Universality properties of random graphs

Rajko Nenadov

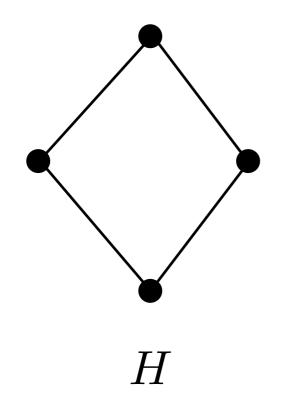
joint work with David Conlon, Asaf Ferber and Nemanja Škorić

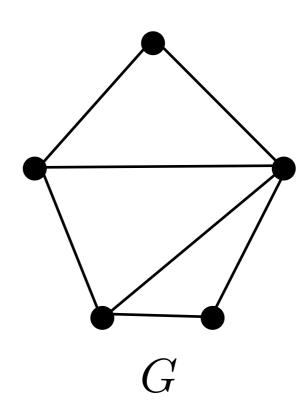
Given graphs G and H, an injective function $f:V(H)\to V(G)$ is an embedding of H into G if

$$\{v, u\} \in E(H) \Rightarrow \{f(v), f(u)\} \in E(G)$$

Given graphs G and H, an injective function $f:V(H)\to V(G)$ is an embedding of H into G if

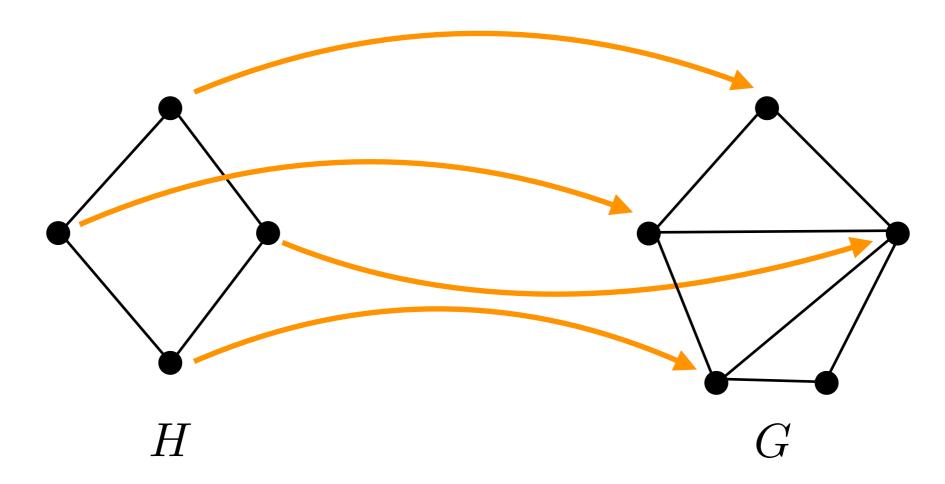
$$\{v, u\} \in E(H) \Rightarrow \{f(v), f(u)\} \in E(G)$$





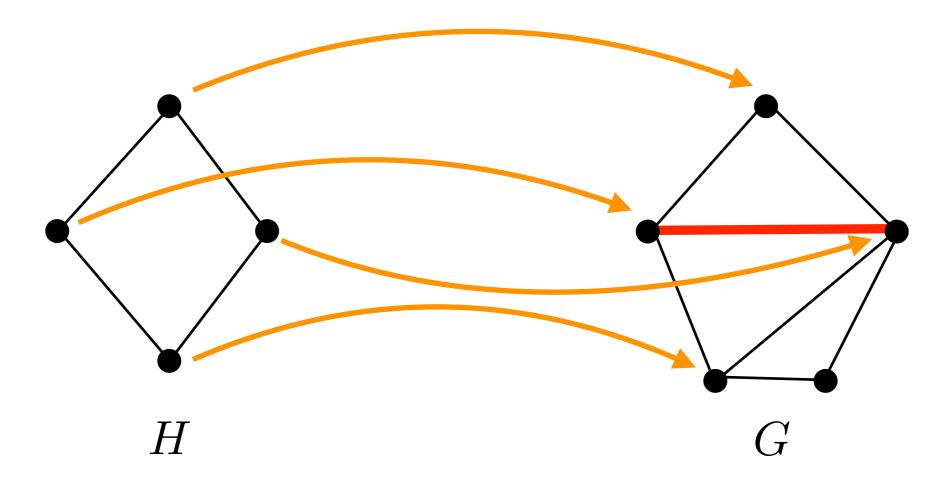
Given graphs G and H, an injective function $f:V(H)\to V(G)$ is an embedding of H into G if

$$\{v, u\} \in E(H) \Rightarrow \{f(v), f(u)\} \in E(G)$$



Given graphs G and H, an injective function $f:V(H)\to V(G)$ is an embedding of H into G if

$$\{v, u\} \in E(H) \Rightarrow \{f(v), f(u)\} \in E(G)$$



Not necessarily induced!

Random graphs

Binomial random graph G(n, p)

- lacktriangle graph on n vertices
- \blacksquare each edge present with probability p (independently)

Random graphs

Binomial random graph G(n, p)

- \blacksquare graph on n vertices
- each edge present with probability p (independently)

Theorem (Bollobás, Thomason '87) – threshold functions

For every monotone graph property \mathcal{P} (connected, Hamiltonian, etc.) there exists $p_0 = p_0(n)$ such that

$$\lim_{n \to \infty} \Pr[G(n, p) \in \mathcal{P}] = \begin{cases} 1, & p \gg p_0(n) \\ 0, & p \ll p_0(n). \end{cases}$$

Binomial random graph G(n, p)

- \blacksquare graph on n vertices
- each edge present with probability p (independently)

Given a sequence of graphs $(H_n)_{n\to\infty}$, for which p=p(n) we have

$$\lim_{n\to\infty} \Pr[H_n \subset G(n,p)] = 1?$$

Binomial random graph G(n, p)

- \blacksquare graph on n vertices
- each edge present with probability p (independently)

Given a sequence of graphs $(H_n)_{n\to\infty}$, for which p=p(n) we have

$$\lim_{n\to\infty} \Pr[H_n \subset G(n,p)] = 1?$$

In this talk

we are interested in the case when H_n satisfies the following:

- (i) $v(H_n) \leq (1 \varepsilon)n$ ("almost-spanning")
- (ii) $\Delta(H_n) \leq \Delta$ ("bounded-degree")

Given a sequence of graphs $(H_n)_{n\to\infty}$, for which p=p(n) we have

$$\lim_{n\to\infty} \Pr[H_n \subset G(n,p)] = 1?$$

Theorem (Alon, Füredi '91) – constructive proof

If H_n has maximum degree at most Δ , then

$$p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$$

suffices. (Even for $\varepsilon = 0$)

Given a sequence of graphs $(H_n)_{n\to\infty}$, for which p=p(n) we have

$$\lim_{n\to\infty} \Pr[H_n \subset G(n,p)] = 1?$$

Theorem (Alon, Füredi '91) – constructive proof

If H_n has maximum degree at most Δ , then

$$p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$$

suffices. (Even for $\varepsilon = 0$)

Better bounds obtained by Riordan using the second-moment method; non-constructive!

Given a sequence of graphs $(H_n)_{n\to\infty}$, for which p=p(n) we have

$$\lim_{n\to\infty} \Pr[H_n \subset G(n,p)] = 1?$$

Given a sequence of families of graphs $(\mathcal{H}_n)_{n\to\infty}$, for which p=p(n) we have

 $\lim_{n\to\infty}\Pr[\text{for every graph }H_n\in\mathcal{H}_n\ :\ H_n\subset G(n,p)]=1?$

Given a sequence of families of graphs $(\mathcal{H}_n)_{n\to\infty}$, for which p=p(n) we have

$$\lim_{n\to\infty}\Pr[\text{for every graph }H_n\in\mathcal{H}_n:\ H_n\subset G(n,p)]=1?$$

$$G(n,p) \text{ is }\mathcal{H}_n\text{-universal}$$

For which p does G(n,p) simultaneously contain every $H_n \in \mathcal{H}_n$?

Given a sequence of families of graphs $(\mathcal{H}_n)_{n\to\infty}$, for which p=p(n) we have

$$\lim_{n\to\infty}\Pr[\text{for every graph }H_n\in\mathcal{H}_n:H_n\subset G(n,p)]=1?$$

$$G(n,p) \text{ is }\mathcal{H}_n\text{-universal}$$

For which p does G(n,p) simultaneously contain every $H_n \in \mathcal{H}_n$?

