Randomized Rumour Spreading on Random k-trees

Abbas Mehrabian amehrabi@uwaterloo.ca

University of Waterloo

5 May 2014 Monash University

Protocol definition

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step $1, 2, \ldots$, every informed vertex tells the rumour to a random neighbour.

Protocol definition

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step $1, 2, \ldots$, every informed vertex tells the rumour to a random neighbour.
- Remark 1. Informed vertex may call a neighbour in consecutive steps. Remark 2. If a vertex receives the rumour at time t, it starts passing it from time t+1.

Protocol definition

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step $1, 2, \ldots$, every informed vertex tells the rumour to a random neighbour.
- Remark 1. Informed vertex may call a neighbour in consecutive steps.
- Remark 2. If a vertex receives the rumour at time t, it starts passing it from time t+1.
- inform-time(v): the first time v learns the rumour.
- Spread Time: the first time everyone knows the rumour.

Application: distributed computing

Application: distributed computing

Rumour spreading advantages:

- √ Simplicity, locality, no memory
- ✓ Scalability, reasonable link loads
- √ Robustness

inform - time(0) = 0

$$\inf\! orm - time(0) = 0$$

$$inform - time(1) = 1$$

$$\begin{aligned} &\inf orm - time(0) = 0\\ &\inf orm - time(1) = 1\\ &\inf orm - time(2) = 1 + Geo(1/2) \end{aligned}$$

$$\begin{split} &\inf rom - time(0) = 0\\ &\inf rom - time(1) = 1\\ &\inf rom - time(2) = 1 + Geo(1/2)\\ &\inf rom - time(3) = 1 + Geo(1/2) + Geo(1/2) \end{split}$$

$$\begin{split} &\inf \text{orm} - \text{time}(0) = 0 \\ &\inf \text{orm} - \text{time}(1) = 1 \\ &\inf \text{orm} - \text{time}(2) = 1 + \text{Geo}(1/2) \\ &\inf \text{orm} - \text{time}(3) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\inf \text{orm} - \text{time}(4) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) + \text{Geo}(1/2) \end{split}$$


```
\begin{split} &\inf\!\text{orm} - \text{time}(0) = 0 \\ &\inf\!\text{orm} - \text{time}(1) = 1 \\ &\inf\!\text{orm} - \text{time}(2) = 1 + \text{Geo}(1/2) \\ &\inf\!\text{orm} - \text{time}(3) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\inf\!\text{orm} - \text{time}(4) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\mathbb{E}[\text{Spread Time}] = 1 + 3 \times 2 = 7 \end{split}
```


$$\begin{split} &\inf \text{orm} - \text{time}(0) = 0 \\ &\inf \text{orm} - \text{time}(1) = 1 \\ &\inf \text{orm} - \text{time}(2) = 1 + \text{Geo}(1/2) \\ &\inf \text{orm} - \text{time}(3) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\inf \text{orm} - \text{time}(4) = 1 + \text{Geo}(1/2) + \text{Geo}(1/2) + \text{Geo}(1/2) \\ &\mathbb{E}[\text{Spread Time}] = 1 + 3 \times 2 = 7 \\ &= 2n - 3 \end{split}$$

When k+1 vertices are informed and n-1-k uninformed, after $\frac{n-1}{n-1-k}$ more rounds a new vertex will be informed.

When k+1 vertices are informed and n-1-k uninformed, after $\frac{n-1}{n-1-k}$ more rounds a new vertex will be informed.

$$\mathbb{E}[\text{Spread Time}] = \frac{n-1}{n-1} + \frac{n-1}{n-2} + \dots + \frac{n-1}{2} + \frac{n-1}{1} \approx n \ln n$$

Abbas (Waterloo)

Example: a complete graph

Example: a complete graph

 $\mathbb{E}[\text{Spread Time}] \approx \log_2 n + \ln n$ [Pittel'87]

