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What is constraint programming?

Programming with constraints!
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Constraint Programming

For solving combinatorial problems.

Problems are specified with constraints.

E.g., only one class per room.

For both:

satisfaction (can it be done?),
optimisation (what’s the best way?).

Focus on finite domain problems.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming



Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Constraint Programming
Symmetries

Example: Latin Square

A CSP is a triple < X , D, C >

X is a set of variables

D is a set of values

C is a set of constraints
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Example: Latin Square
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2 A CSP is a triple < X , D, C >

X is a set of variables

D is a set of values

C is a set of constraints

X = {x11, x12, x13, x21, x22, x23, x31, x32, x33}
D = {1, 2, 3}
C = {x11 6= x12, x11 6= x13, x12 6= x13, x21 6= x22, x21 6= x23, x22 6= x23,

x31 6= x32, x31 6= x33, x32 6= x33, x11 6= x21, x11 6= x31, x21 6= x31,

x12 6= x22, x12 6= x32, x22 6= x32, x13 6= x23, x13 6= x33, x23 6= x33}
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Example: Latin Square

x11 x12

x21 x22 x23

x31

x13

x32 x33

A CSP is a triple < X , D, C >

X is a set of variables

D is a set of values

C is a set of constraints

X = {x11, x12, x13, x21, x22, x23, x31, x32, x33}
D = {1, 2, 3}
C = {x11 6= x12, x11 6= x13, x12 6= x13, x21 6= x22, x21 6= x23, x22 6= x23,

x31 6= x32, x31 6= x33, x32 6= x33, x11 6= x21, x11 6= x31, x21 6= x31,

x12 6= x22, x12 6= x32, x22 6= x32, x13 6= x23, x13 6= x33, x23 6= x33}
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Another Example: Steel Mill Slab Design

Put orders in slabs.

At most two colours per slab.

Minimise sum of slab sizes.

Orders Slabs
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At most two colours per slab.

Minimise sum of slab sizes.
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Tree Search

Constraint problems are usually solved by some form of search.

E.g., backtracking search.
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Symmetry Example: Latin Square
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2
A symmetry is a
permutation of the problem
that doesn’t affect solutions.

E.g. Any two rows can be
swapped.
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A symmetry is a
permutation of the problem
that doesn’t affect solutions.

E.g. Any two rows can be
swapped.
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Symmetry Example: Steel Mill Slab Design

Slab weights can be permuted.
Identical orders can be permuted.
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Symmetry: a Definition

Definition

A symmetry is a permutation of literals (variable-value pairs) that
maps solutions to solutions (and therefore non-solutions to
non-solutions).

Kinds of Symmetry

Variable symmetries (permutation of variables)

Value symmetries (permutation of values)

Variable-value symmetries (permutation of literals)
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Symmetries: Who cares?

Interesting property, but who cares?

Symmetries can be used to improve search.
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Search
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Symmetries in Search

Symmetries in the problem lead to symmetric subtrees.

Only need to search one of each symmetric set.
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Symmetries in Search

Symmetries in the problem lead to symmetric subtrees.

Only need to search one of each symmetric set.
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Symmetries

Avoiding redundant search

1 Detect symmetries.

2 Avoid searching through symmetric subtrees.
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Automatic Symmetry Detection

We have investigated detecting symmetries in problems
automatically.

There are many methods for detecting symmetries.

Two main approaches:

Instance-based (most) E.g., 3 × 3 Latin Square
Model-based (only two) E.g., N × N Latin Square
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Instance-based Detection Methods

Generate-and-test

Try some permutations and see if the constraints are the same.

Graph-based

Build a graph of the problem and find its automorphisms.

Complete

Find all the solutions and examine them.
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Graph-based Detection

Build a graph derived from the CSP.

Once constructed, find the automorphisms of the graph.

Use standard tools, e.g. Saucy.

The automorphisms correspond directly to symmetries of the
instance.

Main difference between methods is how to build the graph.
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Graph-based Detection

Graph-based methods are very powerful.

At best, can find all symmetries in the problem.

Variable, value, variable-value.

Trade-off: completeness versus speed.