In this talk

$$\mathcal{H}_n(\varepsilon, \Delta) = \{ \text{ all almost-spanning bounded-degree graphs } \}$$

$$= \{ H_n : v(H_n) \le (1 - \varepsilon)n \text{ and } \Delta(H_n) \le \Delta \}$$

Given a sequence of families of graphs $(\mathcal{H}_n)_{n\to\infty}$, for which p=p(n) we have

$$\lim_{n\to\infty} \Pr[\text{for every graph } H_n \in \mathcal{H}_n : H_n \subset G(n,p)] = 1?$$

$$G(n,p) \text{ is } \mathcal{H}_n\text{-universal}$$

Note

 $\lim_{n\to\infty}\Pr[H_n\subset G(n,p)]=1$ for a sequence of graphs $H_n\in\mathcal{H}_n$

$$\Longrightarrow$$

 $\lim_{n\to\infty} [G(n,p) \text{ is } \mathcal{H}_n\text{-universal}] = 1$

Given a sequence of families of graphs $(\mathcal{H}_n)_{n\to\infty}$, for which p=p(n) we have

$$\lim_{n\to\infty}\Pr[\text{for every graph }H_n\in\mathcal{H}_n:H_n\subset G(n,p)]=1?$$

$$G(n,p) \text{ is }\mathcal{H}_n\text{-universal}$$

Note

 $\lim_{n\to\infty}\Pr[H_n\subset G(n,p)]=1$ for a sequence of graphs $H_n\in\mathcal{H}_n$

$$\Longrightarrow$$

 $\lim_{n\to\infty}[G(n,p) \text{ is } \mathcal{H}_n\text{-universal}]=1$

useless if
$${\cal H}$$
 is large

$$\Pr[G(n,p) \text{ is not } \mathcal{H}_n\text{-universal}] \leq \sum_{H \in \mathcal{H}_n} \Pr[H_n \not\subset G(n,p)]$$

Universality in random graphs

Alon, Capalbo, Kohayakawa, Rödl, Ruciński and Szemerédi '00:

Theorem

For any constant $\Delta \in \mathbb{N}$ and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$$

then G(n,p) is a.a.s. $\mathcal{H}_n(\varepsilon,\Delta)$ -universal.

(a.a.s = asymptotically almost surely, i.e. with probability tending to 1 as $n \to \infty$)

Universality in random graphs

Alon, Capalbo, Kohayakawa, Rödl, Ruciński and Szemerédi '00:

Theorem

For any constant $\Delta \in \mathbb{N}$ and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$$

then G(n,p) is a.a.s. $\mathcal{H}_n(\varepsilon,\Delta)$ -universal.

(a.a.s = asymptotically almost surely, i.e. with probability tending to 1 as $n \to \infty$)

Remark: improved to $\varepsilon = 0$ (spanning) by Dellamonica, Kohayakawa, Rödl and Ruciński ('12) and Kim and Lee ('15)

A story about $\left(\frac{\log n}{n}\right)^{1/\Delta}$

Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

Importantly, it is non-empty!!

Fact

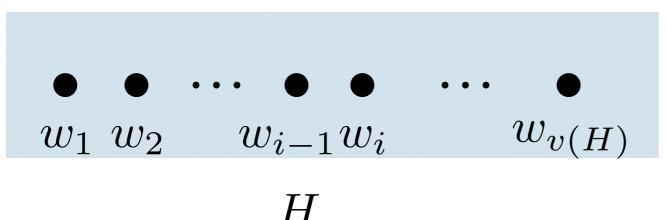
If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

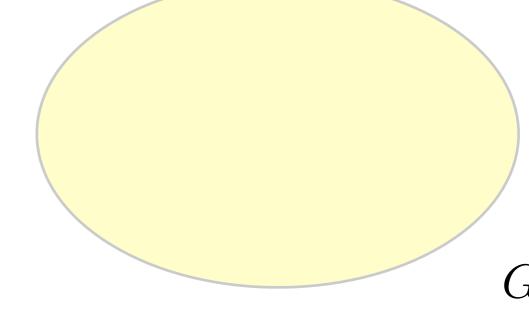
Importantly, it is non-empty!!

Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

Importantly, it is non-empty!!

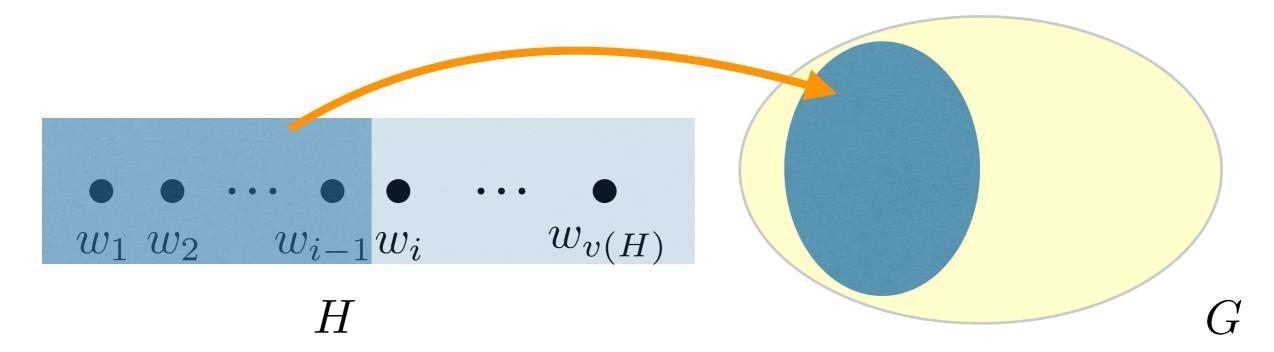




Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

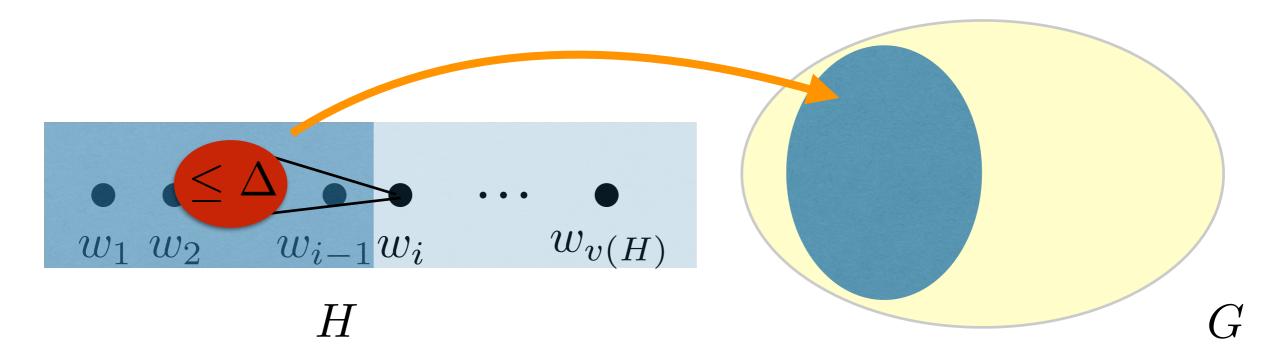
Importantly, it is non-empty!!



Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

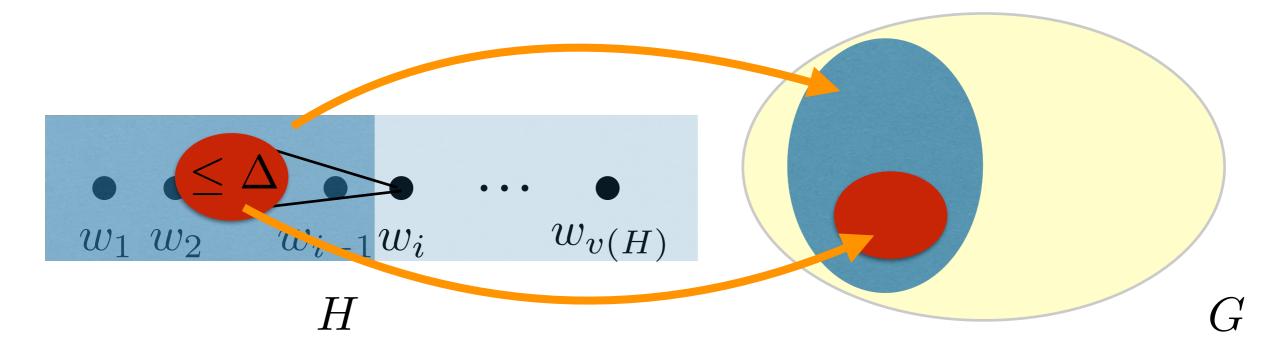
Importantly, it is non-empty!!



Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

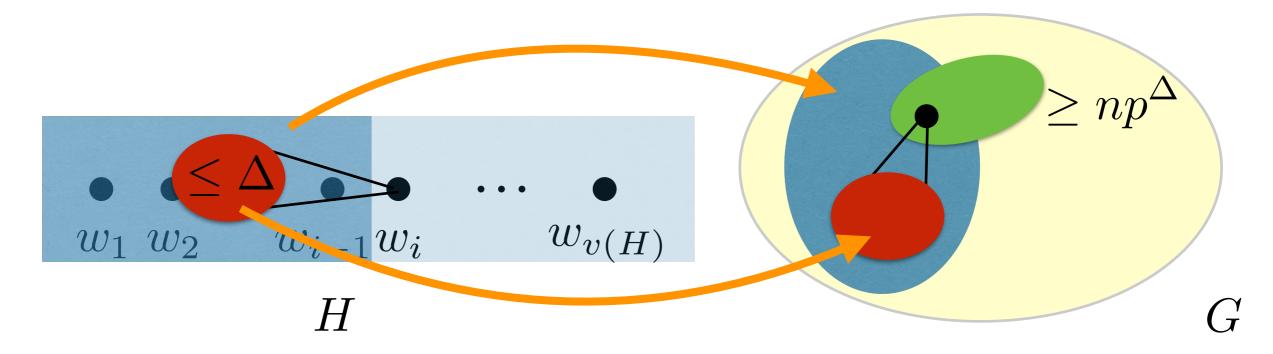
Importantly, it is non-empty!!



Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

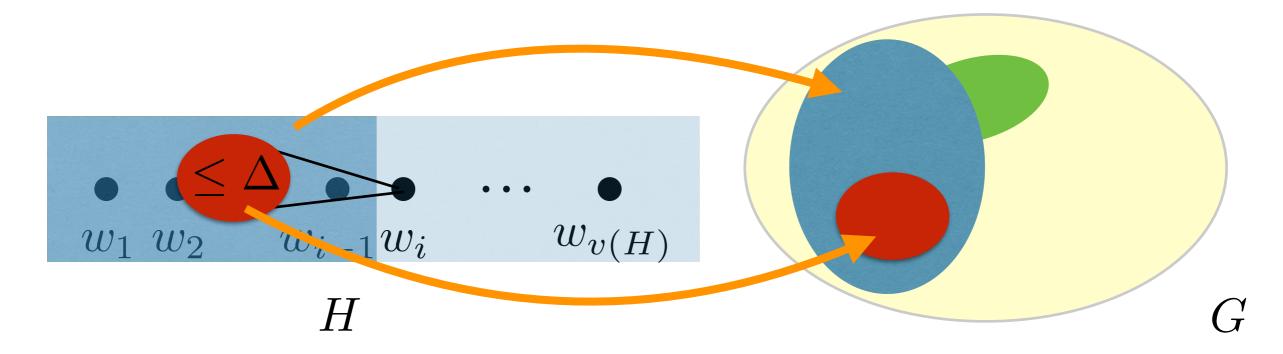
Importantly, it is non-empty!!



Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

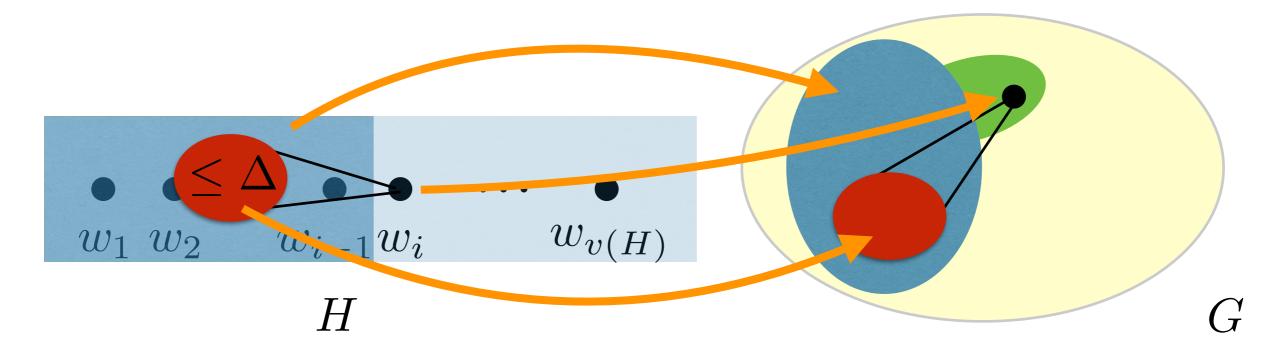
Importantly, it is non-empty!!



Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

Importantly, it is non-empty!!



Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

Importantly, it is non-empty!!

Strategy: embed vertices of H one-by-one by choosing (somehow) a free element from the candidate set

All previous results in some way implement this approach.

Theorem [ACKRRSz '00]

For any constant $\Delta \in \mathbb{N}$ and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log n}{n}\right)^{\frac{1}{\Delta}}$$

then G(n,p) is a.a.s. $\mathcal{H}_n(\varepsilon,\Delta)$ -universal.

Theorem [Conlon, Ferber, N., Škorić '16]

For any constant $\Delta \in \mathbb{N}$ ($\Delta \geq 3$) and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log^3 n}{n}\right)^{\frac{1}{\Delta - 1}}$$

then G(n,p) is a.a.s. $\mathcal{H}_n(\varepsilon,\Delta)$ -universal.

Theorem [Conlon, Ferber, N., Škorić '16]

For any constant $\Delta \in \mathbb{N}$ ($\Delta \geq 3$) and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log^3 n}{n}\right)^{\frac{1}{\Delta - 1}}$$

then G(n,p) is a.a.s. $\mathcal{H}_n(\varepsilon,\Delta)$ -universal.

Remark

This is optimal (up to the logarithmic factor) for $\Delta = 3$:

lacksquare consider a disjoint union of $\frac{(1-arepsilon)n}{4}$ copies of K_4

Theorem [Conlon, Ferber, N., Škorić '16]

For any constant $\Delta \in \mathbb{N}$ ($\Delta \geq 3$) and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log^3 n}{n}\right)^{\frac{1}{\Delta - 1}}$$

then G(n,p) is a.a.s. $\mathcal{H}_n(\varepsilon,\Delta)$ -universal.

Theorem [ACKRRSz '00]

If

$$p \gg \left(\frac{\log n}{n}\right)^{\frac{1}{2}}$$

then G(n,p) is a.a.s $\mathcal{H}_n(\varepsilon,2)$ -universal.

Theorem [Conlon, Ferber, N., Škorić '16]

For any constant $\Delta \in \mathbb{N}$ ($\Delta \geq 3$) and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log^3 n}{n}\right)^{\frac{1}{\Delta - 1}}$$

then G(n,p) is a.a.s. $\mathcal{H}_n(\varepsilon,\Delta)$ -universal.

Theorem [Conlon, Ferber, N., Škorić '16]

If

$$p \gg \left(\frac{\log^3 n}{n}\right)^{\frac{1}{2-1/2}}$$

then G(n,p) is a.a.s $\mathcal{H}_n(\varepsilon,2)$ -universal.

Proof sketch

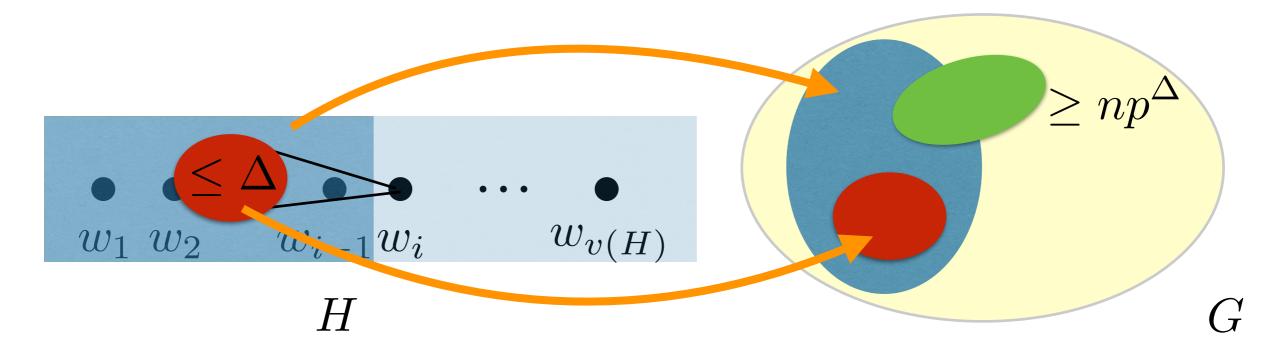
Embedding vertex-by-vertex — revisited

Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

Importantly, it is non-empty!!

