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Guillermo Nuñez Ponasso, Eric Swartz

7th October 2019



Private Information Retrieval

I I want to download the i th file Fi of a Database

I I do not want someone who observes my request or the
response from the Database to learn i .

I With a single Database, perfect privacy requires downloading
all the files.

I What about multiple Databases?

I Assume all files are binary, and of equal length. Then request
a random linear combination S =

∑
j∈J Fj of files from D1

I Request S + Fi from D2, and compute the sum of the
responses to recover Fi .

I This works, if an eavesdropper agrees to observe only a single
database...
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User Private Information Retrieval

Setup

I A set U of users wants to
communicate with an
honest-but-curious database

I Therefore the users will forward each
others’ requests via shared message
spaces Mi , that are not visible to
outside observers

I If the users choose the proxy uniformly
at random from the set of all users,
perfect anonymity wrt. the database is
achieved

I But what do the other users learn?

u1 u2 u3 u4 u5

M1 M2 M3

Database
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User Private Information Retrieval

Behaviour of the users

I Swanson and Stinson proved that user ui has perfect secrecy
with respect to outside observers if and only if ui selects
proxies uniformly at random from all of U (including ui ).

I All eavesdroppers will be considered honest-but-curious: they
forward messages and follow instructions in the same way as
non-eavesdroppers, but they remember queries they have
seen, and may communicate these to other eavesdroppers.

I In earlier works the requirement that every pair of users share
at exactly one message space has been made: PBD

I If all message spaces are the same size, and their number is
minimized: projective plane
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Projective planes

I Every pair of points determine a
unique line.

I Every pair of lines intersect in a
unique point.

I There exist at least four points no
three collinear.

I Let V be a three dimensional
vector space over field k .

I 1-d subspaces are projective points.

I 2-d subspaces are projective lines.
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Linked Queries

Setup

I Queries can be linked by their content,
e.g. obscure topics

I Or by meta-content like user
behaviour, timing, headers, etc.

I Collecting enough of these queries
could identify a user within the
network as the source of such requests
and hence compromise her anonymity.

I Intersection attack!
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Privacy and Pseudonymity

I What is a good measure of privacy?

I Let C be a coalition of conspirators.

I Say that users u and v are pseudonymous if for any possible
query observed by c ∈ C we have

P(u sent Q | c observed Q)

P(u sent Q)
=

P(v sent Q | c observed Q)

P(v sent Q)

I A family of UPIR systems is secure against coalitions of size
t, if for any C of at most t users, the probability that two
users chosen uniformly at random are pseudonymous tends to
1 as the number of users tends to ∞.



Proejctive planes are always bad

I Suppose that every pair of users share a message space, and
that users always send messages via shortest paths.

I Why? What are the pseudonymity classes with respect to user
c?

I If c , u1 ∈ M1 and u2 /∈ M1 then u1 and u2 are not
pseudonymous.

I If message spaces have size k , pseudonymity classes have size
at most k − 1.

I If c can also observe messages addressed to other users, all
other users can be identified.
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Formal(ish) Protocol

I Each user has a public key and a private key.

I When u wants to submit a query through a proxy v , she
chooses a shortest path [u,M1, u1,M2, u2, . . . ,Mt , ut ,Mt+1, v ]
to v , and a private key ψ.

I u writes to M1 the message

[(φ1(u1,M2, φ2(u2, . . . ,Mn, φv (v) . . . ))), φv (Q), φv (ψ)]

I In every step user ui will decrypt the content in Mi with her
private key, and writes the next message to Mi+1.

I The proxy will evaluate the query, and encrypt the response R
using u’s private key ψ.

I Each user ui seeing the response in Mi+1 copies it to Mi .
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The encrypted projective plane is still bad

I Assume a UPIR scheme based on a
projective plane

and a coalition of
three eavesdroppers in general
position.

I Any user shares exactly one
message space with any
eavesdropper

and at least two
distinct message spaces with the
coalition.

I As soon as the user chooses two
eavesdroppers in different message
spaces as a proxy, they can identify
him as the single intersection of
their message spaces.
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Information leaking

I Queries are indistinguishable for the users ui on the path
[u, u1, u2, . . . ut , v ].

