
Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Symmetry Detection and Exploitation in
Constraint Programming

Chris Mears

June, 2008

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Constraint Programming

What is constraint programming?

Programming with constraints!

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Constraint Programming

What is constraint programming?

Programming with constraints!

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Constraint Programming

For solving combinatorial problems.

Problems are specified with constraints.

E.g., only one class per room.

For both:

satisfaction (can it be done?),
optimisation (what’s the best way?).

Focus on finite domain problems.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Example: Latin Square

A CSP is a triple < X , D, C >

X is a set of variables

D is a set of values

C is a set of constraints

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Example: Latin Square

1

132

3 1

3

2

2 A CSP is a triple < X , D, C >

X is a set of variables

D is a set of values

C is a set of constraints

X = {x11, x12, x13, x21, x22, x23, x31, x32, x33}
D = {1, 2, 3}
C = {x11 6= x12, x11 6= x13, x12 6= x13, x21 6= x22, x21 6= x23, x22 6= x23,

x31 6= x32, x31 6= x33, x32 6= x33, x11 6= x21, x11 6= x31, x21 6= x31,

x12 6= x22, x12 6= x32, x22 6= x32, x13 6= x23, x13 6= x33, x23 6= x33}

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Example: Latin Square

x11 x12

x21 x22 x23

x31

x13

x32 x33

A CSP is a triple < X , D, C >

X is a set of variables

D is a set of values

C is a set of constraints

X = {x11, x12, x13, x21, x22, x23, x31, x32, x33}
D = {1, 2, 3}
C = {x11 6= x12, x11 6= x13, x12 6= x13, x21 6= x22, x21 6= x23, x22 6= x23,

x31 6= x32, x31 6= x33, x32 6= x33, x11 6= x21, x11 6= x31, x21 6= x31,

x12 6= x22, x12 6= x32, x22 6= x32, x13 6= x23, x13 6= x33, x23 6= x33}

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Another Example: Steel Mill Slab Design

Put orders in slabs.

At most two colours per slab.

Minimise sum of slab sizes.

Orders Slabs

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Another Example: Steel Mill Slab Design

Put orders in slabs.

At most two colours per slab.

Minimise sum of slab sizes.

Orders Slabs

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Tree Search

Constraint problems are usually solved by some form of search.

E.g., backtracking search.

x11

x12

x21 2

2

3 2

3

3 1

1

2
1

3 1

3

3 1

1

3

2 1

2

2

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Symmetry Example: Latin Square

1

132

3 1

3

2

2
A symmetry is a
permutation of the problem
that doesn’t affect solutions.

E.g. Any two rows can be
swapped.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Symmetry Example: Latin Square

1

132

3 1

3

2

2

x21

x31

x22

x32

x23

x33

A symmetry is a
permutation of the problem
that doesn’t affect solutions.

E.g. Any two rows can be
swapped.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Symmetry Example: Steel Mill Slab Design

Slab weights can be permuted.
Identical orders can be permuted.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Symmetry: a Definition

Definition

A symmetry is a permutation of literals (variable-value pairs) that
maps solutions to solutions (and therefore non-solutions to
non-solutions).

Kinds of Symmetry

Variable symmetries (permutation of variables)

Value symmetries (permutation of values)

Variable-value symmetries (permutation of literals)

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Symmetries: Who cares?

Interesting property, but who cares?

Symmetries can be used to improve search.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Search

x11

x12

x21 2

2

3 2

3

3 1

1

2
1

3 1

3

3 1

1

3

2 1

2

2

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Symmetries in Search

Symmetries in the problem lead to symmetric subtrees.

Only need to search one of each symmetric set.

x11

x12

x21 2

2

3 2

3

3 1

1

2
1

3 1

3

3 1

1

3

2 1

2

2

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Symmetries in Search

Symmetries in the problem lead to symmetric subtrees.

Only need to search one of each symmetric set.

x11

x12

x21 2

2

3 2

3

3 1

1

2
1

3 1

3

3 1

1

3

2 1

2

2

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Symmetries

Avoiding redundant search

1 Detect symmetries.

2 Avoid searching through symmetric subtrees.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Automatic Symmetry Detection

We have investigated detecting symmetries in problems
automatically.