Strategy: embed vertices of H one-by-one by choosing (somehow) a free element from the candidate set



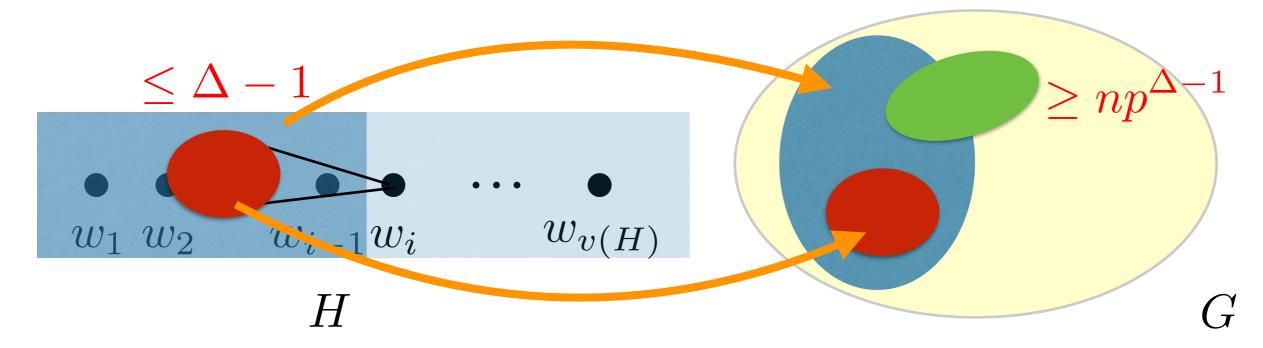
Embedding vertex-by-vertex — revisited

Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/\Delta}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta$ vertices has a common neighborhood of size $\approx np^k$.

Importantly, it is non-empty!!

Assume: we can order the vertices of H such that each vertex has $\leq \Delta - 1$ left neighbors (i.e. it is $(\Delta - 1)$ -degenerate)



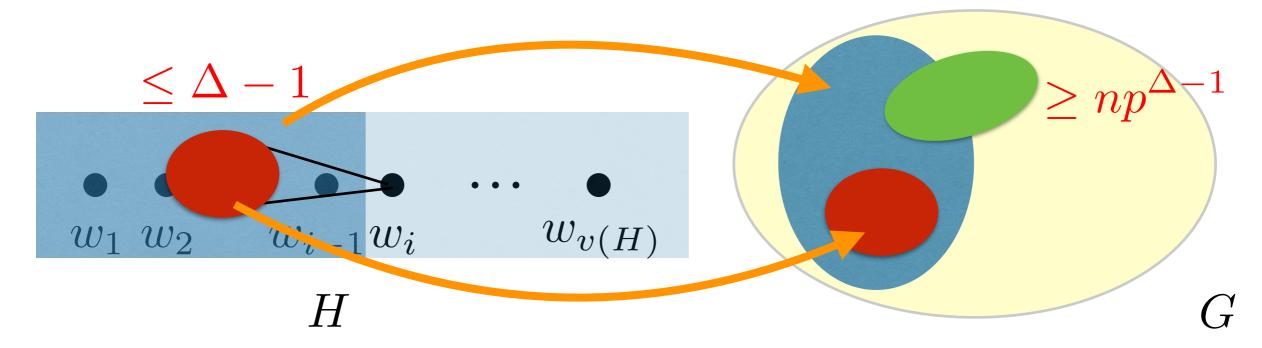
Embedding vertex-by-vertex - revisited

Fact

If $p \gg \left(\frac{\log n}{n}\right)^{1/(\Delta-1)}$ then G(n,p) a.a.s. has the property that every set of $k \leq \Delta-1$ vertices has a common neighborhood $\approx np^k$.

Importantly, it is non-empty!!

Assume: we can order the vertices of H such that each vertex has $\leq \Delta - 1$ left neighbors (i.e. it is $(\Delta - 1)$ -degenerate)



Universality for d-degenerate graphs

This intuition can be turned into a proof!

Theorem

For any constants $d, \Delta \in \mathbb{N}$ and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log^2 n}{n}\right)^{1/d}$$

then G(n,p) is a.a.s universal for the family $\mathcal{D}_n \subseteq \mathcal{H}_n(\varepsilon,\Delta)$ of all d-degenerate graphs.

Universality for *d*-degenerate graphs

This intuition can be turned into a proof!

Theorem

For any constants $d, \Delta \in \mathbb{N}$ and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log^2 n}{n}\right)^{1/d}$$

then G(n,p) is a.a.s universal for the family $\mathcal{D}_n \subseteq \mathcal{H}_n(\varepsilon,\Delta)$ of all d-degenerate graphs.

Remark

This is optimal up to the logarithmic factor:

lacksquare consider d-th power of a path on $(1-\varepsilon)n$ vertices

Universality for *d*-degenerate graphs

This intuition can be turned into a proof!

Theorem

For any constants $d, \Delta \in \mathbb{N}$ and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log^2 n}{n}\right)^{1/d}$$

then G(n,p) is a.a.s universal for the family $\mathcal{D}_n(d) \subseteq \mathcal{H}_n(\varepsilon,\Delta)$ of all d-degenerate graphs.

The case d=1 (trees) was considered by Alon, Krivelevich and Sudakov ('07) and independently by Balogh, Csaba, Pei and Samotij ('10)

Preparation: split $G \sim G(n,p)$ into two parts such that

- (a) $|V_1|=(1-\varepsilon/2)n$ and $|V_2|=\varepsilon n/2$
- (b) $G[V_1]$ is $D_n(\Delta-1)$ -universal
- (c) to be discussed

Preparation: split $G \sim G(n,p)$ into two parts such that

- (a) $|V_1|=(1-\varepsilon/2)n$ and $|V_2|=\varepsilon n/2$
- (b) $G[V_1]$ is $D_n(\Delta-1)$ -universal
- (c) to be discussed

If
$$H_n \in \mathcal{H}_n(\varepsilon, \Delta)$$
 is $(\Delta - 1)$ -degenerate then $H_n \subset [V_1]$.

Preparation: split $G \sim G(n,p)$ into two parts such that

- (a) $|V_1|=(1-\varepsilon/2)n$ and $|V_2|=\varepsilon n/2$
- (b) $G[V_1]$ is $D_n(\Delta-1)$ -universal
- (c) to be discussed

If
$$H_n \in \mathcal{H}_n(\varepsilon, \Delta)$$
 is $(\Delta - 1)$ -degenerate then $H_n \subset [V_1]$.

Otherwise:

- (i) choose a subset $S \subseteq V(H_n)$ such that
 - (a) $H_n S$ is $(\Delta 1)$ -degenerate
 - (b) S has a "nice" structure

Preparation: split $G \sim G(n,p)$ into two parts such that

- (a) $|V_1| = (1 \varepsilon/2)n$ and $|V_2| = \varepsilon n/2$
- (b) $G[V_1]$ is $D_n(\Delta-1)$ -universal
- (c) to be discussed

If
$$H_n \in \mathcal{H}_n(\varepsilon, \Delta)$$
 is $(\Delta - 1)$ -degenerate then $H_n \subset [V_1]$.

Otherwise:

- (i) choose a subset $S \subseteq V(H_n)$ such that
 - (a) $H_n S$ is $(\Delta 1)$ -degenerate
 - (b) S has a "nice" structure
- (ii) embed $H_n S$ into $G[V_1]$

