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Protocol definition
Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,
Terry, Woods’87

1. The ground is a simple connected graph.

2. At time 0, one vertex knows a rumour.

3. At each time-step 1, 2, . . . , every informed vertex tells the rumour
to a random neighbour.

Remark 1. Informed vertex may call a neighbour in consecutive steps.
Remark 2. If a vertex receives the rumour at time t , it starts passing it
from time t + 1.
inform-time(v): the first time v learns the rumour.
Spread Time: the first time everyone knows the rumour.
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Application: distributed computing

Rumour spreading advantages:

X Simplicity, locality, no memory

X Scalability, reasonable link loads

X Robustness
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Example: a path

inform− time(0) = 0
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Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(1/2)
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Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(1/2)

inform− time(3) = 1+Geo(1/2) +Geo(1/2)
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Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(1/2)

inform− time(3) = 1+Geo(1/2) +Geo(1/2)

inform− time(4) = 1+Geo(1/2) +Geo(1/2) +Geo(1/2)

E[Spread Time] = 1+ 3× 2 = 7

= 2n − 3
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Example: a star

When k + 1 vertices are informed and n − 1− k uninformed,
after n−1

n−1−k more rounds a new vertex will be informed.

E[Spread Time] =
n − 1
n − 1

+
n − 1
n − 2

+ · · ·+ n − 1
2

+
n − 1
1
≈ n lnn
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Example: a complete graph

E[Spread Time] ≈ log2 n + lnn [Pittel ′87]
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Other known results

With probability approaching 1, for any starting vertex,

1. max{diameter(G), log2 n} ≤ Spread Time ≤ (1+ o(1))n lnn
[Elsässer and Sauerwald’06]

2. Spread Time of Hd = Θ(d) [Feige, Peleg, Raghavan, Upfal’90]

H3

3. If pn ≥ (1+ ε) lnn then Spread Time of G(n , p) = Θ(logn)
[Feige et al.’90]
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Improving the protocol

Uninformed vertices ask the informed ones...
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The push-pull protocol
Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart,
Terry, Woods’87

1. The ground is a simple connected graph.

2. At time 0, one vertex knows a rumour.

3. At each time-step 1, 2, . . . ,
every informed vertex sends the rumour to a random neighbour
(PUSH);
and every uninformed vertex queries a random neighbour about
the rumour (PULL).

Remark 1. Vertices may call the same neighbour in consecutive steps.
Remark 2. If a vertex receives the rumour at time t , it starts passing it
from time t + 1.
Spread Time: the first time everyone knows the rumour.
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Example: a star

push protocol: n lnn rounds
push-pull protocol: 1 or 2 rounds
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Example: a path

inform− time(0) = 0
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Example: a path
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Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+min{Geo(1/2),Geo(1/2)}

= 1+Geo(3/4)

Abbas (Waterloo) Rumour spreading 5 May 26 / 58



Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(3/4)

inform− time(3) = 1+Geo(3/4) +Geo(3/4)

Abbas (Waterloo) Rumour spreading 5 May 27 / 58



Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(3/4)

inform− time(3) = 1+Geo(3/4) +Geo(3/4)

inform− time(4) = 1+Geo(3/4) +Geo(3/4) + 1

Abbas (Waterloo) Rumour spreading 5 May 28 / 58



Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(3/4)

inform− time(3) = 1+Geo(3/4) +Geo(3/4)

inform− time(4) = 1+Geo(3/4) +Geo(3/4) + 1

E[Spread Time] = 2+ 2× 4/3 = 14/3

Abbas (Waterloo) Rumour spreading 5 May 29 / 58



Example: a path

inform− time(0) = 0

inform− time(1) = 1

inform− time(2) = 1+Geo(3/4)

inform− time(3) = 1+Geo(3/4) +Geo(3/4)

inform− time(4) = 1+Geo(3/4) +Geo(3/4) + 1

E[Spread Time] = 2+ 2× 4/3 = 14/3

=
4
3
n − 2 (versus 2n − 3 for push)
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Example: a complete graph

push: log2 n + lnn + o(logn) [Pittel’87]
push-pull: ≤ log3 n + o(logn) [Karp, Schindelhauer, Shenker, Vöcking’00]
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Other results on push-pull protocol

1. Barabasi-Albert preferential attachment graph has
Spread Time Θ(logn),
PUSH alone has Spread Time poly(n).

2. Random graphs with power-law expected degrees
(a.k.a. the Chung-Lu model) with exponent ∈ (2, 3) has
Spread Time Θ(logn).

