Improved User-Private Information Retrieval via Finite Geometry RMIT

Padraig Ó Catháin (WPI) joint with Oliver W. Gnilke, Marcus Greferath, Camilla Hollanti, Guillermo Nuñez Ponasso, Eric Swartz

7th October 2019

- ▶ I want to download the i^{th} file F_i of a Database
- ▶ I do **not** want someone who observes my request or the response from the Database to learn *i*.

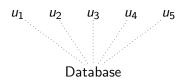
- ▶ I want to download the i^{th} file F_i of a Database
- ▶ I do **not** want someone who observes my request or the response from the Database to learn *i*.
- With a single Database, perfect privacy requires downloading all the files.
- What about multiple Databases?

- ▶ I want to download the ith file F_i of a Database
- ▶ I do **not** want someone who observes my request or the response from the Database to learn *i*.
- With a single Database, perfect privacy requires downloading all the files.
- ▶ What about multiple Databases?
- Assume all files are binary, and of equal length. Then request a random linear combination $S = \sum_{i \in J} F_i$ of files from D_1
- ▶ Request $S + F_i$ from D_2 , and compute the sum of the responses to recover F_i .

- ▶ I want to download the ith file F_i of a Database
- ▶ I do **not** want someone who observes my request or the response from the Database to learn *i*.
- With a single Database, perfect privacy requires downloading all the files.
- What about multiple Databases?
- Assume all files are binary, and of equal length. Then request a random linear combination $S = \sum_{i \in J} F_i$ of files from D_1
- ▶ Request $S + F_i$ from D_2 , and compute the sum of the responses to recover F_i .
- ► This works, if an eavesdropper agrees to observe only a single database...

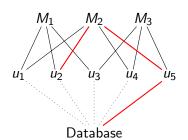
Setup

 A set U of users wants to communicate with an honest-but-curious database

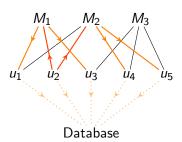


- ► A set *U* of users wants to communicate with an honest-but-curious database
- ► If the users send their requests directly an observer will be aware of the identity of the user

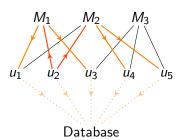
- ► A set U of users wants to communicate with an honest-but-curious database
- ► Therefore the users will forward each others' requests via shared message spaces M_i , that are not visible to outside observers



- A set U of users wants to communicate with an honest-but-curious database
- ► Therefore the users will forward each others' requests via shared message spaces M_i , that are not visible to outside observers
- ► If the users choose the proxy uniformly at random from the set of all users, perfect anonymity wrt. the database is achieved



- ► A set U of users wants to communicate with an honest-but-curious database
- ► Therefore the users will forward each others' requests via shared message spaces *M_i*, that are not visible to outside observers
- ► If the users choose the proxy uniformly at random from the set of all users, perfect anonymity wrt. the database is achieved
- But what do the other users learn?



Behaviour of the users

Swanson and Stinson proved that user u_i has perfect secrecy with respect to outside observers if and only if u_i selects proxies uniformly at random from all of \mathcal{U} (including u_i).

Behaviour of the users

- Swanson and Stinson proved that user u_i has perfect secrecy with respect to outside observers if and only if u_i selects proxies uniformly at random from all of \mathcal{U} (including u_i).
- ► All eavesdroppers will be considered honest-but-curious: they forward messages and follow instructions in the same way as non-eavesdroppers, but they remember queries they have seen, and may communicate these to other eavesdroppers.

Behaviour of the users

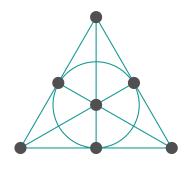
- Swanson and Stinson proved that user u_i has perfect secrecy with respect to outside observers if and only if u_i selects proxies uniformly at random from all of \mathcal{U} (including u_i).
- All eavesdroppers will be considered honest-but-curious: they forward messages and follow instructions in the same way as non-eavesdroppers, but they remember queries they have seen, and may communicate these to other eavesdroppers.
- ► In earlier works the requirement that every pair of users share at exactly one message space has been made: PBD

Behaviour of the users

- Swanson and Stinson proved that user u_i has perfect secrecy with respect to outside observers if and only if u_i selects proxies uniformly at random from all of \mathcal{U} (including u_i).
- All eavesdroppers will be considered honest-but-curious: they forward messages and follow instructions in the same way as non-eavesdroppers, but they remember queries they have seen, and may communicate these to other eavesdroppers.
- ► In earlier works the requirement that every pair of users share at exactly one message space has been made: PBD
- ► If all message spaces are the same size, and their number is minimized: projective plane

Projective planes

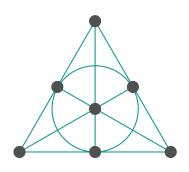
- Every pair of points determine a unique line.
- Every pair of lines intersect in a unique point.
- ► There exist at least four points no three collinear.



