a multiple of 4.

Multiply rows by −1 as needed so the first column is 1 then delete the first column.

Then change −1 into 0. The result is a correlation-immune function of n−1 variables,

order 2, and weight n.

Are there any??

De Launey and Levin used similar methods to show that at least n1/12−ε rows of a

Hadamard rectangle always exist.
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