3. If Φ is Cheeger constant (conductance)
and α is the vertex expansion (vertex isoperimetric number),
Spread Time ≤ C max{Φ−1 logn , α−1 log2 n}.
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Let’s see some simulation results...
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n ≈ 5× 107, 64n edges



Reference

Graphs in the previous slides were taken from:
Doerr, Fouz, Friedrich,
“Why rumors spread so quickly in social networks,”
Communications of the ACM, 2012
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Some open problems

1. Design a (deterministic) approximation algorithm for finding
the ‘average’ Spread Time of a given graph.

2. Is the average Spread Time at most linear?!

n/4+ o(n) 4n/3+ o(n)
3. These questions may be asked about the ‘asynchronous’ model.
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Part II: Push-Pull on Random k -trees

joint work with Ali Pourmiri
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Random k -trees

Example (k = 3)
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Random k -trees

Example (k = 3)
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Some properties of random k -trees

X Logarithmic diameter
X Power law degree sequence:

fraction of vertices with degree d ≈ d−2− 1
k−1

X Constant tree-width k
X Clustering coefficient Ω(1)
X Conductance and vertex expansion o(1)
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Self-similarity of random k -trees

Abbas (Waterloo) Rumour spreading 5 May 44 / 58



Self-similarity of random k -trees

Abbas (Waterloo) Rumour spreading 5 May 45 / 58



Self-similarity of random k -trees

Abbas (Waterloo) Rumour spreading 5 May 46 / 58



Self-similarity of random k -trees

Abbas (Waterloo) Rumour spreading 5 May 47 / 58



Self-similarity of random k -trees
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Self-similarity of random k -trees
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Self-similarity of random k -trees
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Our results

Push-Pull protocol on random k -trees (k > 1 fixed):

Theorem (M, Pourmiri’14+)
If initially a random vertex knows the rumour,
a.a.s. after ln1+3/k n rounds, n − o(n) vertices will know it.

Theorem (M, Pourmiri’14+)
If initially a vertex knows the rumour,
a.a.s. the average Spread Time is > n1/3k
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Proof of upper bound

Lemma
Suppose s knows the rumour at time 0, and
∃(s , v)-path s = u0,u1, . . . ,ul−1,ul = v s.t.
min{deg(ui ),deg(ui+1)} ≤ d. Then with prob. ≥ 1− o(n−2),
inform-time(v) ≤ 6d(l + lnn).

Proof.

inform− time(v)

≤ min{Geo(
1
d0

),Geo(
1
d1

)}+ · · ·+min{Geo(
1

dl−1
),Geo(

1
dl
)}

≤ sum of l independent Geo(1/d) random variables
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Proof of upper bound

1. H = graph at round ≈ n ln−2/k n

2. Almost all vertices in small pieces have degrees ≤ d = ln3/k n

3. An edge uv ∈ E(H ) is fast if deg(u) ≤ d or deg(v) ≤ d or u and v have
a common neighbour with degree ≤ d .

4. ∃ an almost-spanning tree of H of height O(lnn) consisting of fast edges.
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The upper bound

Push-Pull protocol on random k -trees (k > 1 fixed):

Theorem (M, Pourmiri’14+)
If initially a random vertex knows the rumour,
a.a.s. after ln1+3/k n rounds, n − o(n) vertices will know it.
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Proof of lower bound

Definition (D-barrier)

Vertices in the two k -cliques have degrees ≥ D .

Lemma

A random k-tree has a Ω
(
n1−1/k)-barrier with prob. ≥ Ω

(
n−k)
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Proof of lower bound
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Proof of lower bound

1. H = graph at round m ≈ n
k

k+1

2. Each small piece has a (n/km)1−1/k -barrier with prob.
Ω

(
(n/km)−k).

3. Since km
(
(n/km)−k) → ∞ and by independence of pieces, with

prob. 1− o(1) there exists a (n/km)1−1/k -barrier.
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The lower bound

Push-Pull protocol on random k -trees (k > 1 fixed):

Theorem (M, Pourmiri’14+)
If initially a vertex knows the rumour,
a.a.s. the average Spread Time is > n1/3k
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Some open problems

1. Design a (deterministic) approximation algorithm for finding
the ‘average’ Spread Time of a given graph.

2. Is the average Spread Time at most linear?!
3. These questions may be asked about the ‘asynchronous’ model.
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