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Introduction

A graph G is Ramsey for H

G —- H

if every red/blue colouring of the
edges of G contains a
monochromatic copy of H

Ramsey (1930)

For every graph H there exists (sufficiently large) n € N such that

K, - H
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Given a graph H and p = p(n) € [0, 1|, determine

Pr|G(n,p) = H|

e "'Being Ramsey for H" is a monotone property
(preserved under edge addition)

o Bollobas-Thomason ('87): every non-trivial monotone
property P has a threshold function p*(P)

f

0, ifp<gKp*
lim Pr(G(n,p) eP| =4 .~ 7
n—oo \17 |f p >> p*

Goal: find a threshold pg for the property “being Ramsey for H”
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lim Pr|G(n,p) - H| =

n—r oo

0, ifp<Lpy
1, ifp>py

Let H = K3

® D — n_G/(g)—i_g

lim Pr|G(n,p) - K3 =1

n— o0

Explanation: GG(n,p) contains Kg with high probability

o p= n—1/2—¢ (n—z/g < n_1/2)

lim Pr|G(n,p) = K3] =0

n— 00



Threshold for G(n,p) — K3

Frankl-Rodl ('86), tuczak-Rucinski-Voigt ('92")

There exist constants ¢, C' > 0 such that

if p<en~1/2
lim Pr|G(n,p) — K3| = {O’ P =

n—oo

1, ifp>Cn1/2
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For every graph H (which contains a cycle) there exist constants
¢, C' > 0 such that

lim Pr|G(n,p) - H| =
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Intuition: B(H) is chosen such that
® p S Cn_B(H)

— most of the edges do not belong to a copy of H

D Z Cn_B(H)
— each edge belongs to many copies of H

N.-Steger (2015) — a ‘short’ proof
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or

‘A short introduction to hypergraph containers’



Hypergraph containers

Balogh—Morris—Samotij and Saxton-Thomason (2015)

Vo > 0 dK > 0: for every n € N there exists a collection C of
graphs on n vertices and a function f: 2E(n) 5 C such that

(a) each C € C contains at most dn° triangles,

(b) for every Ks3-free graph H there exists S C F(K,,) such that

e(S) < Kn*? and S CHC f(S)

o C contains all triangle-free graphs (containers)

e container of a graph H is generated by its small subgraph
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G(n,p) = Ks for p > Cn~1/2

Let G C K, be a graph on n vertices

e Suppose there exists a colouring
E(G) = RU B with no
monochromatic triangle
(both IR and B are triangle-free)

e Container theorem — there exist
small subgraphs Sr,Sp C E(K,)
such that

Sk C R C f(SR) o L=Kn\(f(Sr)U [(SB))

Sp € B C f(SB) e Crucial observations:

Recall: e(Sg) < Kn®/?, f(Sg) LNG =0, eL)>an?
contains at most dn? triangles
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Proof (1-statement):

e Multiple exposure

e Original proof of Rodl-Rucinski

e Basic idea:
¢ G(nap) — G(napl) U G(nap2) where p]- = P2

e Show that any colouring of G(n, py) either contains a mono.
H or heaps of well-distributed mono. H — e

2 .
e There are 2™ P1 colourings

e Show that with probability e~ 2(n"p2) any extension to a
colouring to G(n,p2) gives a mono. H
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Proof (1-statement):

e Multiple exposure

e Sparse Regularity Lemma +
KLR

o Folklore — dates back to Chvatal-Rodl-Szemerédi-Trotter ('83)

e KLR conJecture (Kohayakawa, tuczak, Rodl) posed as a way
to tackle Turan's theorem for random graphs

e Solved using different techniques by Conlon—Gowers and
Schacht (2016, Annals of Mathematics)

e Many partial results until finally settled

e Balogh-Morris-Samotij and Saxton-Thomason
(2015, containers)

e Conlon, Gowers, Samotij, Schacht
(2014, weaker in one sense/stronger in the other)
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e Sparse Regularity Lemma +
KLR
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For every k-hypergraph H there exists C' > 0 such that if
p > Cn~PH) then

lim Pr[G® (n,p) — H] =1

n—oo

Corresponding statement for p < cn~P(H)

o Partial results (hypergraph cliques, etc.)
N.-Person-Steger-Skori¢ ('16+), PhD thesis of Thomas

e Connection to asymmetric Ramsey properties
N.-Person-Steger-Skori¢ ('16+)
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Other approaches and generalisations

Proof (1-statement): Generalisations:
e Multiple exposure o Hypergraphs
e Sparse Regularity Lemma + e Asymmetric Ramsey properties
KLR

e |nstead of avoiding H in both colours, avoid H; in red and
Hs5 in blue

e |f Hy is sparser than Hy, then the threshold is smaller than for
G(nap) — Hl

o Kohayakawa-Kreuter ('96) — cycles
e Marciniszyn-Skokan-Spohel-Steger ('08) — cliques

e |-statement

e Sparse Regularity Lemma + KLR
e Multiple exposure: Kohayakawa-Schacht-Spohel ('14)
o Containers: N.-Person-Steger-Skori¢ ('16+)

(gives the hypergraph version)
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e Sparse Regularity Lemma + e Asymmetric Ramsey properties
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Friedgut-RodI-Schacht-Tetali ('04)

There exist constants cg,c; > 0 and a function ¢(n) with
co < ¢(n) < c1 such that

lim Pr|G(n,p) — K3| =

n—oo

0, ifp<(1—e)e(n)n=1/?
L, ifp> (L+e)e(n)n /7

o Friedgut-Han-Person-Schacht ('16) — bipartite graphs

e Schacht-Schulenburg ('16+4) — bipartite graphs + an edge
Open problems:

o Replace ¢(n) by a constant (difficult)

o Extend to multiple colours

e Extend to cliques
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Given 7, k € N, what is the smallest number f(r, k) for which there
exists a graph G on f(r, k) vertices such that

G — (Kr)k

and Kr,a_|_1 Q G7?

Existence:

o Folkman ('70) — f(r,2) (answers a question of Erdés-Hajnal)
o Nesetfil-Rodl ('76) — arbitrary k

Quantitative bounds:
2
o RédI-Ruciiski-Schacht ('16+) — f(k) < 28 (mult. exp.)
o Similar results by Conlon-Gowers ('16+) — multicolour case

o R&dl-Ruciniski-Schacht ('164) — f(k,r) < 20(k" logh+k7rlogr)
(similar to the presented proof)



Thank you!



