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Not necessarily induced!



Random graphs

Binomial random graph G(n, p)
m graph on n vertices

m each edge present with probability p (independently)



Random graphs

Binomial random graph G(n, p)
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m each edge present with probability p (independently)

Theorem (Bollobds, Thomason '87) — threshold functions

For every monotone graph property P (connected, Hamiltonian,
etc.) there exists pg = po(n) such that

lim Pr[G(n,p) € P] =

n—oo

1, p> po(n)
0, p < po(n).
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Embeddings in random graphs

Binomial random graph G(n, p)
m graph on n vertices

m each edge present with probability p (independently)

Given a sequence of graphs (Hy)n— o0, for which p = p(n) we have

lim Pr|H, C G(n,p)] =17

n—oo

In this talk

we are interested in the case when H,, satisfies the following:
(i) v(Hyp) < (1 —¢)n ("almost-spanning”™)
(i) A(H,) < A ("bounded-degree")
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Given a sequence of graphs (Hj,)n—oo, for which p = p(n) we have

lim Pr|H, C G(n,p)] =17

n—r 00

Theorem (Alon, Fiiredi '91) — constructive proof

If H,, has maximum degree at most A, then

(logn)l/A
p >
n

suffices. (Even for & = 0)

Better bounds obtained by Riordan using the second-moment
method; non-constructive!
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Given a sequence of families of graphs (H,,)n 00,
for which p = p(n) we have

lim Pr|for every graph H,, € H,, : H, C G(n,p)| =17
n—o0  —————————

G(n,p) is H,-universal

For which p does G(n, p) simultaneously contain every H,, € H,,7?

In this talk

H,(e,A) = { all almost-spanning bounded-degree graphs }
={H, : v(H,) <(1—¢)nand A(H,) < A}
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Universality

Given a sequence of families of graphs (H,,)n 00,
for which p = p(n) we have

lim Pr[for every graph H,, € H,, : H, C G(n,p)| =17

n—oo

G(n,p) is H,-universal

lim,, 00 Pr|H, C G(n,p)] =1 for a sequence of graphs H, € H,

N

limy, 00 |G (1, p) is Hy-universal| =1

useless if H is large

Pr[G(n,p) is not H,-universal] < Z Pr[H, ¢ G(n,p)]
HeHy,



Universality in random graphs

Alon, Capalbo, Kohayakawa, Rodl, Rucinski and Szemerédi "00:

For any constant A € N and ¢ > 0, if

(10gn>1/A
p >

n

then G(n,p) is a.a.s. H, (e, A)-universal.

(a.a.s = asymptotically almost surely, i.e. with probability tending
to 1 as n — o0)



Universality in random graphs

Alon, Capalbo, Kohayakawa, Rodl, Rucinski and Szemerédi "00:

For any constant A € N and ¢ > 0, if

(10gn>1/A
p >

n

then G(n,p) is a.a.s. H, (e, A)-universal.

(a.a.s = asymptotically almost surely, i.e. with probability tending
to 1 as n — o0)

Remark: improved to € = 0 (spanning) by Dellamonica,
Kohayakawa, Rodl and Rucinski ('12) and Kim and Lee ('15)
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1/A

A story about (logn/n)

1/A
If p> (logn) then G(n,p) a.a.s. has the property that every

n

set of kK < A vertices has a common neighborhood of size ~ np”.

Importantly, it i1s non-empty!!

Strategy: embed vertices of H one-by-one by choosing (somehow)
a free element from the candidate set

All previous results in some way implement this approach.



Our result

Theorem [ACKRRSz '00]
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Our result

Theorem [Conlon, Ferber, N., Skorié '16]

For any constant A € N (A > 3) and € > 0, if

1

log® n\ 21
p>>< 3 )

n

then G(n,p) is a.a.s. H, (e, A)-universal.

Theorem [Conlon, Ferber, N., Skori¢ '16]

1

log®n\ =172
p>>< )

n

then G(n,p) is a.a.s H, (e, 2)-universal.
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Embedding vertex-by-vertex — revisited

1/A
If p> (logn) then G(n,p) a.a.s. has the property that every
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set of kK < A vertices has a common neighborhood of size ~ np”.

Importantly, it is non-empty!!