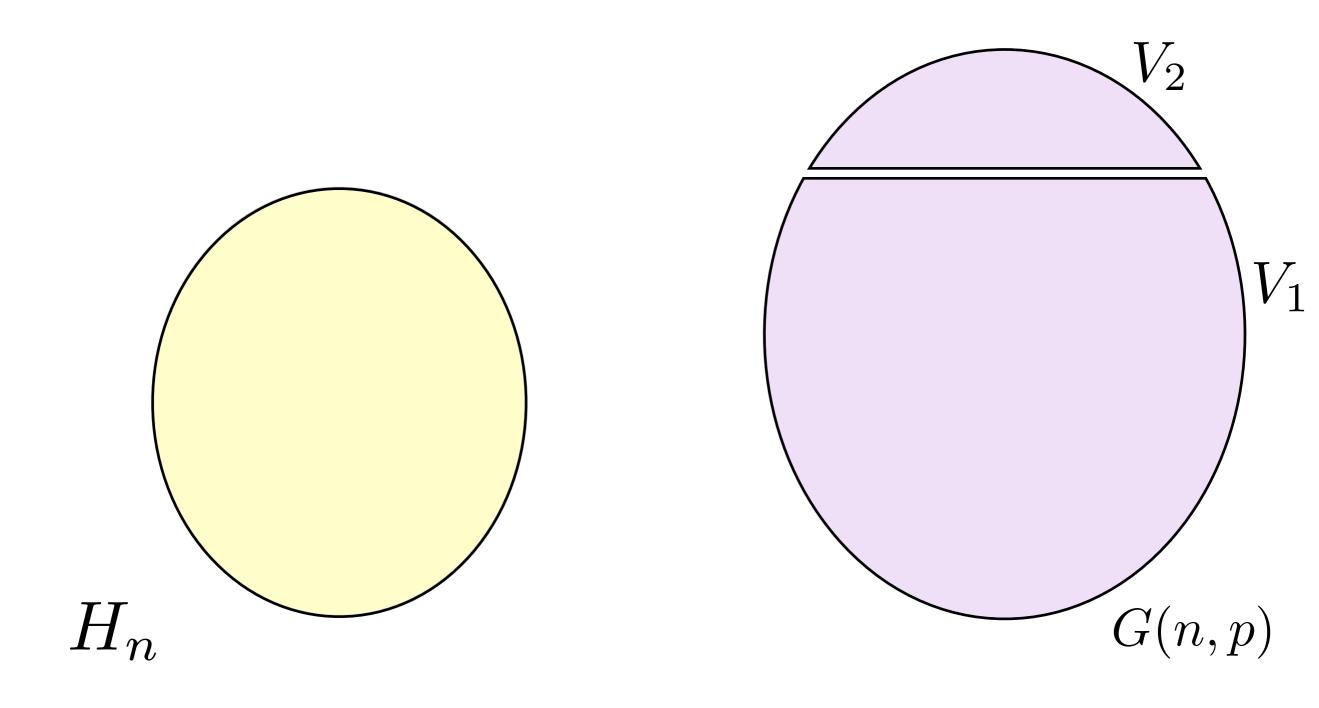
Preparation: split $G \sim G(n,p)$ into two parts such that

- (a) $|V_1|=(1-\varepsilon/2)n$ and $|V_2|=\varepsilon n/2$
- (b) $G[V_1]$ is $D_n(\Delta-1)$ -universal
- (c) to be discussed

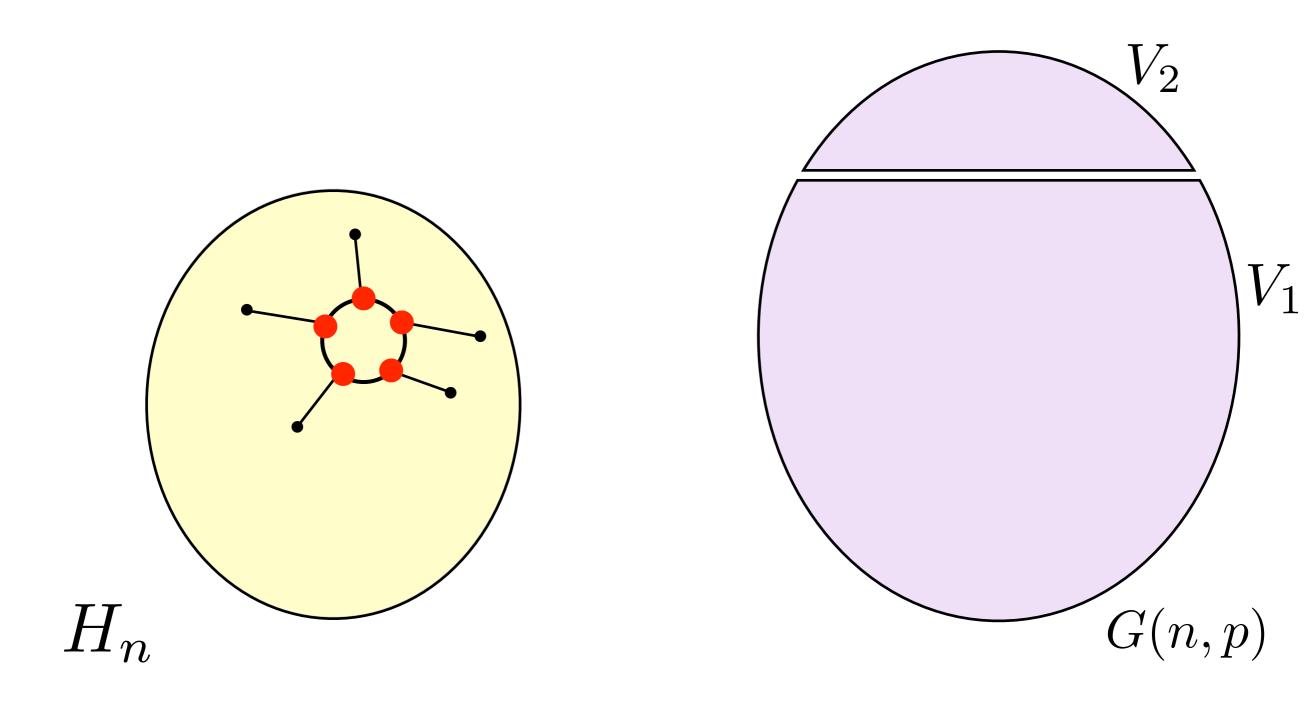
If
$$H_n \in \mathcal{H}_n(\varepsilon, \Delta)$$
 is $(\Delta - 1)$ -degenerate then $H_n \subset [V_1]$.

Otherwise:

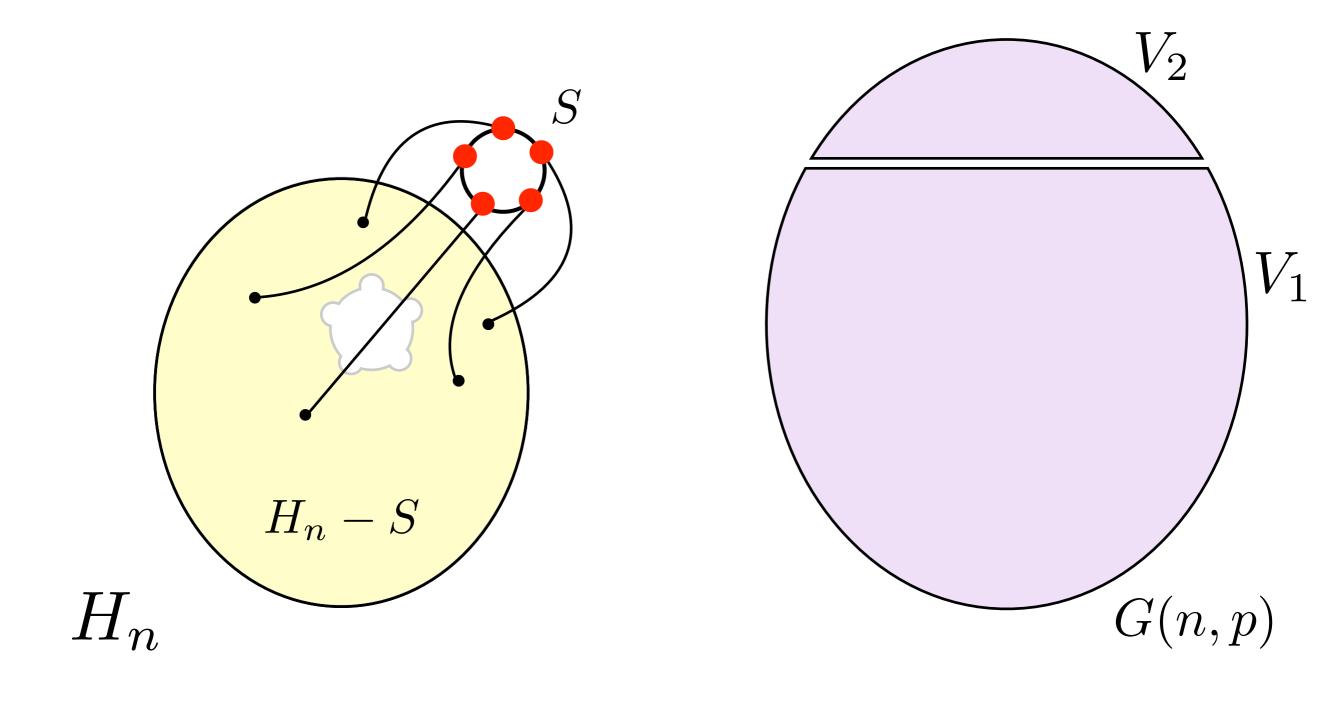
- (i) choose a subset $S \subseteq V(H_n)$ such that
 - (a) $H_n S$ is $(\Delta 1)$ -degenerate
 - (b) S has a "nice" structure
- (ii) embed $H_n S$ into $G[V_1]$
- (iii) somehow embed the vertices from S into V_2 (not vertex-by-vertex!!)