There are many methods for detecting symmetries.

Two main approaches:

Instance-based (most) E.g., 3 × 3 Latin Square
Model-based (only two) E.g., N × N Latin Square

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Instance-based Detection Methods

Generate-and-test

Try some permutations and see if the constraints are the same.

Graph-based

Build a graph of the problem and find its automorphisms.

Complete

Find all the solutions and examine them.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Instance-based Detection Methods

Generate-and-test

Try some permutations and see if the constraints are the same.

Graph-based

Build a graph of the problem and find its automorphisms.

Complete

Find all the solutions and examine them.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Graph-based Detection

Build a graph derived from the CSP.

Once constructed, find the automorphisms of the graph.

Use standard tools, e.g. Saucy.

The automorphisms correspond directly to symmetries of the
instance.

Main difference between methods is how to build the graph.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Graph-based Detection

Graph-based methods are very powerful.

At best, can find all symmetries in the problem.

Variable, value, variable-value.

Trade-off: completeness versus speed.

The more information encoded in the graph, the more
complete, but slower.

Not really practical.

Must be re-computed for every instance.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Our Graph Construction

1
[1,2]

2
[1,1]

1
[2,2]

1
[2,1]

1
[3,1]

1
[3,2]

1
[1,1]

1
[1,3]

2
[1,3]

2
[1,2]

3
[1,1]

3
[1,2]

3
[1,3]

1
[2,3]

2
[2,3]

3
[2,3]

1
[3,3]

2
[3,3]

3
[3,3]

Each variable-value
pair is a node in the
graph.

Any two mutually
exclusive nodes are
joined by an edge.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Our Graph Construction

1
[1,2]

2
[1,1]

1
[2,2]

1
[2,1]

1
[3,1]

1
[3,2]

1
[1,1]

1
[1,3]

2
[1,3]

2
[1,2]

3
[1,1]

3
[1,2]

3
[1,3]

1
[2,3]

2
[2,3]

3
[2,3]

1
[3,3]

2
[3,3]

3
[3,3]

Each variable-value
pair is a node in the
graph.

Any two mutually
exclusive nodes are
joined by an edge.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Instance Detection Results

Instance Total Gr HR

bibd-6-10-5-3-2 1.96 0.83 0.14
golf-2-2-3 2.71 0.73 0.23
golf-2-3-2 6.72 0.72 0.22
golomb-6 7.67 0.93 0.05
golomb-7 24.45 0.94 0.03
graceful-3-2 0.31 0.71 0.26
graceful-5-2 8.41 0.82 0.14
latin-13 9.17 0.46 0.37
latin-14 12.86 0.46 0.36
mostperfect-4 31.70 0.85 0.10
nnqueens-6 0.30 0.60 0.33
queens-30 6.62 0.82 0.13
queens-40 18.43 0.84 0.11
steiner-6 5.92 0.74 0.21
steiner-7 57.49 0.76 0.17

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Existing Detection Methods for Models

Only two methods.

Advantages:

Practical: Results apply to all instances.

Disadvantages:
Can lose accuracy easily.

Due to abstraction of information.

Less flexible: Depend on model syntax.

Require global constraints.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Global Constraints

x11 x12

x21 x22 x23

x31

x13

x32 x33

X = {x11, x12, x13, x21, x22, x23, x31, x32, x33}
D = {1, 2, 3}
C = {alldiff (x11, x12, x13), alldiff (x21, x22, x23), alldiff (x31, x32, x33),

alldiff (x11, x21, x31), alldiff (x12, x22, x32), alldiff (x13, x23, x33)

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Aim and our Framework

To develop a method of automatic symmetry detection that:

operates on models rather than instances,

is flexible: as syntax-independent as possible,

is accurate: detects as many symmetries as possible,

is practical: fast enough to be useful.

Our approach is to:

Use the strengths of instance detection: accuracy and
flexibility.

And the strength of model detection: practicality.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

From an Instance to a Model

But first: what is a model?
A model is a parameterised CSP.

