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Definitions: Adjacency Matrix, Spectrum

For this talk, G is a simple graph with |V (G)| = n vertices.
The adjacency matrix, A = [aij ], of G, is the n × n
matrix defined as

aij =

{
1 if i is adjacent to j
0 otherwise

The spectrum of a graph with respect to its adjacency
matrix consists of the eigenvalues of its adjacency matrix
with their multiplicity.
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Integral Graphs

When are the eigenvalues of a graph integers?
integral graphs are graphs that have integer
eigenvalues
Ex// C3, C4, C6, Kn, P2

∃ operations closed under integrality: ×, +

n 1 2 3 4 5 6 7 8 9 10 11 12 13
# 1 1 1 2 3 6 7 22 24 83 113 ? ?
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Definitions: Regular graph,Closed walk

Limit ourselves to...
Integral Graphs
→ regular - G is k -regular if deg(v) = k∀v ∈ V (G)
→ bipartite - G is bipartite if V (G) can be partitioned
into two subsets X and Y such that each edge has one end in
X and one end in Y
Look at...
Counting Closed Walks

A walk in G is a finite sequence W = v0v1...vl of vertices
such that vi is adjacent to vi+1.
W is closed if v0 = vl .

In this talk, I present a preliminary report on how we might go
about searching for regular bipartite integral graphs by
counting closed walks.
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Closed Walks and Adjacency Matrices

Lemma: For ar
i,j the i , j th entry of the matrix Ar ,

ar
i,j = # walks of length r from i to j

It follows that,

n∑
i=1

ar
i,i = total # closed walks of length r in G

= Tr(Ar )

=
n∑

i=1

λr
i
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Closed Walks Relating Eigenvalues To Graph Info

It follows that for n vertices, e edges, and t 3-cycles,

n∑
i=1

λ1
i = # closed walks of length 1 in G = 0

n∑
i=1

λ2
i = # closed walks of length 2 in G = 2e

n∑
i=1

λ3
i = # closed walks of length 3 in G = 6t
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Closed Walks Relating Eigenvalues To Graph Info

It follows that for n vertices, e edges, and t 3-cycles,

n∑
i=1

λ1
i = 0

n∑
i=1

λ2
i = 2e

n∑
i=1

λ3
i = 6t

Thus edges and 3-cycles are completely determined by the
spectrum of G.
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Using the Trace Equations to Refine Graph Eigenvalue
Lists

This has been done for integral graphs when G is 4-regular
bipartite.

Sp(G) = {4,3x ,2y ,1z ,02w ,−1z ,−2y ,−3x ,−4}
Stevanovic et al. (2007) adjusted and added to the former
trace equations for this special case: for n vertices, q
4-cycles, and h 6-cycles,

Tr(A0) = n

Tr(A2) = 4n

Tr(A4) = 28n + 8q

Tr(A6) = 232n + 144q + 12h

Tr(A8) ≥ 2092n + 2024q + 288h
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Stevanovic et al. Results

The authors
used the equations to determine 1888 feasible spectra of
the 4-regular bipartite integral graphs
used the inequality to reduce this list to 828, n ≤ 280
added the inequality via a recurrence relation that counted
the closed walks containing a given cycle:

4-cycles
6-cycles

n x y z q h
5 0 0 4 0 30 130
6 0 1 4 0 27 138

.

.

.
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There’s More To Be Done!

I plan to take this further
WHAT?
→ Get equality rather than a bound for Tr(A8)
→ Add more equations to the Stevanovic set
HOW? Consider subgraphs other than cycles: bound is a
result of this
WHY? More equations means
→ more information
→ enough to make lists of feasible spectra
→ less candidates (refine obtainted lists)
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Counting Around Subgraphs Other Than Cycles

Wanless (2009) recently submitted a paper that counted certain
closed walks to find approximations for the matching
polynomial of a graph.

the graphs are regular
these closed walks are counted based on
→ the cycles AND

→ the polycyclic subgraphs
an algorithm is given that counts these walks up to a given
length
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Wanless Algorithm

The mentioned algorithm counts certain closed walks in
regular graphs, using

enumeration - find/collect base walks about subgraphs
generating functions - count all desired closed walks
around base walks
inclusion/exclusion principles - resolve overcounting
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Resulting Expression Examples

For G, (k + 1)-regular bipartite:

ε5 = 80kC4

ε6 = 528k2C4 + 12C6 − 48θ2,2,2

ε7 = 2912k3C4 + 168kC6 − 672kθ2,2,2 − 56θ3,3,1

where εl denotes the desired closed walks of length 2l
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A Work In Progress

Closed walks are
totally-reducible - generating function already existed
closed containing a cycle - have a generating function for
the number containing a single cycle of arbitrary length
closed containing a polycyclic subgraph - have a
generating function for the number containing a closed
walk around a subgraph

Note: these generating functions require that G is regular
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Counting Closed Walks

So for regular bipartite graphs G:
Determine the subgraphs that matter
Devise an algorithm that considers each subgraph and

takes base walks that induce it - defined
counts walks containing base walks - uses polycyclic
generating function
adds counts of all base walks together - the all
encompassing generating function for the subgraph is ready

Produce polynomials for each length that depend on n,
regularity, and the number of certain subgraphs of G
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What’s Next?

Use equations to find/refine lists of feasible spectra for
k -regular bipartite integral graphs with k ≤ 4
Consider integral graphs that are regular non-bipartite; add
other pertinent subgraphs, equations
Apply the same methodology to strongly regular graphs

Find possible configurations of the missing Moore graph?
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Appendix For Further Reading

Dragan Stevanovic and Nair M.M. de Abreu and Maria A.A.
de Freitas and Renata Del-Vecchio.
Walks and regular integral graphs.
Linear Algebra and its Applications, 423(1):119–135, 2007.

I. M. Wanless.
Counting matchings and tree-like walks in regular graphs.
Combinatorics, Probability and Computing, Accepted,
2009.
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Using Closed Walk Polynomials

Take the polynomials and build a system of equations for
regular bipartite graphs
Let k = 4, since G is k -regular
Apply it to the list of feasible spectra for 4-regular bipartite
integral graphs
Obtain shorter lists of the form:
Obtain a new count < 828 for graphs with spectra of the
form:

Sp(G) = {4,3x ,2y ,1z ,02w ,−1z ,−2y ,−3x ,−4}
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