Ramsey properties of random graphs

Rajko Nenadov

Monash University

29th August 2016

A graph G is Ramsey for H

$$G \to H$$

if every red/blue colouring of the edges of G contains a monochromatic copy of H

A graph G is Ramsey for H

$$G \to H$$

if every red/blue colouring of the edges of G contains a monochromatic copy of H

$$K_6 \to K_3$$

A graph G is Ramsey for H

$$G \to H$$

if every red/blue colouring of the edges of G contains a monochromatic copy of H

$$K_6 \to K_3$$

A graph G is Ramsey for H

$$G \to H$$

if every $\operatorname{red/blue}$ colouring of the edges of G contains a monochromatic copy of H

$$K_6 \rightarrow K_3$$

A graph G is Ramsey for H

$$G \to H$$

if every $\operatorname{red/blue}$ colouring of the edges of G contains a monochromatic copy of H

$$K_6 \rightarrow K_3$$

A graph G is Ramsey for H

$$G \to H$$

if every red/blue colouring of the edges of G contains a

monochromatic copy of H

$$K_6 \rightarrow K_3$$

A graph G is Ramsey for H

$$G \to H$$

if every red/blue colouring of the edges of G contains a monochromatic copy of H

Ramsey (1930)

For every graph H there exists (sufficiently large) $n \in \mathbb{N}$ such that

$$K_n \to H$$

A graph G is Ramsey for H

$$G \to H$$

if every red/blue colouring of the edges of G contains a monochromatic copy of H

Binomial random graph G(n, p)

- *n* vertices
- ullet each edge present with probability p

A graph G is Ramsey for H

$$G \to H$$

if every red/blue colouring of the edges of G contains a monochromatic copy of H

Binomial random graph G(n, p)

- *n* vertices
- ullet each edge present with probability p

Given a graph \mathbf{H} and $\mathbf{p} = \mathbf{p}(\mathbf{n}) \in [0, 1]$, determine

$$\Pr[G(n,p) \to H]$$

Given a graph \mathbf{H} and $\mathbf{p} = \mathbf{p}(\mathbf{n}) \in [\mathbf{0}, \mathbf{1}]$, determine

$$\Pr[G(n,p) \to H]$$

Given a graph \mathbf{H} and $\mathbf{p} = \mathbf{p}(\mathbf{n}) \in [0, 1]$, determine

$$\Pr[G(n,p) \to H]$$

- "Being Ramsey for H" is a monotone property (preserved under edge addition)
- Bollobás-Thomason ('87): every non-trivial monotone property $\mathcal P$ has a threshold function $p^*(\mathcal P)$

$$\lim_{n \to \infty} \Pr[G(n, p) \in \mathcal{P}] = \begin{cases} 0, & \text{if } p/p^*(\mathcal{P}) \to 0\\ 1, & \text{if } p/p^*(\mathcal{P}) \to \infty \end{cases}$$

Given a graph \mathbf{H} and $\mathbf{p} = \mathbf{p}(\mathbf{n}) \in [0, 1]$, determine

$$\Pr[G(n,p) \to H]$$

- "Being Ramsey for H" is a monotone property (preserved under edge addition)
- Bollobás-Thomason ('87): every non-trivial monotone property $\mathcal P$ has a threshold function $p^*(\mathcal P)$

$$\lim_{n \to \infty} \Pr[G(n, p) \in \mathcal{P}] = \begin{cases} 0, & \text{if } p/p^*(\mathcal{P}) \to 0\\ 1, & \text{if } p/p^*(\mathcal{P}) \to \infty \end{cases}$$

Goal: find a threshold p_H for the property "being Ramsey for H"

Given a graph \mathbf{H} and $\mathbf{p} = \mathbf{p}(\mathbf{n}) \in [0, 1]$, determine

$$\Pr[G(n,p) \to H]$$

- "Being Ramsey for H" is a monotone property (preserved under edge addition)
- Bollobás-Thomason ('87): every non-trivial monotone property $\mathcal P$ has a threshold function $p^*(\mathcal P)$

$$\lim_{n \to \infty} \Pr[G(n, p) \in \mathcal{P}] = \begin{cases} 0, & \text{if } p \ll p^* \\ 1, & \text{if } p \gg p^* \end{cases}$$