X [N] = {squareij |i , j ∈ [1..N]}
D[N] = [1..N]
C [N] = {squareij 6= squareik |i , j ∈ [1..N], k ∈ [j + 1..N]}∪

{squareji 6= squareki |i , j ∈ [1..N], k ∈ [j + 1..N]}

1

3

2

N

1 2 3 N

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Parameterised Graph

N
1

3
2

N

3
2

1

N

1 2 3

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

From an Instance to a Model, cont.

Of course, a parameterised CSP is not a true CSP.

It can be viewed as a function:

ParameterisedCSP : Parameter → CSP

Similarly for the parameterised graph:

ParameterisedGraph : Parameter → Graph

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

From an Instance to a Model, cont.

Finally, a model symmetry is merely a parameterised
symmetry:

ParameterisedSymmetry : Parameter → Symmetry

A parameterised permutation f is a parameterised symmetry
of a model CSP if, for any parameter p, f (p) is a symmetry of
CSP(p).

Equivalently, f (p) is an automorphism of Graph(p).

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Our Framework

1 Find the symmetries of several small instances.

2 Parameterise these symmetries.

3 Filter the parameterised permutations to produce some
candidate symmetries.

4 Prove (or disprove) that the candidates hold.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Our Framework

Inst1 Sym1 PP1
Candidates

Model
Symmetr ies

Inst2 Sym2 PP2

Inst3 Sym3
PP3

Model

One
Two

Four

Three

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Step 1: Find Instance Symmetries

Choose some instances.

Find the symmetries of these instances.

Choose your favourite method.
The completeness of the framework depends on this choice.

Our implementation:

Assumes the parameter is a tuple of integers.

Asks the user to provide some starting parameter (a, b, c , . . .).

Then tries (a, b, c), (a + 1, b, c),(a + 2, b, c), (a, b + 1, c), etc.

Uses the instance symmetry detection of Mears et al.
(SymCon06).

Quite accurate but not complete.
Uses Saucy to produce a set of symmetry generators.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

N=3 N=4

C

1
[1,2]

2
[1,1]

1
[2,2]

1
[2,1]

1
[3,1]

1
[3,2]

1
[1,1]

1
[1,3]

2
[1,3]

2
[1,2]

3
[1,1]

3
[1,2]

3
[1,3]

1
[2,3]

2
[2,3]

3
[2,3]

1
[3,3]

2
[3,3]

3
[3,3] 1

[1,2]

2
[1,3]

2
[1,2]

2
[1,1]

1
[2,2]

1
[2,1]

1
[1,1]

1
[3,3]

1
[2,3]

1
[4,4]

1
[1,4]

1
[3,1]

1
[3,2]

1
[4,1]

1
[4,2]

1
[1,3]

1
[4,3]

2
[3,4]

2
[1,4]

2
[4,4]

4
[3,4]

4
[2,4]

3
[4,4]

3
[3,4]

3
[2,4]

4
[4,4]

3
[1,2]

3
[1,3]

3
[1,4]

1
[3,4]

1
[2,4]

1
[2,4]

3
[1,1]

4
[1,1]

4
[1,2]

4
[1,3]

4
[1,4]

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Step 2: Lift Instance Symmetries to Parameterised
Permutations

We have the symmetries (or generators) relative to each
instance (from step 1).

We want to convert these into parameterised permutations.

That is, we want to “lift” the generators to the model.

Our implementation:

Does not attempt to be complete.

We have identified a set of common symmetry patterns.

Tries to find these patterns in the instance symmetries.
Relies on the CSP having a matrix-like structure

Consequently, the nodes of the parameterised graph form a
matrix.
Patterns then correspond to matrix operations (rows swap,
reflections, etc.)

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Step 2: Our Implementation

Common patterns:

Two values swapped in one dimension (row/column swap).
The values of a dimension inverted (matrix reflection).
Two dimensions swapped (diagonal matrix reflection).