Strategy: embed vertices of H one-by-one by choosing (somehow)
a free element from the candidate set
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1/A
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Assume: we can order the vertices of H such that each vertex has
< A — 1 left neighbors (i.e. it is (A — 1)-degenerate)




Embedding vertex-by-vertex — revisited

p > (tn) O

then G(n,p) a.a.s. has the property that

n

every set of kK < A—1 vertices has a common neighborhood ~ np”.

Importantly, it is non-empty!!

Assume: we can order the vertices of H such that each vertex has
< A — 1 left neighbors (i.e. it is (A — 1)-degenerate)
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- ()

n

then G(n,p) is a.a.s universal for the family D,, C H, (e, A) of all
d-degenerate graphs.

This is optimal up to the logarithmic factor:

m consider d-th power of a path on (1 — e)n vertices



Universality for d-degenerate graphs

This intuition can be turned into a proof!

For any constants d, A € N and € > 0, if

log? n t/d
- ()

n

then G(n,p) is a.a.s universal for the family D, (d) C H, (e, A) of
all d-degenerate graphs.

The case d = 1 (trees) was considered by Alon, Krivelevich and
Sudakov ('07) and independently by Balogh, Csaba, Pei and
Samotij ('10)
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Preparation: split G ~ G(n,p) into two parts such that
(a) V1| = (1 —¢/2)n and |Va| =en/2

(b) G[V1]| is D,,(A — 1)-universal

(c) to be discussed

It H, € Hyp(e,A) is
(A — 1)-degenerate then H,, C [V1].

Otherwise:
(i) choose a subset S C V(H,,) such that
(a) H, — S is (A — 1)-degenerate
(b) S has a "nice” structure
(ii) embed H, — S into G|[V1]
(iii) somehow embed the vertices from S into V5
(not vertex-by-vertex!!)
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Strategy (general)

(i) From each connected component which is not
(A — 1)-degenerate pick an induced cycle of size at most

2logn and put it into S
(ii) embed H, — S into G|V1]

(i) use Janson's inequality and Haxell's hypergraph matching
criterion to embed cycles into V5
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Conclusion

Theorem [Conlon, Ferber, N., Skorié '16]

For any constant A € N (A > 3) and € > 0, if

1

log3 n\ -1
p>>< 3 )

n

then G(n,p) is a.a.s. H, (e, A)-universal.

Open questions:

m improve the exponent for A > 4
m determine the threshold in the degenerate case

m spanning subgraphs (¢ = 0)
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Applications

1. Existence of ‘sparse’ universal graphs

m G(n,p) has roughly n?p edges
m G(n,p) is a.a.s Hy(e, A)-universal if p > (log3 n/n)l/(A—l)

= there exists an H, (e, A)-universal graph G with

e(G) = O(n?> 1/ (A=Dpolylog n)

Theorem (Alon, Capalbo '07)

There exists an H,, (e, A)-universal graph G with

e(G) = O(n*=2/3)
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A graph G is Ramsey for a graph H,
G —H

if every red/blue colouring of the edges of G contains a
monochromatic copy of H
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For every graph H there exists N € N such that Ky — H.
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Applications

2. Size Ramsey numbers of bounded-degree graphs

r(H) =min{N e N : Ky — H}
#(H) = min{m € N : JG such that ¢(G) =m and G — H}

Theorem (Kohayakawa, Rodl, Schacht and Szemerédi '11)

For every A € N there exists C'a such that if H is a graph with n
vertices and maximum degree A then

P(H) < Can®~ Y2 10g¥? n.

Corollary: #(H) = O(n?)
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Applications

2. Size Ramsey numbers of bounded-degree graphs

For every graph H with maximum degree A we have

P(H) < Can? Y2 1og!/A .

Rodl, Szemerédi '00: there exists a 3-regular graph H with n

vertices and
#(H) > nlogt/%n

Theorem (Conlon, N. '16+)

If H is additionally triangle-free then

’f(H) < CAnz_l/(A_l/Q) logl/(A—l/Q) n.
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2. Size Ramsey numbers of bounded-degree graphs

Tn(A) = family of all triangle-free graphs with n vertices and
maximum degree at most A

Theorem (Conlon, N. '16+4) — Ramsey-universality

log n, A—11/2
p >
n

then G ~ G(Cn,p) a.a.s has the property that for every red/blue
colouring of E(G) = RU B either R or B is T,(A)-universal.

Proof implements previously described strategy in a more difficult
setting of sparse regularity.



Thank you!