Projective planes

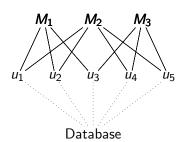
- Every pair of points determine a unique line.
- Every pair of lines intersect in a unique point.
- There exist at least four points no three collinear.

- ▶ Let *V* be a three dimensional vector space over field *k*.
- ▶ 1-d subspaces are *projective points*.
- ▶ 2-d subspaces are *projective lines*.

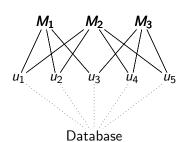


Setup

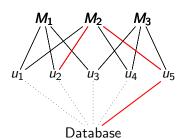
Queries can be linked by their content, e.g. obscure topics



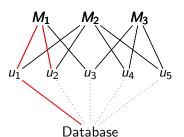
- Queries can be linked by their content, e.g. obscure topics
- ► Or by meta-content like user behaviour, timing, headers, etc.



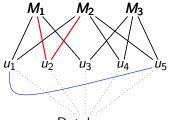
- Queries can be linked by their content, e.g. obscure topics
- Or by meta-content like user behaviour, timing, headers, etc.
- Collecting enough of these queries could identify a user within the network as the source of such requests and hence compromise her anonymity.



- Queries can be linked by their content, e.g. obscure topics
- Or by meta-content like user behaviour, timing, headers, etc.
- Collecting enough of these queries could identify a user within the network as the source of such requests and hence compromise her anonymity.



- Queries can be linked by their content, e.g. obscure topics
- Or by meta-content like user behaviour, timing, headers, etc.
- Collecting enough of these queries could identify a user within the network as the source of such requests and hence compromise her anonymity.
- Intersection attack!



Database

Privacy and Pseudonymity

- What is a good measure of privacy?
- ▶ Let C be a coalition of conspirators.
- Say that users u and v are **pseudonymous** if for any possible query observed by $c \in \mathcal{C}$ we have

$$\frac{\mathbb{P}(u \text{ sent } Q \mid c \text{ observed } Q)}{\mathbb{P}(u \text{ sent } Q)} = \frac{\mathbb{P}(v \text{ sent } Q \mid c \text{ observed } Q)}{\mathbb{P}(v \text{ sent } Q)}$$

▶ A family of UPIR systems is **secure** against coalitions of size t, if for any $\mathcal C$ of at most t users, the probability that two users chosen uniformly at random are pseudonymous tends to 1 as the number of users tends to ∞ .

▶ Suppose that every pair of users share a message space, and that users always send messages via shortest paths.

- Suppose that every pair of users share a message space, and that users always send messages via shortest paths.
- ▶ Why? What are the pseudonymity classes with respect to user c?

- ► Suppose that every pair of users share a message space, and that users always send messages via shortest paths.
- ▶ Why? What are the pseudonymity classes with respect to user c?
- ▶ If $c, u_1 \in M_1$ and $u_2 \notin M_1$ then u_1 and u_2 are not pseudonymous.

- Suppose that every pair of users share a message space, and that users always send messages via shortest paths.
- Why? What are the pseudonymity classes with respect to user c?
- ▶ If $c, u_1 \in M_1$ and $u_2 \notin M_1$ then u_1 and u_2 are not pseudonymous.
- ▶ If message spaces have size k, pseudonymity classes have size at most k-1.

- ▶ Suppose that every pair of users share a message space, and that users always send messages via shortest paths.
- Why? What are the pseudonymity classes with respect to user c?
- ▶ If $c, u_1 \in M_1$ and $u_2 \notin M_1$ then u_1 and u_2 are not pseudonymous.
- ▶ If message spaces have size k, pseudonymity classes have size at most k-1.
- ▶ If *c* can also observe messages addressed to other users, all other users can be identified.

► Each user has a public key and a private key.

- Each user has a public key and a private key.
- When u wants to submit a query through a proxy v, she chooses a shortest path $[u, M_1, u_1, M_2, u_2, \ldots, M_t, u_t, M_{t+1}, v]$ to v, and a private key ψ .

