


A-ha Me Heartiesi?H
Why pirates???
Because we're going

to go searching for
buried treasure!




e A chest of buried treasure somewhere on the islan
* No X on the map...



dhe vules

One treasure chest
Known size, shape, and orientation
No information about location

— equally likely to be anywhere on the island
Only way to search — dig a hole.

Minimize expected # of holes required.

— The F-measure (because each failed attempt
equals a flogging by the captain).



Plan #1

 Cap'n Rrrrt

Choose a spot randomly.
Dig there.

If treasure found, stop,

B w e

otherwise, back to step 1



Plan #2

* Captain Aaaaaart

Choose n possible candidate places to dig.

2. Choose the candidate ¢ with the greatest

distance from the nearest existing hole (maximin
criterion)

3. Dig at location ¢
If treasure found, stop
5. Otherwise, back to step 1.



Results

Plan B - “40% fewer holes than plan A.
But what about Plan C, D, E...

Tried many.

Supplies of rum ran tragically low.

Some of them were lower-overhead than plan
B.

Results were roughly the same.



Wy

* Were we too
busy drinking
rum and chasing
wenches?

* A more
fundamental
problem?




NMathematics to the rescue




An Optimal Strategy




An Optimal Strategy




An Optimal Strategy




Random vs. Optimal

e Random F-measure
— area of treasure is a
— area of island is A
— F-measure for random is A/a
* Optimal (and yes it is optimal)
— A/a test cases
— On average, hit treasure half way through
— F-measure is A/2a

e Captain Aaaart's strategy not far off optimal!



In case it's not obvious

Island == input domain of software
treasure chest = "failure region"

Result still holds if multiple failure regions, n
dimensions etc.

Also holds if input domain modeled as
discrete rather than continuous.



Upshot...

* |f we're going to improve testing we need to
change assumptions!



What is the ultimate goal anyway!?

Not digging for buried treasure!
Multiple faults within input domain.
Lead to multiple failure regions.

Ultimate goal (Littlewood et al) — improve
reliability as much as possible after faults
detected in testing are fixed.

Fiendishly hard to model ®



Jmproving failure defection

* [ncorporate guess where failures are most
likely.

* Add some clues to the treasure map...



Sailure-proportional sampling

Discrete (and large)input domain, kinputsi 1,
i 2,.0 k

Prior probabilities for failurep_1, p _2...p_k
Select randomly with replacement.

Assign selection probability s _i= failure
probability p i

Sounds like a good idea, right?



Optimal strategy

e Turns out to be no improvement on uniform
random selection.

 Optimum strategy =s_i=sqrt(p_i)

e Strategy came from Press(2009). Paper was
about looking for terrorists.



Combining locality and probabilify

Locality on its own -> 50% improvement

Probability on its own -> not so useful either
— Leads to repeatedly hitting high-probability areas.

Need to combine them.

Essentially, trying to have a formal
mathematical model of debug testing

But...modelling this is *really* hard.



The brufe force model

P6
P7
P8



The brufe force model

Represents our prior beliefs about failure
behaviour

Can calculate our current beliefs about program
reliability.

In practice, table is intractably huge (2*input
domain, where input domain is already huge)

Not obvious what we’d do w/information to
deliver reliability improvements.

Despite size, doesn’t represent everything we’'d
like to model ®



Mistabes, failures and faults

* Mistakes (brain fart) -> fault (code fart) ->
failure (output fart)
* To improve delivered reliability, fix the faults
which cause the most failures.
* Need to incorporate in the model?
— But model is already intractable!



So...J'm Einda lost