Goal: find a threshold p_H for the property "being Ramsey for H"

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let
$$H = K_3$$

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let
$$H = K_3$$

$$p = n^{-6/\binom{6}{2} + \varepsilon}$$

$$\lim_{n\to\infty} \Pr[G(n,p)\to K_3] =$$

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let
$$H = K_3$$

•
$$p = n^{-6/\binom{6}{2} + \varepsilon}$$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = 1$$

Explanation: G(n,p) contains K_6 with high probability

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let
$$H = K_3$$

$$p = n^{-6/\binom{6}{2} + \varepsilon}$$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = 1$$

Explanation: G(n,p) contains K_6 with high probability

•
$$p = n^{-1-\varepsilon}$$

$$\lim_{n\to\infty} \Pr[G(n,p)\to K_3] =$$

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let
$$H = K_3$$

$$p = n^{-6/\binom{6}{2} + \varepsilon}$$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = 1$$

Explanation: G(n,p) contains K_6 with high probability

•
$$p = n^{-1-\varepsilon}$$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = 0$$

Explanation: G(n,p) does not contain K_3

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let
$$H = K_3$$

$$p = n^{-6/\binom{6}{2} + \varepsilon}$$

$$\lim_{n\to\infty}\Pr[G(n,p)\to K_3]=1$$

Explanation: G(n,p) contains K_6 with high probability

•
$$p = n^{-4/5 - \varepsilon}$$

$$(n^{-1} < n^{-4/5})$$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] =$$

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let
$$H = K_3$$

$$p = n^{-6/\binom{6}{2} + \varepsilon}$$

$$\lim_{n\to\infty}\Pr[G(n,p)\to K_3]=1$$

Explanation: G(n,p) contains K_6 with high probability

•
$$p = n^{-4/5 - \varepsilon}$$
 $(n^{-1} < n^{-4/5})$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = 0$$

Explanation: G(n, p) does not contain

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let
$$H = K_3$$

$$p = n^{-6/\binom{6}{2} + \varepsilon}$$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = 1$$

Explanation: G(n,p) contains K_6 with high probability

•
$$p = n^{-5/7 - \varepsilon}$$
 $(n^{-4/5} < n^{-5/7})$
$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] =$$

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let $H = K_3$

$$p = n^{-6/\binom{6}{2} + \varepsilon}$$

$$\lim_{n\to\infty} \Pr[G(n,p)\to K_3]=1$$

Explanation: G(n,p) contains K_6 with high probability

•
$$p = n^{-5/7 - \varepsilon}$$
 $(n^{-4/5} < n^{-5/7})$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = \mathbf{0}$$

Explanation: G(n, p) does not contain

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let
$$H = K_3$$

$$p = n^{-6/\binom{6}{2} + \varepsilon}$$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = 1$$

Explanation: G(n,p) contains K_6 with high probability

•
$$p = n^{-2/3 - \varepsilon}$$
 $(n^{-5/7} < n^{-2/3})$
$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] =$$

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let
$$H = K_3$$

$$p = n^{-6/\binom{6}{2} + \varepsilon}$$

$$\lim_{n\to\infty}\Pr[G(n,p)\to K_3]=1$$

Explanation: G(n,p) contains K_6 with high probability

•
$$p = n^{-2/3} - \varepsilon$$
 $(n^{-5/7} < n^{-2/3})$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = \mathbf{0}$$

Explanation: G(n, p) does not contain

Given a graph \mathbf{H} , determine $p_H(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \ll p_H \\ 1, & \text{if } p \gg p_H \end{cases}$$

Let
$$H = K_3$$

$$p = n^{-6/\binom{6}{2} + \varepsilon}$$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = 1$$