- Each user has a public key and a private key.
- ▶ When u wants to submit a query through a proxy v, she chooses a shortest path $[u, M_1, u_1, M_2, u_2, \ldots, M_t, u_t, M_{t+1}, v]$ to v, and a private key ψ .
- u writes to M_1 the message

$$[(\phi_1(u_1, M_2, \phi_2(u_2, \ldots, M_n, \phi_v(v) \ldots))), \phi_v(Q), \phi_v(\psi)]$$

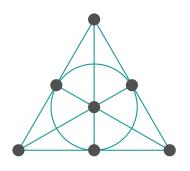
▶ In every step user u_i will decrypt the content in M_i with her private key, and writes the next message to M_{i+1} .

- Each user has a public key and a private key.
- ▶ When u wants to submit a query through a proxy v, she chooses a shortest path $[u, M_1, u_1, M_2, u_2, \ldots, M_t, u_t, M_{t+1}, v]$ to v, and a private key ψ .
- u writes to M_1 the message

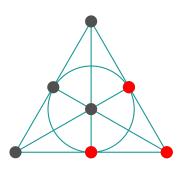
$$[(\phi_1(u_1, M_2, \phi_2(u_2, \ldots, M_n, \phi_v(v) \ldots))), \phi_v(Q), \phi_v(\psi)]$$

- ▶ In every step user u_i will decrypt the content in M_i with her private key, and writes the next message to M_{i+1} .
- ▶ The proxy will evaluate the query, and encrypt the response R using u's private key ψ .
- ▶ Each user u_i seeing the response in M_{i+1} copies it to M_i .

 Assume a UPIR scheme based on a projective plane



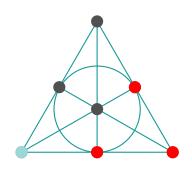
Assume a UPIR scheme based on a projective plane and a coalition of three eavesdroppers in general position.



- Assume a UPIR scheme based on a projective plane and a coalition of three eavesdroppers in general position.
- Any user shares exactly one message space with any eavesdropper

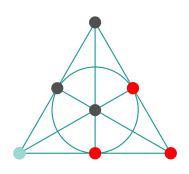


- Assume a UPIR scheme based on a projective plane and a coalition of three eavesdroppers in general position.
- Any user shares exactly one message space with any eavesdropper and at least two distinct message spaces with the coalition.



The encrypted projective plane is still bad

- Assume a UPIR scheme based on a projective plane and a coalition of three eavesdroppers in general position.
- Any user shares exactly one message space with any eavesdropper and at least two distinct message spaces with the coalition.
- As soon as the user chooses two eavesdroppers in different message spaces as a proxy, they can identify him as the single intersection of their message spaces.

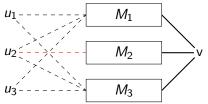


Information leaking

- Queries are indistinguishable for the users u_i on the path $[u, u_1, u_2, \dots u_t, v]$.
- ▶ Only the proxy *v* learns the content of the query.
- ▶ Only v can identify linked queries. What can v learn about u?

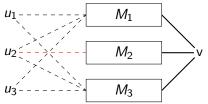
Information leaking

- Queries are indistinguishable for the users u_i on the path $[u, u_1, u_2, \dots u_t, v]$.
- Only the proxy v learns the content of the query.
- Only v can identify linked queries. What can v learn about u?
- ▶ Only the set of message spaces containing v which lie on some geodesic [u, v]. So u₁ and u₃ are pseudonymous wrt v.



Information leaking

- Queries are indistinguishable for the users u_i on the path $[u, u_1, u_2, \dots u_t, v]$.
- Only the proxy v learns the content of the query.
- ▶ Only v can identify linked queries. What can v learn about u?
- Only the set of message spaces containing v which lie on some geodesic [u, v]. So u₁ and u₃ are pseudonymous wrt v.



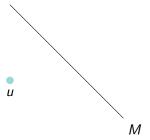
▶ So we should build a protocol where all users at distance ≥ 2 from ν write to every message space containing ν .

Generalized Quadrangles

A generalised quadrangle is a partial linear space in which lines have size t+1, and every point meets s+1 lines, and which satisfies the **GQ** axiom: For every point, line pair [u,M] such that u is not contained in M, there exists a unique point u_1 in M which is incident with x.

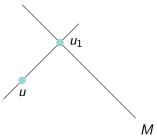
Generalized Quadrangles

A generalised quadrangle is a partial linear space in which lines have size t+1, and every point meets s+1 lines, and which satisfies the **GQ** axiom: For every point, line pair [u,M] such that u is not contained in M, there exists a unique point u_1 in M which is incident with x.



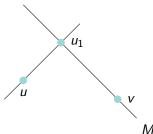
Generalized Quadrangles

A generalised quadrangle is a partial linear space in which lines have size t+1, and every point meets s+1 lines, and which satisfies the **GQ** axiom: For every point, line pair [u,M] such that u is not contained in M, there exists a unique point u_1 in M which is incident with x.