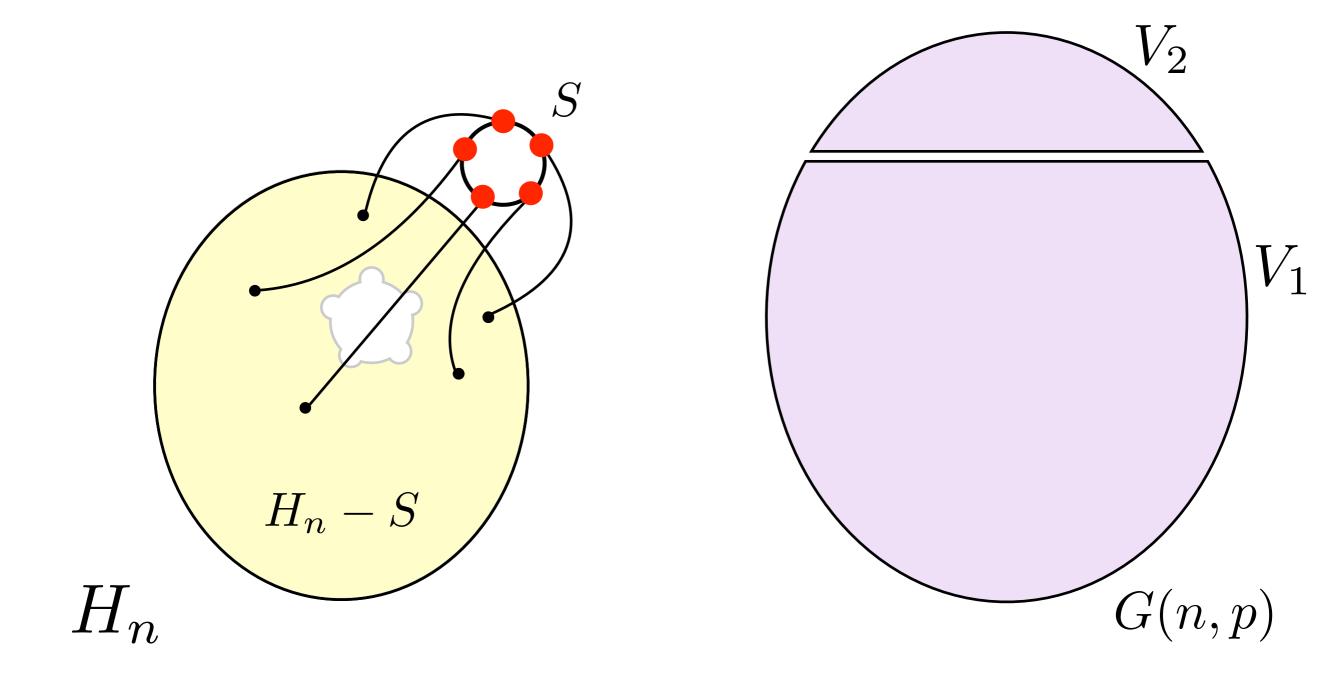
Step (i): pick an induced cycle of size at most $2 \log n$



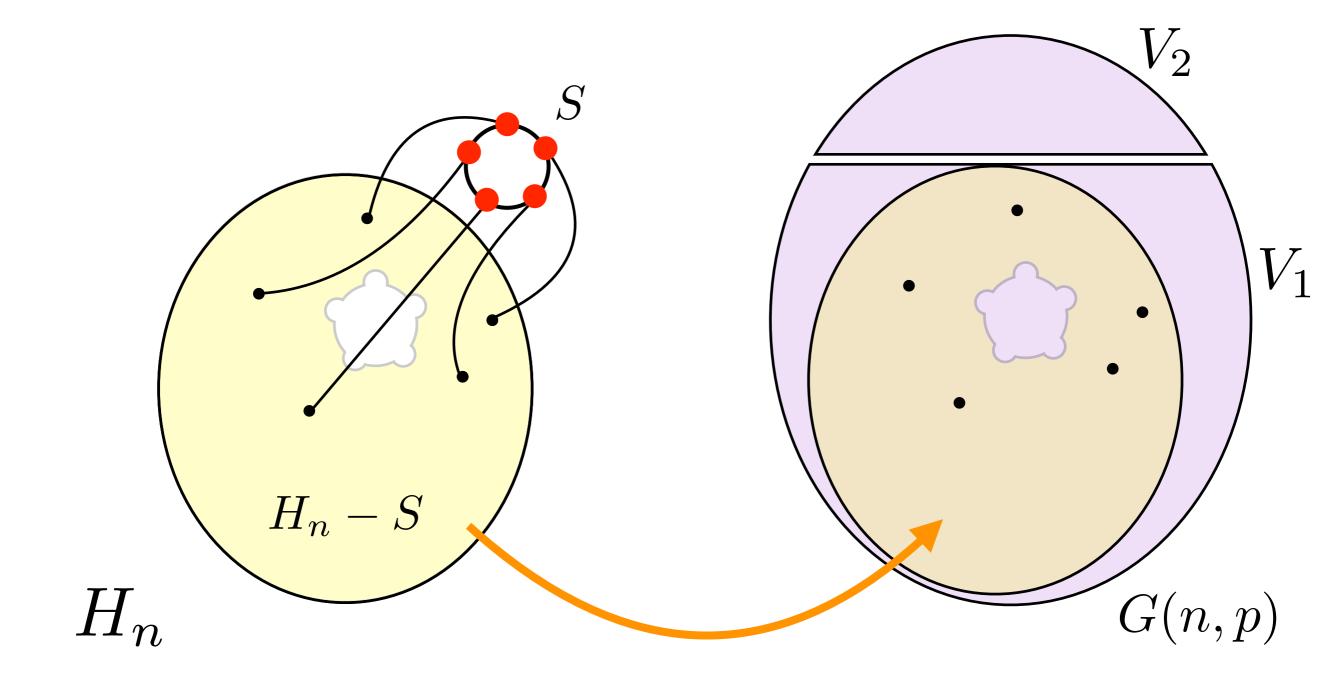
Step (i): pick an induced cycle of size at most $2 \log n$



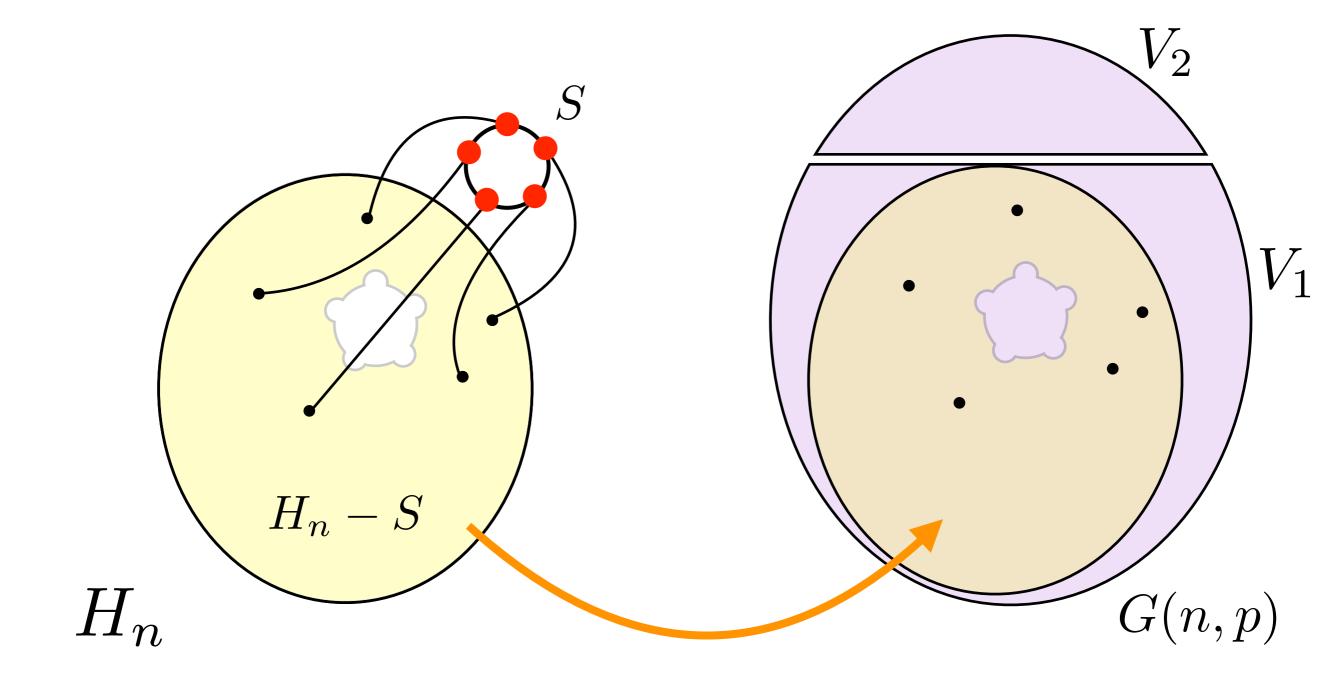
Step (i): pick an induced cycle of size at most $2 \log n$