Other known results

With probability approaching 1, for any starting vertex,

1. $\max\{\operatorname{diameter}(G), \log_2 n\} \leq \operatorname{Spread Time} \leq (1+o(1))n \ln n$ [Elsässer and Sauerwald'06]

Other known results

With probability approaching 1, for any starting vertex,

- 1. $\max\{\operatorname{diameter}(G), \log_2 n\} \leq \operatorname{Spread Time} \leq (1+o(1))n \ln n$ [Elsässer and Sauerwald'06]
- 2. Spread Time of $\mathcal{H}_d = \Theta(d)$

[Feige, Peleg, Raghavan, Upfal'90]

Other known results

With probability approaching 1, for any starting vertex,

- 1. $\max\{\operatorname{diameter}(G), \log_2 n\} \leq \operatorname{Spread Time} \leq (1+o(1))n \ln n$ [Elsässer and Sauerwald'06]
- 2. Spread Time of $\mathcal{H}_d = \Theta(d)$

[Feige, Peleg, Raghavan, Upfal'90]

3. If $pn \ge (1+\varepsilon) \ln n$ then Spread Time of $G(n,p) = \Theta(\log n)$ [Feige et al.'90]

Improving the protocol

Uninformed vertices ask the informed ones...

The push-pull protocol

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step 1, 2, ..., every informed vertex sends the rumour to a random neighbour (PUSH);
 - and every uninformed vertex queries a random neighbour about the rumour (PULL).

The push-pull protocol

Demers, Gealy, Greene, Hauser, Irish, Larson, Manning, Shenker, Sturgis, Swinehart, Terry, Woods'87

- 1. The ground is a simple connected graph.
- 2. At time 0, one vertex knows a rumour.
- 3. At each time-step 1, 2, ..., every informed vertex sends the rumour to a random neighbour (PUSH); and every uninformed vertex queries a random neighbour about the rumour (PULL).
- Remark 1. Vertices may call the same neighbour in consecutive steps.
- Remark 2. If a vertex receives the rumour at time t, it starts passing it from time t+1.

Spread Time: the first time everyone knows the rumour.

←□▶ ←□▶ ←□▶ ←□▶ ←□ ♥ ♀○

push protocol: $n \ln n$ rounds push-pull protocol: 1 or 2 rounds

inform - time(0) = 0

$$inform - time(0) = 0$$

$$inform - time(1) = 1$$

$$\begin{split} &\inf rm - time(0) = 0 \\ &\inf rm - time(1) = 1 \\ &\inf rm - time(2) = 1 + min\{Geo(1/2), Geo(1/2)\} \\ &= 1 + Geo(3/4) \end{split}$$

$$\begin{aligned} &\inf rom - time(0) = 0 \\ &\inf rom - time(1) = 1 \\ &\inf rom - time(2) = 1 + Geo(3/4) \\ &\inf rom - time(3) = 1 + Geo(3/4) + Geo(3/4) \end{aligned}$$

$$\begin{split} &\inf \text{orm} - \text{time}(0) = 0 \\ &\inf \text{orm} - \text{time}(1) = 1 \\ &\inf \text{orm} - \text{time}(2) = 1 + \text{Geo}(3/4) \\ &\inf \text{orm} - \text{time}(3) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \\ &\inf \text{orm} - \text{time}(4) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \end{split}$$

$$\begin{split} &\inf\!\mathrm{crm} - \mathrm{time}(0) = 0 \\ &\inf\!\mathrm{crm} - \mathrm{time}(1) = 1 \\ &\inf\!\mathrm{crm} - \mathrm{time}(2) = 1 + \mathrm{Geo}(3/4) \\ &\inf\!\mathrm{crm} - \mathrm{time}(3) = 1 + \mathrm{Geo}(3/4) + \mathrm{Geo}(3/4) \\ &\inf\!\mathrm{crm} - \mathrm{time}(4) = 1 + \mathrm{Geo}(3/4) + \mathrm{Geo}(3/4) + 1 \\ &\mathbb{E}[\mathrm{Spread\ Time}] = 2 + 2 \times 4/3 = 14/3 \end{split}$$

