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(ii) �(Hn)  � (”bounded-degree”)
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Universality in random graphs

Alon, Capalbo, Kohayakawa, Rödl, Ruciński and Szemerédi ’00:

Theorem

For any constant � 2 N and " > 0, if
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Remark: improved to " = 0 (spanning) by Dellamonica,
Kohayakawa, Rödl and Ruciński (’12) and Kim and Lee (’15)
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Theorem

For any constant � 2 N and " > 0, if

p �
✓
log n

n

◆
1/�

then G(n, p) is a.a.s. Hn(",�)-universal.

(a.a.s = asymptotically almost surely, i.e. with probability tending
to 1 as n ! 1)

Remark: improved to " = 0 (spanning) by Dellamonica,
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Strategy: embed vertices of H one-by-one by choosing (somehow)
a free element from the candidate set

All previous results in some way implement this approach.
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then G(n, p) is a.a.s universal for the family Dn(d) ✓ Hn(",�) of
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The case d = 1 (trees) was considered by Alon, Krivelevich and
Sudakov (’07) and independently by Balogh, Csaba, Pei and
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Preparation: split G ⇠ G(n, p) into two parts such that
(a) |V
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2
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(b) G[V

1

] is Dn(�� 1)-universal
(c) to be discussed

If Hn 2 Hn(",�) is
(�� 1)-degenerate then Hn ⇢ [V

1

].

Otherwise:
(i) choose a subset S ✓ V (Hn) such that

(a) Hn � S is (�� 1)-degenerate
(b) S has a ”nice” structure

(ii) embed Hn � S into G[V
1

]

(iii) somehow embed the vertices from S into V
2

(not vertex-by-vertex!!)
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(i) From each connected component which is not
(�� 1)-degenerate pick an induced cycle of size at most
2 log n and put it into S

(ii) embed Hn � S into G[V
1

]

(iii) use Janson’s inequality and Haxell’s hypergraph matching
criterion to embed cycles into V
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For any constant � 2 N (� � 3) and " > 0, if

p �
✓
log

3 n

n

◆ 1
��1

then G(n, p) is a.a.s. Hn(",�)-universal.

Open questions:

improve the exponent for � � 4

determine the threshold in the degenerate case

spanning subgraphs (" = 0)



Conclusion

Theorem [Conlon, Ferber, N., Škorić ’16]

For any constant � 2 N (� � 3) and " > 0, if

p �
✓
log

3 n

n

◆ 1
��1

then G(n, p) is a.a.s. Hn(",�)-universal.

Open questions:

improve the exponent for � � 4

determine the threshold in the degenerate case

spanning subgraphs (" = 0)



Applications



Applications

1. Existence of ‘sparse’ universal graphs

G(n, p) has roughly n2p edges

G(n, p) is a.a.s Hn(",�)-universal if p � (log

3 n/n)1/(��1)

) there exists an Hn(",�)-universal graph G with

e(G) = O(n2�1/(��1)

polylog n)

Theorem (Alon, Capalbo ’07)

There exists an Hn(",�)-universal graph G with

e(G) = O(n2�2/�
)
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2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

G ! H

if every red/blue colouring of the edges of G contains a
monochromatic copy of H

Theorem (Ramsey ’30)

For every graph H there exists N 2 N such that KN ! H.

r(H) = min{N 2 N : KN ! H}
r̂(H) = min{m 2 N : 9G such that e(G) = m and G ! H}



Applications

2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

G ! H

if every red/blue colouring of the edges of G contains a
monochromatic copy of H

Theorem (Ramsey ’30)

For every graph H there exists N 2 N such that KN ! H.

r(H) = min{N 2 N : KN ! H}
r̂(H) = min{m 2 N : 9G such that e(G) = m and G ! H}



Applications

2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

G ! H

if every red/blue colouring of the edges of G contains a
monochromatic copy of H

Theorem (Ramsey ’30)

For every graph H there exists N 2 N such that KN ! H.

r(H) = min{N 2 N : KN ! H}
r̂(H) = min{m 2 N : 9G such that e(G) = m and G ! H}



Applications

2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

G ! H

if every red/blue colouring of the edges of G contains a
monochromatic copy of H

Theorem (Ramsey ’30)

For every graph H there exists N 2 N such that KN ! H.

r(H) = min{N 2 N : KN ! H}
r̂(H) = min{m 2 N : 9G such that e(G) = m and G ! H}



Applications

2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

G ! H

if every red/blue colouring of the edges of G contains a
monochromatic copy of H

Theorem (Ramsey ’30)

For every graph H there exists N 2 N such that KN ! H.

r(H) = min{N 2 N : KN ! H}
r̂(H) = min{m 2 N : 9G such that e(G) = m and G ! H}



Applications

2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

G ! H

if every red/blue colouring of the edges of G contains a
monochromatic copy of H

Theorem (Ramsey ’30)

For every graph H there exists N 2 N such that KN ! H.

r(H) = min{N 2 N : KN ! H}
r̂(H) = min{m 2 N : 9G such that e(G) = m and G ! H}



Applications

2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

G ! H

if every red/blue colouring of the edges of G contains a
monochromatic copy of H

Theorem (Ramsey ’30)

For every graph H there exists N 2 N such that KN ! H.

r(H) = min{N 2 N : KN ! H}
r̂(H) = min{m 2 N : 9G such that e(G) = m and G ! H}



Applications

2. Size Ramsey numbers of bounded-degree graphs

r(H) = min{N 2 N : KN ! H}
r̂(H) = min{m 2 N : 9G such that e(G) = m and G ! H}

Theorem (Chvátal, Rödl, Szemerédi and Trotter ’83)

For every � 2 N there exists C
�

such that if H is a graph with n
vertices and maximum degree � then

r(H)  C
�

· n.

Corollary: r̂(H) = O(n2

)



Applications

2. Size Ramsey numbers of bounded-degree graphs

r(H) = min{N 2 N : KN ! H}
r̂(H) = min{m 2 N : 9G such that e(G) = m and G ! H}
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If H is additionally triangle-free then
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2. Size Ramsey numbers of bounded-degree graphs

Tn(�) = family of all triangle-free graphs with n vertices and
maximum degree at most �

Theorem (Conlon, N. ’16+) – Ramsey-universality

If

p �
✓
log n

n

◆ 1
��1/2

then G ⇠ G(Cn, p) a.a.s has the property that for every red/blue
colouring of E(G) = R [B either R or B is Tn(�)-universal.

Proof implements previously described strategy in a more di�cult
setting of sparse regularity.
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