Explanation: G(n,p) contains K_6 with high probability

•
$$p = n^{-1/2 - \varepsilon}$$

$$(n^{-2/3} < n^{-1/2})$$

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = 0$$

Threshold for $G(n,p) \to K_3$

Frankl-Rödl ('86), Łuczak-Ruciński-Voigt ('92')

There exist constants c, C > 0 such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = \begin{cases} 0, & \text{if } p \le cn^{-1/2} \\ 1, & \text{if } p \ge Cn^{-1/2} \end{cases}$$

Threshold for $G(n,p) \to H$

Rödl-Ruciński ('93-'95)

For every graph H (which contains a cycle) there exist constants c,C>0 such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \le cn^{-\beta(H)} \\ 1, & \text{if } p \ge Cn^{-\beta(H)} \end{cases}$$

Threshold for $G(n,p) \to H$

Rödl-Ruciński ('93-'95)

For every graph H (which contains a cycle) there exist constants c,C>0 such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \le cn^{-\beta(H)} \\ 1, & \text{if } p \ge Cn^{-\beta(H)} \end{cases}$$

Intuition: $\beta(H)$ is chosen such that

- $p \leq cn^{-\beta(H)}$
 - ightarrow most of the edges do not belong to a copy of H
- $p \ge Cn^{-\beta(H)}$
 - ightarrow each edge belongs to many copies of H

Rödl-Ruciński ('93-'95)

For every graph H (which contains a cycle) there exist constants c,C>0 such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \le cn^{-\beta(H)} \\ 1, & \text{if } p \ge Cn^{-\beta(H)} \end{cases}$$

Intuition: $\beta(H)$ is chosen such that

- $p \le cn^{-\beta(H)}$ \to most of the edges do not belong to a copy of H
- $p \ge C n^{-\beta(H)}$ \to each edge belongs to many copies of H

N.-Steger (2015) – a 'short' proof

$$\lim_{n\to\infty} \Pr[G(n,p)\to K_3] = 1 \text{ for } p \ge Cn^{-1/2}$$

$$\lim_{n\to\infty} \Pr[G(n,p)\to K_3] = 1 \quad \text{for} \quad p\geq Cn^{-1/2}$$
 or

'A short introduction to hypergraph containers'

Hypergraph containers

Balogh-Morris-Samotij and Saxton-Thomason (2015)

 $\forall \delta > 0 \; \exists K > 0$: for every $n \in \mathbb{N}$ there exists a collection \mathcal{C} of graphs on n vertices and a function $f \colon 2^{E(K_n)} \to \mathcal{C}$ such that

- (a) each $C \in \mathcal{C}$ contains at most δn^3 triangles,
- (b) for every K_3 -free graph H there exists $S \subseteq E(K_n)$ such that

$$e(S) \le Kn^{3/2}$$
 and $S \subseteq H \subseteq f(S)$

- C contains all triangle-free graphs (containers)
- ullet container of a graph H is generated by its small subgraph

 $E(K_n)$ Let $G \subseteq K_n$ be a graph on n vertices $\overline{E}(G)$

Let $G \subseteq K_n$ be a graph on n vertices

• Suppose there exists a colouring $E(G) = R \cup B \text{ with no}$ monochromatic triangle

• Suppose there exists a colouring $E(G) = R \cup B \text{ with no}$ monochromatic triangle

• Suppose there exists a colouring $E(G) = R \cup B$ with no monochromatic triangle (both R and B are triangle-free)

- Suppose there exists a colouring $E(G) = R \cup B$ with no monochromatic triangle (both R and B are triangle-free)
- Container theorem there exist small subgraphs $S_R, S_B \subseteq E(K_n)$ such that

$$S_R \subseteq R \subseteq f(S_R)$$

 $S_B \subseteq B \subseteq f(S_B)$

- Suppose there exists a colouring $E(G) = R \cup B$ with no monochromatic triangle (both R and B are triangle-free)
- Container theorem there exist small subgraphs $S_R, S_B \subseteq E(K_n)$ such that