Generalized Quadrangles

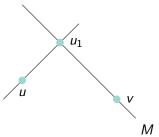
A generalised quadrangle is a partial linear space in which lines have size t+1, and every point meets s+1 lines, and which satisfies the **GQ** axiom: For every point, line pair [u,M] such that u is not contained in M, there exists a unique point u_1 in M which is incident with x.



Let u and v be users sharing no message space. Let M be a message space containing v.

Generalized Quadrangles

A generalised quadrangle is a partial linear space in which lines have size t+1, and every point meets s+1 lines, and which satisfies the **GQ** axiom: For every point, line pair [u, M] such that u is not contained in M, there exists a unique point u_1 in M which is incident with x.



- ► Let *u* and *v* be users sharing no message space. Let *M* be a message space containing *v*.
- ► There exists a unique user $u_1 \in M$ and a unique message space which contains u and u_1 .

Near example

- ▶ Let V be a four dimensional vector space over a field k.
- ▶ Define the *points* of Q to be 2-d subspaces of V.
- Say that two points are collinear if they intersect in a 1-d subspace.
- ▶ A *line* is a set of mutually collinear points, consisting of all points containing a fixed 1-d subspace.
- ▶ If $P = \langle e_1, e_2 \rangle$ and ℓ is the line defined by $\langle e_3 \rangle$ then there are multiple points on ℓ incidence with P, $\langle e_1, e_3 \rangle$ and $\langle e_2, e_3 \rangle$, for example. (This is not a GQ).
- ▶ In fact, one can obtain a generalised quadrangle by keeping only points and lines which are identically zero under a quadratic form.

► The isotropic points and lines of a nondegenerate quadratic form of projective index 1.

- ▶ The isotropic points and lines of a nondegenerate quadratic form of projective index 1.
- Let V be a four dimensional vector space, and consider the form $Q(v) = v_1v_2 + v_3v_4 = 0$ on V.
- ▶ Observe that $Q(\alpha v) = \alpha^2 Q(v)$, so the zero-set of Q is a union of lines through 0. Call these lines the **points** of our GQ.

- ▶ The isotropic points and lines of a nondegenerate quadratic form of projective index 1.
- Let V be a four dimensional vector space, and consider the form $Q(v) = v_1v_2 + v_3v_4 = 0$ on V.
- ▶ Observe that $Q(\alpha v) = \alpha^2 Q(v)$, so the zero-set of Q is a union of lines through 0. Call these lines the **points** of our GQ.
- ▶ Observe that Q contains many two dimensional subspaces: e.g. the set of points of the form [0, x, 0, y], call such a space a **line** of the GQ.

- ▶ The isotropic points and lines of a nondegenerate quadratic form of projective index 1.
- Let V be a four dimensional vector space, and consider the form $Q(v) = v_1v_2 + v_3v_4 = 0$ on V.
- ▶ Observe that $Q(\alpha v) = \alpha^2 Q(v)$, so the zero-set of Q is a union of lines through 0. Call these lines the **points** of our GQ.
- ▶ Observe that Q contains many two dimensional subspaces: e.g. the set of points of the form [0, x, 0, y], call such a space a **line** of the GQ.
- ▶ To check: over \mathbb{F}_q , every line contains q+1 points, every point is contained in q+1 lines. And the GQ-axiom.

Lemma

In an encrypted GQ-UPIR scheme, suppose u chooses v as a proxy with d(u,v)=2, and chooses a geodesic to v uniformly at random. Then v is equally likely to observe the request in any message space to which she has access.

Proof.

By hypothesis, u and v do not share a line. Let M be a line through u: then there exists a unique line through v meeting M by the GQ-axiom. The number of lines through a point is s+1, and a GQ contains no triangles. So every line through u meets a unique line through v. So if u chooses uniformly at random from the geodesics to v, then v is equally likely to observe the request in any message space to which he has access.

Any two users at distance two from ν are pseudonymous with respect to ν .

▶ A generalised quadrangle has order (s, t), if s + 1 points are incident with a given line and t + 1 lines are incident with a given point.

- ▶ A generalised quadrangle has order (s, t), if s + 1 points are incident with a given line and t + 1 lines are incident with a given point.
- ▶ If the order of a GQ is (s, t) then it has (s + 1)(st + 1) points, s(t + 1) at distance 1 and s^2t at distance 2.
- ▶ Higman: $s < t^2$ and $t \le s^2$.