$$\begin{split} &\inf \text{orm} - \text{time}(0) = 0 \\ &\inf \text{orm} - \text{time}(1) = 1 \\ &\inf \text{orm} - \text{time}(2) = 1 + \text{Geo}(3/4) \\ &\inf \text{orm} - \text{time}(3) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) \\ &\inf \text{orm} - \text{time}(4) = 1 + \text{Geo}(3/4) + \text{Geo}(3/4) + 1 \\ &\mathbb{E}[\text{Spread Time}] = 2 + 2 \times 4/3 = 14/3 \\ &= \frac{4}{3}n - 2 \qquad (\text{versus } 2n - 3 \text{ for push}) \end{split}$$

Example: a complete graph

push: $\log_2 n + \ln n + o(\log n)$ push-pull: $\leq \log_3 n + o(\log n)$ [Pittel'87] [Karp, Schindelhauer, Shenker, Vöcking'00]

Other results on push-pull protocol

- Barabasi-Albert preferential attachment graph has Spread Time Θ(log n), PUSH alone has Spread Time poly(n).
- 2. Random graphs with power-law expected degrees (a.k.a. the Chung-Lu model) with exponent \in (2,3) has Spread Time $\Theta(\log n)$.
- 3. If Φ is Cheeger constant (conductance) and α is the vertex expansion (vertex isoperimetric number), Spread Time $\leq C \max\{\Phi^{-1} \log n, \alpha^{-1} \log^2 n\}$.

Let's see some simulation results...

 $n \approx 5 \times 10^7$, 64n edges

Reference

Graphs in the previous slides were taken from: Doerr, Fouz, Friedrich, "Why rumors spread so quickly in social networks," Communications of the ACM, 2012

1. Design a (deterministic) approximation algorithm for finding the 'average' Spread Time of a given graph.

- 1. Design a (deterministic) approximation algorithm for finding the 'average' Spread Time of a given graph.
- 2. Is the average Spread Time at most linear?!

- 1. Design a (deterministic) approximation algorithm for finding the 'average' Spread Time of a given graph.
- 2. Is the average Spread Time at most linear?!

3. These questions may be asked about the 'asynchronous' model.

- 1. Design a (deterministic) approximation algorithm for finding the 'average' Spread Time of a given graph.
- 2. Is the average Spread Time at most linear?!

3. These questions may be asked about the 'asynchronous' model.

Part II: Push-Pull on Random k-trees

joint work with Ali Pourmiri

Example
$$(k = 3)$$

Example (k = 3)

Example (k = 3)

Example (k = 3)

Some properties of random k-trees

- ✓ Logarithmic diameter
- \checkmark Power law degree sequence: fraction of vertices with degree $d \approx d^{-2-\frac{1}{k-1}}$
- \checkmark Constant tree-width k
- ✓ Clustering coefficient $\Omega(1)$
- ✓ Conductance and vertex expansion o(1)

* 4回 * 4 = * 4 = * 9 < で</p>

5 May

Our results

Push-Pull protocol on random k-trees (k > 1 fixed):

Theorem (M, Pourmiri'14+)

If initially a random vertex knows the rumour, a.a.s. after $\ln^{1+3/k} n$ rounds, n-o(n) vertices will know it.

Our results

Push-Pull protocol on random k-trees (k > 1 fixed):

Theorem (M, Pourmiri'14+)

If initially a random vertex knows the rumour, a.a.s. after $\ln^{1+3/k} n$ rounds, n - o(n) vertices will know it.

Theorem (M, Pourmiri'14+)

If initially a vertex knows the rumour, a.a.s. the average Spread Time is $> n^{1/3k}$

Lemma

Suppose s knows the rumour at time 0, and $\exists (s,v)$ -path $s=u_0,u_1,\ldots,u_{l-1},u_l=v$ s.t. $\min\{\deg(u_i),\deg(u_{i+1})\}\leq d$. Then with prob. $\geq 1-o(n^{-2})$, inform-time $(v)\leq 6d(l+\ln n)$.