$$S_R \subseteq R \subseteq f(S_R)$$

 $S_B \subseteq B \subseteq f(S_B)$

- Suppose there exists a colouring $E(G) = R \cup B$ with no monochromatic triangle (both R and B are triangle-free)
- Container theorem there exist small subgraphs $S_R, S_B \subseteq E(K_n)$ such that

$$S_R \subseteq R \subseteq f(S_R)$$

 $S_B \subseteq B \subseteq f(S_B)$

- Suppose there exists a colouring $E(G) = R \cup B$ with no monochromatic triangle (both R and B are triangle-free)
- Container theorem there exist small subgraphs $S_R, S_B \subseteq E(K_n)$ such that

$$S_R \subseteq R \subseteq f(S_R)$$

 $S_B \subseteq B \subseteq f(S_B)$

• Suppose there exists a colouring $E(G) = R \cup B$ with no monochromatic triangle (both R and B are triangle-free)

• Container theorem – there exist small subgraphs $S_R, S_B \subseteq E(K_n)$ such that

$$S_R \subseteq R \subseteq f(S_R)$$

 $S_B \subseteq B \subseteq f(S_B)$

• Suppose there exists a colouring $E(G) = R \cup B$ with no monochromatic triangle (both R and B are triangle-free)

• Container theorem – there exist small subgraphs $S_R, S_B \subseteq E(K_n)$ such that

$$S_R \subseteq R \subseteq f(S_R)$$

 $S_B \subseteq B \subseteq f(S_B)$

Recall: $e(S_R) < K n^{3/2}$, $f(S_R)$ contains at most δn^3 triangles

• $L = K_n \setminus (f(S_R) \cup f(S_B))$

- Suppose there exists a colouring $E(G) = R \cup B$ with no monochromatic triangle (both R and B are triangle-free)
- Container theorem there exist small subgraphs $S_R, S_B \subseteq E(K_n)$ such that

$$S_R \subseteq R \subseteq f(S_R)$$

 $S_B \subseteq B \subseteq f(S_B)$

Recall: $e(S_R) < K n^{3/2}$, $f(S_R)$ contains at most δn^3 triangles

• $L = K_n \setminus (f(S_R) \cup f(S_B))$

• Suppose there exists a colouring $E(G) = R \cup B$ with no monochromatic triangle (both R and B are triangle-free)

• Container theorem – there exist small subgraphs $S_R, S_B \subseteq E(K_n)$ such that

$$S_R \subseteq R \subseteq f(S_R)$$

 $S_B \subseteq B \subseteq f(S_B)$

- $L = K_n \setminus (f(S_R) \cup f(S_B))$
- Crucial observations:

$$L \cap G = \emptyset, \quad e(L) \ge \alpha n^2$$

Threshold for $G(n,p) \to H$

Rödl-Ruciński ('93-'95)

For every graph H (which contains a cycle) there exist constants c,C>0 such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \le cn^{-\beta(H)} \\ 1, & \text{if } p \ge Cn^{-\beta(H)} \end{cases}$$

Proof (1-statement):

Multiple exposure

Proof (1-statement):

Multiple exposure

Original proof of Rödl-Ruciński

Proof (1-statement):

Multiple exposure

- Original proof of Rödl-Ruciński
- Basic idea:
 - $G(n,p) = G(n,p_1) \cup G(n,p_2)$ where $p1 = \alpha p_2$
 - Show that any colouring of $G(n, p_1)$ either contains a mono. H or heaps of well-distributed mono. H-e

Proof (1-statement):

Multiple exposure

- Original proof of Rödl-Ruciński
- Basic idea:
 - $G(n,p) = G(n,p_1) \cup G(n,p_2)$ where $p1 = \alpha p_2$
 - Show that any colouring of $G(n, p_1)$ either contains a mono. H or heaps of well-distributed mono. H-e
 - There are $2^{n^2p_1}$ colourings
 - Show that with probability $e^{-\Omega(n^2p_2)}$ any extension to a colouring to $G(n,p_2)$ gives a mono. H

- Multiple exposure
- Sparse Regularity Lemma +
 KŁR

Proof (1-statement):