The more information encoded in the graph, the more
complete, but slower.

Not really practical.

Must be re-computed for every instance.
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Our Graph Construction
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Each variable-value
pair is a node in the
graph.

Any two mutually
exclusive nodes are
joined by an edge.
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Our Graph Construction
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Instance Detection Results

Instance Total Gr HR

bibd-6-10-5-3-2 1.96 0.83 0.14
golf-2-2-3 2.71 0.73 0.23
golf-2-3-2 6.72 0.72 0.22
golomb-6 7.67 0.93 0.05
golomb-7 24.45 0.94 0.03
graceful-3-2 0.31 0.71 0.26
graceful-5-2 8.41 0.82 0.14
latin-13 9.17 0.46 0.37
latin-14 12.86 0.46 0.36
mostperfect-4 31.70 0.85 0.10
nnqueens-6 0.30 0.60 0.33
queens-30 6.62 0.82 0.13
queens-40 18.43 0.84 0.11
steiner-6 5.92 0.74 0.21
steiner-7 57.49 0.76 0.17

Chris Mears Symmetry Detection and Exploitation in Constraint Programming



Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

Existing Detection Methods for Models

Only two methods.

Advantages:

Practical: Results apply to all instances.

Disadvantages:
Can lose accuracy easily.

Due to abstraction of information.

Less flexible: Depend on model syntax.

Require global constraints.
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Global Constraints

x11 x12

x21 x22 x23

x31

x13

x32 x33

X = {x11, x12, x13, x21, x22, x23, x31, x32, x33}
D = {1, 2, 3}
C = {alldiff (x11, x12, x13), alldiff (x21, x22, x23), alldiff (x31, x32, x33),

alldiff (x11, x21, x31), alldiff (x12, x22, x32), alldiff (x13, x23, x33)
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Aim and our Framework

To develop a method of automatic symmetry detection that:

operates on models rather than instances,

is flexible: as syntax-independent as possible,

is accurate: detects as many symmetries as possible,

is practical: fast enough to be useful.

Our approach is to:

Use the strengths of instance detection: accuracy and
flexibility.

And the strength of model detection: practicality.

Chris Mears Symmetry Detection and Exploitation in Constraint Programming



Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Instances
Models
Our Framework

From an Instance to a Model

But first: what is a model?
A model is a parameterised CSP.

X [N] = {squareij |i , j ∈ [1..N]}
D[N] = [1..N]
C [N] = {squareij 6= squareik |i , j ∈ [1..N], k ∈ [j + 1..N]}∪

{squareji 6= squareki |i , j ∈ [1..N], k ∈ [j + 1..N]}
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2

N

1 2 3 N
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Parameterised Graph
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From an Instance to a Model, cont.

Of course, a parameterised CSP is not a true CSP.

It can be viewed as a function:

ParameterisedCSP : Parameter → CSP

Similarly for the parameterised graph:

ParameterisedGraph : Parameter → Graph
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From an Instance to a Model, cont.

Finally, a model symmetry is merely a parameterised
symmetry:

ParameterisedSymmetry : Parameter → Symmetry

A parameterised permutation f is a parameterised symmetry
of a model CSP if, for any parameter p, f (p) is a symmetry of
CSP(p).

Equivalently, f (p) is an automorphism of Graph(p).
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Our Framework

1 Find the symmetries of several small instances.

2 Parameterise these symmetries.

3 Filter the parameterised permutations to produce some
candidate symmetries.

4 Prove (or disprove) that the candidates hold.
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Our Framework

Inst1 Sym1 PP1
Candidates

Model
Symmetr ies

Inst2 Sym2 PP2

Inst3 Sym3
PP3

Model

One
Two

Four

Three
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Step 1: Find Instance Symmetries

Choose some instances.

Find the symmetries of these instances.

Choose your favourite method.
The completeness of the framework depends on this choice.

Our implementation:

Assumes the parameter is a tuple of integers.

Asks the user to provide some starting parameter (a, b, c , . . . ).

Then tries (a, b, c), (a + 1, b, c),(a + 2, b, c), (a, b + 1, c), etc.

Uses the instance symmetry detection of Mears et al.
(SymCon06).