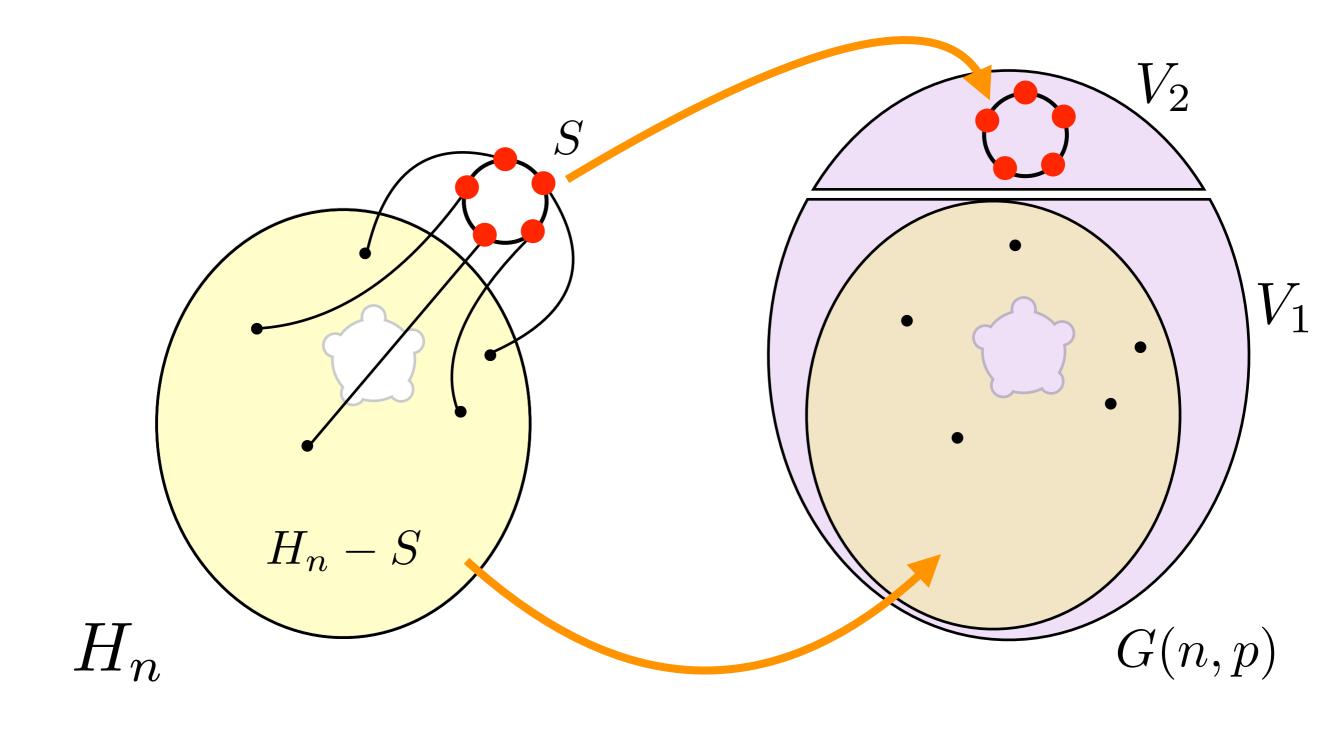
Step (ii): embed $H_n - S$ into $G[V_1]$



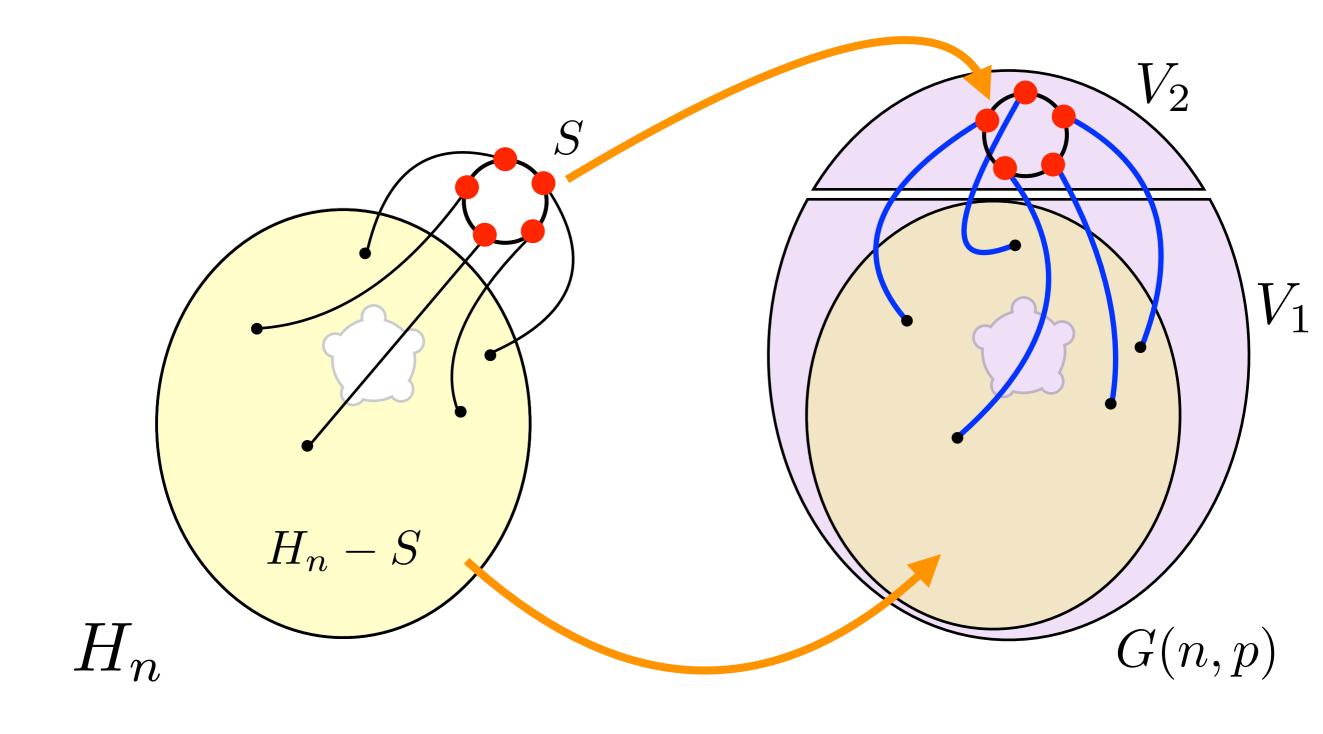
Step (ii): embed $H_n - S$ into $G[V_1]$



Step (iii): embed S into V_2



Step (iii): embed S into V_2



Step (iii): embed S into V_2

Strategy (general)

(i) From each connected component which is not $(\Delta-1)\text{-degenerate pick an induced cycle of size at most}\\ 2\log n \text{ and put it into }S$

Strategy (general)

- (i) From each connected component which is not $(\Delta-1)\text{-degenerate pick an induced cycle of size at most}\\ 2\log n \text{ and put it into }S$
- (ii) embed $H_n S$ into $G[V_1]$

Strategy (general)

- (i) From each connected component which is not $(\Delta-1)\text{-degenerate pick an induced cycle of size at most}\\ 2\log n \text{ and put it into }S$
- (ii) embed $H_n S$ into $G[V_1]$
- (iii) use Janson's inequality and Haxell's hypergraph matching criterion to embed cycles into V_2

Conclusion

Theorem [Conlon, Ferber, N., Škorić '16]

For any constant $\Delta \in \mathbb{N}$ ($\Delta \geq 3$) and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log^3 n}{n}\right)^{\frac{1}{\Delta - 1}}$$

then G(n,p) is a.a.s. $\mathcal{H}_n(\varepsilon,\Delta)$ -universal.

Conclusion

Theorem [Conlon, Ferber, N., Škorić '16]

For any constant $\Delta \in \mathbb{N}$ ($\Delta \geq 3$) and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log^3 n}{n}\right)^{\frac{1}{\Delta - 1}}$$

then G(n,p) is a.a.s. $\mathcal{H}_n(\varepsilon,\Delta)$ -universal.

Open questions:

- lacksquare improve the exponent for $\Delta \geq 4$
- determine the threshold in the degenerate case

Conclusion

Theorem [Conlon, Ferber, N., Škorić '16]

For any constant $\Delta \in \mathbb{N}$ ($\Delta \geq 3$) and $\varepsilon > 0$, if

$$p \gg \left(\frac{\log^3 n}{n}\right)^{\frac{1}{\Delta - 1}}$$

then G(n,p) is a.a.s. $\mathcal{H}_n(\varepsilon,\Delta)$ -universal.