- ▶ A generalised quadrangle has order (s, t), if s + 1 points are incident with a given line and t + 1 lines are incident with a given point.
- ▶ If the order of a GQ is (s, t) then it has (s + 1)(st + 1) points, s(t + 1) at distance 1 and s^2t at distance 2.
- ▶ Higman: $s < t^2$ and $t \le s^2$.
- ▶ The neighbourhood of v contains O(st) users, while the number of users at distance 2 is $O(st^2)$.
- ▶ Users at distance 2 from every member of a coalition remain mutually anonymous: if |C| = o(t), then 'most' users remain at distance 2.

- ▶ A generalised quadrangle has order (s, t), if s + 1 points are incident with a given line and t + 1 lines are incident with a given point.
- ▶ If the order of a GQ is (s, t) then it has (s + 1)(st + 1) points, s(t + 1) at distance 1 and s^2t at distance 2.
- ▶ Higman: $s < t^2$ and $t \le s^2$.
- ▶ The neighbourhood of v contains O(st) users, while the number of users at distance 2 is $O(st^2)$.
- ▶ Users at distance 2 from every member of a coalition remain mutually anonymous: if |C| = o(t), then 'most' users remain at distance 2.
- ► So the encrypted GQ-UPIR system is secure!

- ▶ By observing queries, v learns the set of users mutually at distance 1 from u and v: $\mathcal{B}_1(u) \cap \mathcal{B}_1(v)$.
- ▶ The set of users pseudonymous with u is $\{u_i \mid \mathcal{B}_1(u_i) \cap \mathcal{B}_1(v) = \mathcal{B}_1(u) \cap \mathcal{B}_1(v)\}.$

- By observing queries, v learns the set of users mutually at distance 1 from u and v: B₁(u) ∩ B₁(v).
- ▶ The set of users pseudonymous with u is $\{u_i \mid \mathcal{B}_1(u_i) \cap \mathcal{B}_1(v) = \mathcal{B}_1(u) \cap \mathcal{B}_1(v)\}.$
- ▶ This is the **definition** of the *hyperbolic line* through *u* and *v*!

- ▶ By observing queries, v learns the set of users mutually at distance 1 from u and v: $\mathcal{B}_1(u) \cap \mathcal{B}_1(v)$.
- ▶ The set of users pseudonymous with u is $\{u_i \mid \mathcal{B}_1(u_i) \cap \mathcal{B}_1(v) = \mathcal{B}_1(u) \cap \mathcal{B}_1(v)\}.$
- ▶ This is the **definition** of the *hyperbolic line* through *u* and *v*!
- Three users suffice to identify all other users in any unencrypted GQ-UPIR scheme.

- ▶ By observing queries, v learns the set of users mutually at distance 1 from u and v: $\mathcal{B}_1(u) \cap \mathcal{B}_1(v)$.
- ▶ The set of users pseudonymous with u is $\{u_i \mid \mathcal{B}_1(u_i) \cap \mathcal{B}_1(v) = \mathcal{B}_1(u) \cap \mathcal{B}_1(v)\}.$
- ▶ This is the **definition** of the *hyperbolic line* through *u* and *v*!
- Three users suffice to identify all other users in any unencrypted GQ-UPIR scheme.
- ► There are seven classical families of GQs, in two of these families hyperbolic lines have size 2: here a single user suffices.

Questions

- GQs are pretty special. What broader class of bipartite graphs give secure UPIR schemes? (Expanders? Graphs of large girth?)
- We know of no secure unencrypted systems. Is it even possible to construct one?
- Could a UPIR system be implemented in some sort of practical way?

References

- ▶ J. Domingo-Ferrer, M. Bras-Amorós, Q. Wu, and J. Manjon. User-private information retrieval based on a peer-to-peer community. Data Knowl. Eng., 68(11):1237–1252, Nov. 2009.
- K. Stokes and M. Bras-Amorós. Optimal configurations for peer-to-peer user-private information retrieval. Comput. Math. Appl., 59(4):1568–1577, 2010.
- ► C. M. Swanson and D. R. Stinson. *Extended combinatorial constructions for peer-to-peer user-private information retrieval.* Adv. Math. Commun., 6(4):479–497, 2012.
- ▶ C. M. Swanson and D. R. Stinson. Extended results on privacy against coalitions of users in user-private information retrieval protocols. Cryptogr. Commun., 7(4):415–437, 2015.
- ▶ Oliver W. Gnilke, Marcus Greferath, Camilla Hollanti, Guillermo Nunez Ponasso, Padraig Ó Catháin, Eric Swartz *Improved User-Private Information Retrieval via Finite Geometry*, arXiv 1707.01551.

Thank You!