- Multiple exposure
- Sparse Regularity Lemma +
 KŁR

Folklore – dates back to Chvátal-Rödl-Szemerédi-Trotter ('83)

- Multiple exposure
- Sparse Regularity Lemma +
 KŁR
 - Folklore dates back to Chvátal-Rödl-Szemerédi-Trotter ('83)
 - KŁR conjecture (Kohayakawa, Łuczak, Rödl) posed as a way to tackle Turan's theorem for random graphs

- Multiple exposure
- Sparse Regularity Lemma +
 KŁR
 - Folklore dates back to Chvátal-Rödl-Szemerédi-Trotter ('83)
 - KŁR conjecture (Kohayakawa, Łuczak, Rödl) posed as a way to tackle Turan's theorem for random graphs
 - Solved using different techniques by Conlon–Gowers and Schacht (2016, Annals of Mathematics)

- Multiple exposure
- Sparse Regularity Lemma +
 KŁR
 - Folklore dates back to Chvátal-Rödl-Szemerédi-Trotter ('83)
 - KŁR conjecture (Kohayakawa, Łuczak, Rödl) posed as a way to tackle Turan's theorem for random graphs
 - Solved using different techniques by Conlon–Gowers and Schacht (2016, Annals of Mathematics)
 - Many partial results until finally settled
 - Balogh-Morris-Samotij and Saxton-Thomason (2015, containers)
 - Conlon, Gowers, Samotij, Schacht
 (2014, weaker in one sense/stronger in the other)

Proof (1-statement):

- Multiple exposure
- Sparse Regularity Lemma + KŁR

Generalisations:

Hypergraphs

Hypergraphs

Friedgut-Rödl-Schacht ('10) and Conlon-Gowers ('16)

For every k-hypergraph H there exists C>0 such that if $p\geq Cn^{-\beta(H)}$ then

$$\lim_{n \to \infty} \Pr[G^{(k)}(n, p) \to H] = 1$$

 $\beta(H)$ is chosen such that

- $p \le cn^{-\beta(H)}$ (for some small constant c > 0) \to most of the hyperedges do not belong to a copy of H
- $p \ge C n^{-\beta(H)}$ \to each hyperedge belongs to many copies of H

Hypergraphs

Friedgut-Rödl-Schacht ('10) and Conlon-Gowers ('16)

For every k-hypergraph H there exists C>0 such that if $p>Cn^{-\beta(H)}$ then

$$\lim_{n \to \infty} \Pr[G^{(k)}(n, p) \to H] = 1$$

Corresponding statement for $p < cn^{-\beta(H)}$

Partial results (hypergraph cliques, etc.)
 N.-Person-Steger-Škorić ('16+), PhD thesis of Thomas

Hypergraphs

Friedgut-Rödl-Schacht ('10) and Conlon-Gowers ('16)

For every k-hypergraph H there exists C>0 such that if $p>Cn^{-\beta(H)}$ then

$$\lim_{n \to \infty} \Pr[G^{(k)}(n, p) \to H] = 1$$

Corresponding statement for $p < cn^{-\beta(H)}$

- Partial results (hypergraph cliques, etc.)
 N.-Person-Steger-Škorić ('16+), PhD thesis of Thomas
- Connection to asymmetric Ramsey properties
 N.-Person-Steger-Škorić ('16+)

Proof (1-statement):

- Multiple exposure
- Sparse Regularity Lemma + KŁR

- Hypergraphs
- Asymmetric Ramsey properties

Proof (1-statement):

Generalisations:

Multiple exposure

- Hypergraphs
- Sparse Regularity Lemma + KŁR
- Asymmetric Ramsey properties
- Instead of avoiding H in both colours, avoid H_1 in red and H_2 in blue

Proof (1-statement):

- Multiple exposure
- Sparse Regularity Lemma + KŁR

- Hypergraphs
- Asymmetric Ramsey properties
- Instead of avoiding H in both colours, avoid H_1 in red and H_2 in blue
- If H_2 is sparser than H_1 , then the threshold is smaller than for $G(n,p) o H_1$

Proof (1-statement):