Open questions:

- lacksquare improve the exponent for $\Delta \geq 4$
- determine the threshold in the degenerate case
- \blacksquare spanning subgraphs $(\varepsilon = 0)$

- 1. Existence of 'sparse' universal graphs
 - lacksquare G(n,p) has roughly n^2p edges
 - G(n,p) is a.a.s $\mathcal{H}_n(\varepsilon,\Delta)$ -universal if $p\gg (\log^3 n/n)^{1/(\Delta-1)}$

1. Existence of 'sparse' universal graphs

- lacksquare G(n,p) has roughly n^2p edges
- G(n,p) is a.a.s $\mathcal{H}_n(\varepsilon,\Delta)$ -universal if $p\gg (\log^3 n/n)^{1/(\Delta-1)}$
 - \Rightarrow there exists an $\mathcal{H}_n(\varepsilon, \Delta)$ -universal graph G with

$$e(G) = O(n^{2-1/(\Delta-1)} \operatorname{polylog} n)$$

1. Existence of 'sparse' universal graphs

- lacksquare G(n,p) has roughly n^2p edges
- G(n,p) is a.a.s $\mathcal{H}_n(\varepsilon,\Delta)$ -universal if $p\gg (\log^3 n/n)^{1/(\Delta-1)}$
 - \Rightarrow there exists an $\mathcal{H}_n(\varepsilon, \Delta)$ -universal graph G with

$$e(G) = O(n^{2-1/(\Delta-1)} \operatorname{polylog} n)$$

Theorem (Alon, Capalbo '07)

There exists an $\mathcal{H}_n(\varepsilon, \Delta)$ -universal graph G with

$$e(G) = O(n^{2-2/\Delta})$$

2. Size Ramsey numbers of bounded-degree graphs

2. Size Ramsey numbers of bounded-degree graphs

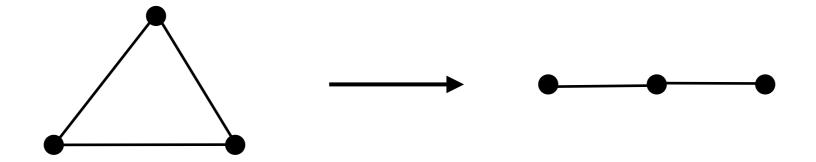
A graph G is Ramsey for a graph H,

$$G \to H$$

2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

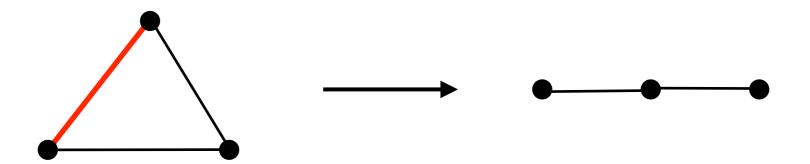
$$G \to H$$



2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

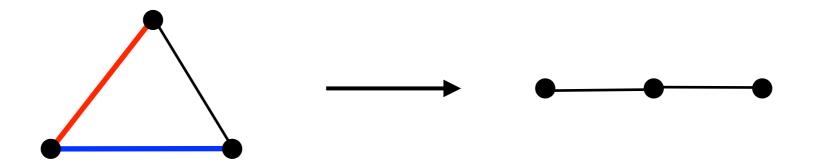
$$G \to H$$



2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

$$G \to H$$



2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

$$G \to H$$

if every $\operatorname{red/blue}$ colouring of the edges of G contains a monochromatic copy of H

Theorem (Ramsey '30)

For every graph H there exists $N \in \mathbb{N}$ such that $K_N \to H$.

2. Size Ramsey numbers of bounded-degree graphs

A graph G is Ramsey for a graph H,

$$G \to H$$

if every $\operatorname{red/blue}$ colouring of the edges of G contains a monochromatic copy of H

Theorem (Ramsey '30)

For every graph H there exists $N \in \mathbb{N}$ such that $K_N \to H$.

$$r(H) = \min\{N \in \mathbb{N} : K_N \to H\}$$
 $\hat{r}(H) = \min\{m \in \mathbb{N} : \exists G \text{ such that } e(G) = m \text{ and } G \to H\}$

2. Size Ramsey numbers of bounded-degree graphs

```
r(H) = \min\{N \in \mathbb{N} : K_N \to H\} \hat{r}(H) = \min\{m \in \mathbb{N} : \exists G \text{ such that } e(G) = m \text{ and } G \to H\}
```

2. Size Ramsey numbers of bounded-degree graphs

$$r(H) = \min\{N \in \mathbb{N} : K_N \to H\}$$

$$\hat{r}(H) = \min\{m \in \mathbb{N} : \exists G \text{ such that } e(G) = m \text{ and } G \to H\}$$

Theorem (Chvátal, Rödl, Szemerédi and Trotter '83)

For every $\Delta \in \mathbb{N}$ there exists C_{Δ} such that if H is a graph with n vertices and maximum degree Δ then

$$r(H) \leq C_{\Delta} \cdot n$$
.

2. Size Ramsey numbers of bounded-degree graphs

$$r(H) = \min\{N \in \mathbb{N} : K_N \to H\}$$

$$\hat{r}(H) = \min\{m \in \mathbb{N} : \exists G \text{ such that } e(G) = m \text{ and } G \to H\}$$

Theorem (Chvátal, Rödl, Szemerédi and Trotter '83)

For every $\Delta \in \mathbb{N}$ there exists C_{Δ} such that if H is a graph with n vertices and maximum degree Δ then

$$r(H) \leq C_{\Delta} \cdot n$$
.

Corollary: $\hat{r}(H) = O(n^2)$

2. Size Ramsey numbers of bounded-degree graphs

$$r(H) = \min\{N \in \mathbb{N} : K_N \to H\}$$

$$\hat{r}(H) = \min\{m \in \mathbb{N} : \exists G \text{ such that } e(G) = m \text{ and } G \to H\}$$

Theorem (Kohayakawa, Rödl, Schacht and Szemerédi '11)

For every $\Delta \in \mathbb{N}$ there exists C_{Δ} such that if H is a graph with n vertices and maximum degree Δ then

$$\hat{r}(H) \le C_{\Delta} n^{2-1/\Delta} \log^{1/\Delta} n.$$

Corollary: $\hat{r}(H) = O(n^2)$

2. Size Ramsey numbers of bounded-degree graphs

For every graph H with maximum degree Δ we have

$$\hat{r}(H) \le C_{\Delta} n^{2-1/\Delta} \log^{1/\Delta} n.$$

2. Size Ramsey numbers of bounded-degree graphs

For every graph H with maximum degree Δ we have

$$\hat{r}(H) \le C_{\Delta} n^{2-1/\Delta} \log^{1/\Delta} n.$$

Rödl, Szemerédi '00: there exists a 3-regular graph H with n vertices and

$$\hat{r}(H) \ge n \log^{1/60} n$$

2. Size Ramsey numbers of bounded-degree graphs

For every graph H with maximum degree Δ we have

$$\hat{r}(H) \le C_{\Delta} n^{2-1/\Delta} \log^{1/\Delta} n.$$

Rödl, Szemerédi '00: there exists a 3-regular graph H with n vertices and

$$\hat{r}(H) \ge n \log^{1/60} n$$

Theorem (Conlon, N. '16+)

If H is additionally triangle-free then

$$\hat{r}(H) \le C_{\Delta} n^{2-1/(\Delta-1/2)} \log^{1/(\Delta-1/2)} n.$$

2. Size Ramsey numbers of bounded-degree graphs

 $\mathcal{T}_n(\Delta) =$ family of all triangle-free graphs with n vertices and maximum degree at most Δ

Theorem (Conlon, N. '16+) – Ramsey-universality

If

$$p \gg \left(\frac{\log n}{n}\right)^{\frac{1}{\Delta - 1/2}}$$

then $G \sim G(Cn, p)$ a.a.s has the property that for every red/blue colouring of $E(G) = R \cup B$ either R or B is $\mathcal{T}_n(\Delta)$ -universal.

2. Size Ramsey numbers of bounded-degree graphs

 $\mathcal{T}_n(\Delta) =$ family of all triangle-free graphs with n vertices and maximum degree at most Δ

Theorem (Conlon, N. '16+) – Ramsey-universality

If

$$p \gg \left(\frac{\log n}{n}\right)^{\frac{1}{\Delta - 1/2}}$$

then $G \sim G(Cn, p)$ a.a.s has the property that for every red/blue colouring of $E(G) = R \cup B$ either R or B is $\mathcal{T}_n(\Delta)$ -universal.

Proof implements previously described strategy in a more difficult setting of sparse regularity.

Thank you!