Lemma

Suppose s knows the rumour at time 0, and $\exists (s,v)$ -path $s=u_0,u_1,\ldots,u_{l-1},u_l=v$ s.t. $\min\{\deg(u_i),\deg(u_{i+1})\}\leq d$. Then with prob. $\geq 1-o(n^{-2})$, inform-time $(v)\leq 6d(l+\ln n)$.

Proof.

$$\begin{split} &\inf(\operatorname{rom}-\operatorname{time}(v)\\ &\leq \min\{\operatorname{Geo}(\frac{1}{d_0}),\operatorname{Geo}(\frac{1}{d_1})\}+\cdots+\min\{\operatorname{Geo}(\frac{1}{d_{l-1}}),\operatorname{Geo}(\frac{1}{d_l})\}\\ &\leq \operatorname{sum \ of \ } l \ \operatorname{independent \ } \operatorname{Geo}(1/d) \ \operatorname{random \ variables} \end{split}$$

1. $H = \text{graph at round} \approx n \ln^{-2/k} n$

- 1. $H = \text{graph at round} \approx n \ln^{-2/k} n$
- 2. Almost all vertices in small pieces have degrees $\leq d = \ln^{3/k} n$

- 1. $H = \text{graph at round} \approx n \ln^{-2/k} n$
- 2. Almost all vertices in small pieces have degrees $\leq d = \ln^{3/k} n$
- 3. An edge $uv \in E(H)$ is fast if $deg(u) \leq d$ or $deg(v) \leq d$ or u and v have a common neighbour with $degree \leq d$.

- 1. $H = \text{graph at round} \approx n \ln^{-2/k} n$
- 2. Almost all vertices in small pieces have degrees $\leq d = \ln^{3/k} n$
- 3. An edge $uv \in E(H)$ is fast if $deg(u) \leq d$ or $deg(v) \leq d$ or u and v have a common neighbour with $degree \leq d$.
- 4. \exists an almost-spanning tree of H of height $O(\ln n)$ consisting of fast edges.

5 May

The upper bound

Push-Pull protocol on random k-trees (k > 1 fixed):

Theorem (M, Pourmiri'14+)

If initially a random vertex knows the rumour, a.a.s. after $\ln^{1+3/k} n$ rounds, n - o(n) vertices will know it.

Definition (*D*-barrier)

Vertices in the two k-cliques have degrees $\geq D$.

Definition (D-barrier)

Vertices in the two k-cliques have degrees $\geq D$.

Lemma

A random k-tree has a $\Omega\left(n^{1-1/k}\right)$ -barrier with prob. $\geq \Omega\left(n^{-k}\right)$

1. $H= ext{graph at round } m pprox n^{rac{k}{k+1}}$

- 1. $H= ext{graph at round } m pprox n^{rac{k}{k+1}}$
- 2. Each small piece has a $(n/km)^{1-1/k}$ -barrier with prob. $\Omega\left((n/km)^{-k}\right)$.

- 1. $H= ext{graph at round } m pprox n^{rac{k}{k+1}}$
- 2. Each small piece has a $(n/km)^{1-1/k}$ -barrier with prob. $\Omega\left((n/km)^{-k}\right)$.
- 3. Since $km\left((n/km)^{-k}\right)\to\infty$ and by independence of pieces, with prob. 1-o(1) there exists a $(n/km)^{1-1/k}$ -barrier.

◆ロ > ◆昼 > ◆ き > ◆き > き の < ○</p>

The lower bound

Push-Pull protocol on random k-trees (k > 1 fixed):

Theorem (M, Pourmiri'14+)

If initially a vertex knows the rumour, a.a.s. the average Spread Time is $> n^{1/3k}$

- 1. Design a (deterministic) approximation algorithm for finding the 'average' Spread Time of a given graph.
- 2. Is the average Spread Time at most linear?!
- 3. These questions may be asked about the 'asynchronous' model.