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

N=3 N=4

C

1
[1,2]

2
[1,1]

1
[2,2]

1
[2,1]

1
[3,1]

1
[3,2]

1
[1,1]

1
[1,3]

2
[1,3]

2
[1,2]

3
[1,1]

3
[1,2]

3
[1,3]

1
[2,3]

2
[2,3]

3
[2,3]

1
[3,3]

2
[3,3]

3
[3,3] 1

[1,2]

2
[1,3]

2
[1,2]

2
[1,1]

1
[2,2]

1
[2,1]

1
[1,1]

1
[3,3]

1
[2,3]

1
[4,4]

1
[1,4]

1
[3,1]

1
[3,2]

1
[4,1]

1
[4,2]

1
[1,3]

1
[4,3]

2
[3,4]

2
[1,4]

2
[4,4]

4
[3,4]

4
[2,4]

3
[4,4]

3
[3,4]

3
[2,4]

4
[4,4]

3
[1,2]

3
[1,3]

3
[1,4]

1
[3,4]

1
[2,4]

1
[2,4]

3
[1,1]

4
[1,1]

4
[1,2]

4
[1,3]

4
[1,4]

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Step 2: Our Implementation

Common patterns:

Two values swapped in one dimension (row/column swap).
The values of a dimension inverted (matrix reflection).
Two dimensions swapped (diagonal matrix reflection).

This treats the generators independently.

The parameterised permutations themselves can be lifted:

Value-swaps in a dimension can be merged.
At best, all the values in the dimension are interchangeable.

Our implementation:

Pros: Simple and fast.

Cons: Incomplete; possible improvement:

More patterns.
More complete method, e.g. machine learning.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Step 3: Determine Candidate Symmetries

Having gathered the parameterised permutations, we filter
them to propose candidate symmetries for the model.

Our implementation:

Simple way: take the patterns found in every instance.

This naive intersection may miss some good candidates due to
the generator sets given by Saucy.

A symmetry group can be described by many different
generator sets.

This can be repaired by a more advanced form of intersection.

If a patterns is found in one instance, look explicitly in the
other instances.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Step 4: Proving symmetries of the model

The final step is to determine whether each candidate is a
true symmetry of the model.

We don’t propose a new method for this step yet, but some
work has already been done (e.g. Mancini and Cadoli, 2005).

Such theorem-proving methods are inherently incomplete.

We would prefer a method based on the construction of the
graph (step 1); this is future work.

Even without this step, the framework (and our
implementation) is useful as a semi-automatic method.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Results

Problem Symmetries Time Instance

BIBD objects X 19.0 20%
blocks X

Social Golfers weeks X 376.4 96%
groups X
players X

Golomb Ruler flip X 6.7 99%

Graceful Graph intra-clique X 9.0 44%
path-reverse X

value X
Latin Square dimensions X 13.7 10%

value X
N × N queens chessboard X 8.0 21%

colours X
Queens (int) chessboard X 3.6 36%

Queens (bool) chessboard X 5.4 64%

Steiner Triples triples X 16.8 32%
value X

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

Small Problem

In our paper about instance symmetry detection, we showed
some results of symmetry breaking.

First Solution All Solutions
Instance No SBDS SBDS(ratio) No SBDS SBDS(ratio)
queens12 0.26 0.59 (0.44) 9.02 21.92 (0.41)
queens13 0.25 0.59 (0.42) 48.23 118.09 (0.41)
bibd33110 0.26 0.52 (0.50) 0.26 0.56 (0.46)
bibd77331 0.27 0.91 (0.30) 157.89 1.01 (156.33)
golomb5 0.26 0.53 (0.49) 0.30 0.80 (0.37)
golomb6 0.18 0.94 (0.19) 8.73 67.89 (0.13)
golf322 0.23 0.59 (0.39) 0.29 0.57 (0.51)
golf332 0.24 0.72 (0.33) 76.34 0.77 (99.14)
mostperfect4 0.27 0.60 (0.45) 0.71 0.92 (0.77)
steiner7 0.23 0.68 (0.34) 392.55 0.87 (451.21)
latin8 0.25 2.09 (0.12) 81.12 647.21 (0.13)

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

Symmetry Exploitation

Reminder: symmetries lead to redundancy in the search tree.

We can exploit this redundancy to speed up search.

x11

x12

x21 2

2

3 2

3

3 1

1

2
1

3 1

3

3 1

1

3

2 1

2

2

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

Static Symmetry Exploitation

“Break” the symmetries before you start.