- Multiple exposure
- Sparse Regularity Lemma +
 KŁR

- Hypergraphs
- Asymmetric Ramsey properties
- Instead of avoiding H in both colours, avoid H_1 in red and H_2 in blue
- If H_2 is sparser than H_1 , then the threshold is smaller than for $G(n,p) o H_1$
- Kohayakawa-Kreuter ('96) cycles
- Marciniszyn-Skokan-Spöhel-Steger ('08) cliques

Proof (1-statement):

- Multiple exposure
- Sparse Regularity Lemma + KŁR

- Hypergraphs
- Asymmetric Ramsey properties
- Instead of avoiding H in both colours, avoid H_1 in red and H_2 in blue
- If H_2 is sparser than H_1 , then the threshold is smaller than for $G(n,p) o H_1$
- Kohayakawa-Kreuter ('96) cycles
- Marciniszyn-Skokan-Spöhel-Steger ('08) cliques
- 1-statement
 - Sparse Regularity Lemma + KŁR
 - Multiple exposure: Kohayakawa-Schacht-Spöhel ('14)
 - Containers: N.-Person-Steger-Škorić ('16+)
 (gives the hypergraph version)

Proof (1-statement):

- Multiple exposure
- Sparse Regularity Lemma + KŁR

- Hypergraphs
- Asymmetric Ramsey properties
- Sharp threshold

Rödl-Ruciński

For every graph H (which contains a cycle) there exist constants c,C>0 such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \le cn^{-\beta(H)} \\ 1, & \text{if } p \ge Cn^{-\beta(H)} \end{cases}$$

How close are c and C?

Rödl-Ruciński

For every graph H (which contains a cycle) there exist constants c,C>0 such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to H] = \begin{cases} 0, & \text{if } p \le cn^{-\beta(H)} \\ 1, & \text{if } p \ge Cn^{-\beta(H)} \end{cases}$$

How close are c and C?

Friedgut-Rödl-Schacht-Tetali ('04)

There exist constants $c_0, c_1 > 0$ and a function c(n) with $c_0 < c(n) < c_1$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = \begin{cases} 0, & \text{if } p \le (1 - \varepsilon)c(n)n^{-1/2} \\ 1, & \text{if } p \ge (1 + \varepsilon)c(n)n^{-1/2} \end{cases}$$

Friedgut-Rödl-Schacht-Tetali ('04)

There exist constants $c_0, c_1 > 0$ and a function c(n) with $c_0 < c(n) < c_1$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = \begin{cases} 0, & \text{if } p \le (1 - \varepsilon)c(n)n^{-1/2} \\ 1, & \text{if } p \ge (1 + \varepsilon)c(n)n^{-1/2} \end{cases}$$

• Friedgut-Hán-Person-Schacht ('16) – bipartite graphs

Friedgut-Rödl-Schacht-Tetali ('04)

There exist constants $c_0, c_1 > 0$ and a function c(n) with $c_0 < c(n) < c_1$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = \begin{cases} 0, & \text{if } p \le (1 - \varepsilon)c(n)n^{-1/2} \\ 1, & \text{if } p \ge (1 + \varepsilon)c(n)n^{-1/2} \end{cases}$$

- Friedgut-Hán-Person-Schacht ('16) bipartite graphs
- Schacht-Schulenburg ('16+) bipartite graphs + an edge

Friedgut-Rödl-Schacht-Tetali ('04)

There exist constants $c_0, c_1 > 0$ and a function c(n) with $c_0 < c(n) < c_1$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = \begin{cases} 0, & \text{if } p \le (1 - \varepsilon)c(n)n^{-1/2} \\ 1, & \text{if } p \ge (1 + \varepsilon)c(n)n^{-1/2} \end{cases}$$

- Friedgut-Hán-Person-Schacht ('16) bipartite graphs
- Schacht-Schulenburg ('16+) bipartite graphs + an edge

Open problems:

• Replace c(n) by a constant (difficult)

Friedgut-Rödl-Schacht-Tetali ('04)