Quite accurate but not complete.
Uses Saucy to produce a set of symmetry generators.
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Step 2: Lift Instance Symmetries to Parameterised
Permutations

We have the symmetries (or generators) relative to each
instance (from step 1).

We want to convert these into parameterised permutations.

That is, we want to “lift” the generators to the model.

Our implementation:

Does not attempt to be complete.

We have identified a set of common symmetry patterns.

Tries to find these patterns in the instance symmetries.
Relies on the CSP having a matrix-like structure

Consequently, the nodes of the parameterised graph form a
matrix.
Patterns then correspond to matrix operations (rows swap,
reflections, etc.)
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Step 2: Our Implementation

Common patterns:

Two values swapped in one dimension (row/column swap).
The values of a dimension inverted (matrix reflection).
Two dimensions swapped (diagonal matrix reflection).
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Step 2: Our Implementation

Common patterns:

Two values swapped in one dimension (row/column swap).
The values of a dimension inverted (matrix reflection).
Two dimensions swapped (diagonal matrix reflection).

This treats the generators independently.

The parameterised permutations themselves can be lifted:

Value-swaps in a dimension can be merged.
At best, all the values in the dimension are interchangeable.

Our implementation:

Pros: Simple and fast.

Cons: Incomplete; possible improvement:

More patterns.
More complete method, e.g. machine learning.
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Step 3: Determine Candidate Symmetries

Having gathered the parameterised permutations, we filter
them to propose candidate symmetries for the model.

Our implementation:

Simple way: take the patterns found in every instance.

This naive intersection may miss some good candidates due to
the generator sets given by Saucy.

A symmetry group can be described by many different
generator sets.

This can be repaired by a more advanced form of intersection.

If a patterns is found in one instance, look explicitly in the
other instances.
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Step 4: Proving symmetries of the model

The final step is to determine whether each candidate is a
true symmetry of the model.

We don’t propose a new method for this step yet, but some
work has already been done (e.g. Mancini and Cadoli, 2005).

Such theorem-proving methods are inherently incomplete.

We would prefer a method based on the construction of the
graph (step 1); this is future work.

Even without this step, the framework (and our
implementation) is useful as a semi-automatic method.
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Results

Problem Symmetries Time Instance

BIBD objects X 19.0 20%
blocks X

Social Golfers weeks X 376.4 96%
groups X
players X

Golomb Ruler flip X 6.7 99%

Graceful Graph intra-clique X 9.0 44%
path-reverse X

value X
Latin Square dimensions X 13.7 10%

value X
N × N queens chessboard X 8.0 21%

colours X
Queens (int) chessboard X 3.6 36%

Queens (bool) chessboard X 5.4 64%

Steiner Triples triples X 16.8 32%
value X
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Small Problem

In our paper about instance symmetry detection, we showed
some results of symmetry breaking.

First Solution All Solutions
Instance No SBDS SBDS(ratio) No SBDS SBDS(ratio)
queens12 0.26 0.59 (0.44) 9.02 21.92 (0.41)
queens13 0.25 0.59 (0.42) 48.23 118.09 (0.41)
bibd33110 0.26 0.52 (0.50) 0.26 0.56 (0.46)
bibd77331 0.27 0.91 (0.30) 157.89 1.01 (156.33)
golomb5 0.26 0.53 (0.49) 0.30 0.80 (0.37)
golomb6 0.18 0.94 (0.19) 8.73 67.89 (0.13)
golf322 0.23 0.59 (0.39) 0.29 0.57 (0.51)
golf332 0.24 0.72 (0.33) 76.34 0.77 (99.14)
mostperfect4 0.27 0.60 (0.45) 0.71 0.92 (0.77)
steiner7 0.23 0.68 (0.34) 392.55 0.87 (451.21)
latin8 0.25 2.09 (0.12) 81.12 647.21 (0.13)
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Symmetry Exploitation

Reminder: symmetries lead to redundancy in the search tree.

We can exploit this redundancy to speed up search.

x11

x12

x21 2

2

3 2

3

3 1

1

2
1

3 1

3

3 1

1

3

2 1

2

2

Chris Mears Symmetry Detection and Exploitation in Constraint Programming



Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

Static Symmetry Exploitation

“Break” the symmetries before you start.