I Only the proxy v learns the content of the query.

I Only v can identify linked queries. What can v learn about u?

I Only the set of message spaces containing v which lie on
some geodesic [u, v ]. So u1 and u3 are pseudonymous wrt v .

v
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M3

I So we should build a protocol where all users at distance
≥ 2 from v write to every message space containing v .
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Generalised quadrangles

Generalized Quadrangles

A generalised quadrangle is a partial linear space in which lines
have size t + 1, and every point meets s + 1 lines, and which
satisfies the GQ axiom: For every point, line pair [u,M] such that
u is not contained in M, there exists a unique point u1 in M which
is incident with x .

I Let u and v be users sharing no
message space. Let M be a
message space containing v .

I There exists a unique user u1 ∈ M
and a unique message space which
contains u and u1.
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Near example

I Let V be a four dimensional vector space over a field k .

I Define the points of Q to be 2-d subspaces of V .

I Say that two points are collinear if they intersect in a 1-d
subspace.

I A line is a set of mutually collinear points, consisting of all
points containing a fixed 1-d subspace.

I If P = 〈e1, e2〉 and ` is the line defined by 〈e3〉 then there are
multiple points on ` incidence with P, 〈e1, e3〉 and 〈e2, e3〉, for
example. (This is not a GQ).

I In fact, one can obtain a generalised quadrangle by keeping
only points and lines which are identically zero under a
quadratic form.



What is a GQ anyway?

I The isotropic points and lines of a nondegenerate quadratic
form of projective index 1.

I Let V be a four dimensional vector space, and consider the
form Q(v) = v1v2 + v3v4 = 0 on V .

I Observe that Q(αv) = α2Q(v), so the zero-set of Q is a
union of lines through 0. Call these lines the points of our
GQ.

I Observe that Q contains many two dimensional subspaces:
e.g. the set of points of the form [0, x , 0, y ], call such a space
a line of the GQ.

I To check: over Fq, every line contains q + 1 points, every
point is contained in q + 1 lines. And the GQ-axiom.
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Lemma
In an encrypted GQ-UPIR scheme, suppose u chooses v as a proxy
with d(u, v) = 2, and chooses a geodesic to v uniformly at
random. Then v is equally likely to observe the request in any
message space to which she has access.

Proof.
By hypothesis, u and v do not share a line. Let M be a line
through u: then there exists a unique line through v meeting M by
the GQ-axiom. The number of lines through a point is s + 1, and a
GQ contains no triangles. So every line through u meets a unique
line through v . So if u chooses uniformly at random from the
geodesics to v , then v is equally likely to observe the request in
any message space to which he has access.

Any two users at distance two from v are pseudonymous
with respect to v .



The main result

I A generalised quadrangle has order (s, t), if s + 1 points are
incident with a given line and t + 1 lines are incident with a
given point.

I If the order of a GQ is (s, t) then it has (s + 1)(st + 1) points,
s(t + 1) at distance 1 and s2t at distance 2.

I Higman: s < t2 and t ≤ s2.

I The neighbourhood of v contains O(st) users, while the
number of users at distance 2 is O(st2).

I Users at distance 2 from every member of a coalition remain
mutually anonymous: if |C| = o(t), then ’most’ users remain
at distance 2.

I So the encrypted GQ-UPIR system is secure!
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What about the unencrypted case?

I By observing queries, v learns the set of users mutually at
distance 1 from u and v : B1(u) ∩ B1(v).

I The set of users pseudonymous with u is
{ui | B1(ui ) ∩ B1(v) = B1(u) ∩ B1(v)}.

I This is the definition of the hyperbolic line through u and v !

I Three users suffice to identify all other users in any
unencrypted GQ-UPIR scheme.

I There are seven classical families of GQs, in two of these
families hyperbolic lines have size 2: here a single user suffices.
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Questions

I GQs are pretty special. What broader class of bipartite graphs
give secure UPIR schemes? (Expanders? Graphs of large
girth?)

I We know of no secure unencrypted systems. Is it even
possible to construct one?

I Could a UPIR system be implemented in some sort of
practical way?
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