Add constraints to exclude redundant areas of the search tree.

For example, in the Latin Square problem, fix the value of the
top left square (assert x11 = 1).

Often effective, but can interfere with search heuristics.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

Static Symmetry Exploitation

x11

x12

x21 2

2

3 2

3

3 1

1

2
1

3 1

3

3 1

1

3

2 1

2

2

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

Dynamic Symmetry Exploitation

“Break” symmetry during search.

Alter the search to know about symmetry.

When the search comes to subtree symmetric to one already
explored, ignore it.

Co-operates better with search heuristic.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

Symmetry Breaking During Search

One method: SBDS.

A

x /= vx = v

f(A) => f(x /= v)

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

Symmetry Breaking During Search

Problem: there may be many, many symmetries.

E.g. Latin Square has 6(n!)3 symmetries.

Solution: use computational group theory to work with group
instead of individual symmetries.

GAP-SBDS still has large overhead.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

Lightweight Dynamic Symmetry Breaking

Our aim: a “default” symmetry breaking method.

Cannot interfere with search heuristics.
Cannot have large overhead.

We have proposed a simpler symmetry breaking method,
LDSB.

Doesn’t handle all symmetries, only those:

common,
cheap to process.

Can handle them cheaply, with little overhead.

LDSB handles:

variable swaps
multi-variable swaps
value swaps
multi-value swaps

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

LDSB Example

B = 1

Y \= 1Y=1

X = 1

B\=1

X \= 1

A = 2 A \= 2

ListW = [V,X,Y,Z]

ListW = [V,X,Z]

ListW = [V,X,Z]

ListW = [V,Z]

V \= 1, X \= 1, Z \= 1

V \= 1, Z \= 1

Z = 3 Z \= 3 V \= 3ListW = [V]

ListW = [V,X,Y,Z]

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

LDSB Results

Problem Time (s) LDSB
None SBDD SBDS LDSB O’head

bibd [12, 12, 6, 6, 4] TO 193.71 TO 6.24 6.1
bibd [13, 13, 6, 6, 4] TO TO MO 9.07 5.9
golf [3, 4, 3] 0.03 0.67 17.05 0.02
golf [4, 4, 3] 1.48 8.63 177.46 0.23 11.1
golf [4, 4, 4] 0.02 0.11 1.1 0.02
latin [20] 1.07 TO MO 1.11 0.1
latin [25] 2.53 10.49 MO 2.62 0.0
latin [30] 5.21 TO TO 5.36 0.1
magicsquare [6] 7.49 187.2 119.61 9.08 7.2
nn queens [8] TO 162.72 127.17 19.09 8.4
queens bool [24] 6.9 236.89 105.88 7.22 4.8
steiner [9] 1.71 3.56 7.07 0.23 11.1

↑ First solution ↑ – ↓ All solutions ↓
bibd [12, 12, 6, 6, 4] TO 194.17 TO 5.87 6.0
bibd [13, 13, 6, 6, 4] TO TO MO 9.12 6.0
golf [3, 4, 3] TO 4.62 111.32 3.85 13.1
golf [4, 4, 3] TO 18.0 TO 42.35 10.7
golf [4, 4, 4] TO 58.9 TO 1.55 10.5
latin [6] TO 8.2 118.26 10.19 5.6
magicsquare [4] 23.5 30.14 14.81 2.85 9.4
nn queens [8] TO 162.04 127.24 19.13 8.3
queens [14] 160.26 145.84 263.67 67.88 11.1
queens bool [12] 23.52 78.59 36.0 21.18 5.3
queens bool [13] 121.92 TO 202.64 106.79 5.1
steiner [9] TO 12.98 25.76 19.64 13.6

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Conclusion

Summary

Symmetry in constraint programming is an interesting field.

Still much work to be done on real-world use of symmetries.

What’s next?

The proof step for model symmetry detection.

Applying the framework to other properties.

Further exploration of cheap symmetry breaking.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming

	Introduction
	Constraint Programming
	Symmetries

	Automatic Symmetry Detection
	Instances
	Models
	Our Framework

	Symmetry Exploitation
	Static
	Dynamic

	Conclusion