Add constraints to exclude redundant areas of the search tree.

For example, in the Latin Square problem, fix the value of the
top left square (assert x11 = 1).

Often effective, but can interfere with search heuristics.
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Static Symmetry Exploitation
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Dynamic Symmetry Exploitation

“Break” symmetry during search.

Alter the search to know about symmetry.

When the search comes to subtree symmetric to one already
explored, ignore it.

Co-operates better with search heuristic.
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Symmetry Breaking During Search

One method: SBDS.

A

x /= vx = v

f(A) => f(x /= v)
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Symmetry Breaking During Search

Problem: there may be many, many symmetries.

E.g. Latin Square has 6(n!)3 symmetries.

Solution: use computational group theory to work with group
instead of individual symmetries.

GAP-SBDS still has large overhead.
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Lightweight Dynamic Symmetry Breaking

Our aim: a “default” symmetry breaking method.

Cannot interfere with search heuristics.
Cannot have large overhead.

We have proposed a simpler symmetry breaking method,
LDSB.

Doesn’t handle all symmetries, only those:

common,
cheap to process.

Can handle them cheaply, with little overhead.

LDSB handles:

variable swaps
multi-variable swaps
value swaps
multi-value swaps

Chris Mears Symmetry Detection and Exploitation in Constraint Programming



Introduction
Automatic Symmetry Detection

Symmetry Exploitation
Conclusion

Static
Dynamic

LDSB Example

B = 1

Y \= 1Y=1

X = 1

B\=1

X \= 1

A = 2 A \= 2

ListW = [V,X,Y,Z]

ListW = [V,X,Z]

ListW = [V,X,Z]

ListW = [V,Z]

V \= 1, X \= 1, Z \= 1

V \= 1,  Z \= 1

Z = 3 Z \=  3 V \= 3ListW = [V]

ListW = [V,X,Y,Z]
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LDSB Results

Problem Time (s) LDSB
None SBDD SBDS LDSB O’head

bibd [12, 12, 6, 6, 4] TO 193.71 TO 6.24 6.1
bibd [13, 13, 6, 6, 4] TO TO MO 9.07 5.9
golf [3, 4, 3] 0.03 0.67 17.05 0.02
golf [4, 4, 3] 1.48 8.63 177.46 0.23 11.1
golf [4, 4, 4] 0.02 0.11 1.1 0.02
latin [20] 1.07 TO MO 1.11 0.1
latin [25] 2.53 10.49 MO 2.62 0.0
latin [30] 5.21 TO TO 5.36 0.1
magicsquare [6] 7.49 187.2 119.61 9.08 7.2
nn queens [8] TO 162.72 127.17 19.09 8.4
queens bool [24] 6.9 236.89 105.88 7.22 4.8
steiner [9] 1.71 3.56 7.07 0.23 11.1

↑ First solution ↑ – ↓ All solutions ↓
bibd [12, 12, 6, 6, 4] TO 194.17 TO 5.87 6.0
bibd [13, 13, 6, 6, 4] TO TO MO 9.12 6.0
golf [3, 4, 3] TO 4.62 111.32 3.85 13.1
golf [4, 4, 3] TO 18.0 TO 42.35 10.7
golf [4, 4, 4] TO 58.9 TO 1.55 10.5
latin [6] TO 8.2 118.26 10.19 5.6
magicsquare [4] 23.5 30.14 14.81 2.85 9.4
nn queens [8] TO 162.04 127.24 19.13 8.3
queens [14] 160.26 145.84 263.67 67.88 11.1
queens bool [12] 23.52 78.59 36.0 21.18 5.3
queens bool [13] 121.92 TO 202.64 106.79 5.1
steiner [9] TO 12.98 25.76 19.64 13.6
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Conclusion

Summary

Symmetry in constraint programming is an interesting field.

Still much work to be done on real-world use of symmetries.

What’s next?

The proof step for model symmetry detection.

Applying the framework to other properties.

Further exploration of cheap symmetry breaking.
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