There exist constants $c_0, c_1 > 0$ and a function c(n) with $c_0 < c(n) < c_1$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = \begin{cases} 0, & \text{if } p \le (1 - \varepsilon)c(n)n^{-1/2} \\ 1, & \text{if } p \ge (1 + \varepsilon)c(n)n^{-1/2} \end{cases}$$

- Friedgut-Hán-Person-Schacht ('16) bipartite graphs
- Schacht-Schulenburg ('16+) bipartite graphs + an edge

Open problems:

- Replace c(n) by a constant (difficult)
- Extend to multiple colours

Friedgut-Rödl-Schacht-Tetali ('04)

There exist constants $c_0, c_1 > 0$ and a function c(n) with $c_0 < c(n) < c_1$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \to K_3] = \begin{cases} 0, & \text{if } p \le (1 - \varepsilon)c(n)n^{-1/2} \\ 1, & \text{if } p \ge (1 + \varepsilon)c(n)n^{-1/2} \end{cases}$$

- Friedgut-Hán-Person-Schacht ('16) bipartite graphs
- Schacht-Schulenburg ('16+) bipartite graphs + an edge

Open problems:

- Replace c(n) by a constant (difficult)
- Extend to multiple colours
- Extend to cliques

Given $r, k \in \mathbb{N}$, what is the smallest number f(r, k) for which there exists a graph G on f(r, k) vertices such that

$$G \to (K_r)_k$$

and $K_{r+1} \not\subseteq G$?

Given $r, k \in \mathbb{N}$, what is the smallest number f(r, k) for which there exists a graph G on f(r, k) vertices such that

$$G \to (K_r)_k$$

and $K_{r+1} \not\subseteq G$?

Existence:

• Folkman ('70) – f(r, 2) (answers a question of Erdős-Hajnal)

Given $r, k \in \mathbb{N}$, what is the smallest number f(r, k) for which there exists a graph G on f(r, k) vertices such that

$$G \to (K_r)_k$$

and $K_{r+1} \not\subseteq G$?

Existence:

- Folkman ('70) f(r, 2) (answers a question of Erdős-Hajnal)
- Nešetřil-Rödl ('76) arbitrary k

Given $r, k \in \mathbb{N}$, what is the smallest number f(r, k) for which there exists a graph G on f(r, k) vertices such that

$$G \to (K_r)_k$$

and $K_{r+1} \not\subseteq G$?

Existence:

- Folkman ('70) f(r, 2) (answers a question of Erdős-Hajnal)
- Nešetřil-Rödl ('76) arbitrary k

Quantitative bounds:

• Rödl-Ruciński-Schacht ('16+) – $f(k) \le 2^{k^{ck^2}}$ (mult. exp.)

Given $r, k \in \mathbb{N}$, what is the smallest number f(r, k) for which there exists a graph G on f(r, k) vertices such that

$$G \to (K_r)_k$$

and $K_{r+1} \not\subseteq G$?

Existence:

- Folkman ('70) f(r, 2) (answers a question of Erdős-Hajnal)
- Nešetřil-Rödl ('76) arbitrary k

Quantitative bounds:

- Rödl-Ruciński-Schacht ('16+) $f(k) \le 2^{k^{ck^2}}$ (mult. exp.)
- Similar results by Conlon-Gowers ('16+) multicolour case

Given $r, k \in \mathbb{N}$, what is the smallest number f(r, k) for which there exists a graph G on f(r, k) vertices such that

$$G \to (K_r)_k$$

and $K_{r+1} \not\subseteq G$?

Existence:

- Folkman ('70) f(r, 2) (answers a question of Erdős-Hajnal)
- Nešetřil-Rödl ('76) arbitrary k

Quantitative bounds:

- Rödl-Ruciński-Schacht ('16+) $f(k) \le 2^{k^{ck^2}}$ (mult. exp.)
- ullet Similar results by Conlon-Gowers ('16+) multicolour case
- Rödl-Ruciński-Schacht ('16+) $f(k,r) \le 2^{O(k^4 \log k + k^3 r \log r)}$ (similar to the presented proof)

Thank you!