
Testing – an odd optimization
problem

Cap'n Robert Merkel

A-ha Me Hearties????

Why pirates???

Because we're going
to go searching for
buried treasure!

The search

• A chest of buried treasure somewhere on the island
• No X on the map…

The rules

• One treasure chest

• Known size, shape, and orientation

• No information about location

– equally likely to be anywhere on the island

• Only way to search – dig a hole.

• Minimize expected # of holes required.

– The F-measure (because each failed attempt
equals a flogging by the captain).

Plan #1

• Cap'n Rrrrt

1. Choose a spot randomly.

2. Dig there.

3. If treasure found, stop,

4. otherwise, back to step 1

Plan #2

• Captain Aaaaaart

1. Choose n possible candidate places to dig.

2. Choose the candidate c with the greatest
distance from the nearest existing hole (maximin
criterion)

3. Dig at location c

4. If treasure found, stop

5. Otherwise, back to step 1.

Results

• Plan B - ~40% fewer holes than plan A.

• But what about Plan C, D, E…

• Tried many.

• Supplies of rum ran tragically low.

• Some of them were lower-overhead than plan
B.

• Results were roughly the same.

Why????

• Were we too
busy drinking
rum and chasing
wenches?

• A more
fundamental
problem?

Mathematics to the rescue

An Optimal Strategy

An Optimal Strategy

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

An Optimal Strategy

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Random vs. Optimal

• Random F-measure
– area of treasure is a

– area of island is A

– F-measure for random is A/a

• Optimal (and yes it is optimal)
– A/a test cases

– On average, hit treasure half way through

– F-measure is A/2a

• Captain Aaaart's strategy not far off optimal!

In case it's not obvious

• Island == input domain of software

• treasure chest = "failure region"

• Result still holds if multiple failure regions, n
dimensions etc.

• Also holds if input domain modeled as
discrete rather than continuous.

Upshot…

• If we're going to improve testing we need to
change assumptions!

What is the ultimate goal anyway?

• Not digging for buried treasure!

• Multiple faults within input domain.

• Lead to multiple failure regions.

• Ultimate goal (Littlewood et al) – improve
reliability as much as possible after faults
detected in testing are fixed.

• Fiendishly hard to model 

Improving failure detection

• Incorporate guess where failures are most
likely.

• Add some clues to the treasure map…

Failure-proportional sampling

• Discrete (and large)input domain, k inputs i_1,
i_2,…i_k

• Prior probabilities for failure p_1, p_2…p_k

• Select randomly with replacement.

• Assign selection probability s_i= failure
probability p_i

• Sounds like a good idea, right?

Optimal strategy

• Turns out to be no improvement on uniform
random selection.

• Optimum strategy = s_i = sqrt(p_i)

• Strategy came from Press(2009). Paper was
about looking for terrorists.

Combining locality and probability

• Locality on its own -> 50% improvement

• Probability on its own -> not so useful either

– Leads to repeatedly hitting high-probability areas.

• Need to combine them.

• Essentially, trying to have a formal
mathematical model of debug testing

• But…modelling this is *really* hard.

The brute force model
i1 i2 i3 P

F F F P1

F F T P2

F T F P3

F T T P4

T F F P5

T F T P6

T T F P7

T T T P8

The brute force model
• Represents our prior beliefs about failure

behaviour
• Can calculate our current beliefs about program

reliability.
• In practice, table is intractably huge (2^input

domain, where input domain is already huge)
• Not obvious what we’d do w/information to

deliver reliability improvements.
• Despite size, doesn’t represent everything we’d

like to model 

Mistakes, failures and faults

• Mistakes (brain fart) -> fault (code fart) ->
failure (output fart)

• To improve delivered reliability, fix the faults
which cause the most failures.

• Need to incorporate in the model?

– But model is already intractable!

So…I’m kinda lost

