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Compressed sensing

Three hard problems

Find the sparsest solution x to the linear system Ax = b (given A
and b).
Given a subset of the entries of a matrix, find the completion with
lowest rank.
Express a given matrix M as L + S where the rank of L is small
and S is sparse.

All three problems are in NP.
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Compressed sensing

Convex relaxation

Each problem can be expressed as a linear programming
problem, where the objective function involves minimising the
solution under some suitable norm.
The optimal solution of the linear programming problem can be
found efficiently, but may or may not be an optimal solution to the
original problem.
The main result of compressed sensing is that, under weak
conditions, the solution of the linear program is optimal with high
probability.
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Compressed sensing

A compressed sensing result

Let x be an s-sparse vector in RN (standard basis ei ).
How many measurements do we need to take to recover x (with
high probability)?
What type of measurement should we take?
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Compressed sensing

Theorem (Candès-Tao)

Let A = {a1, . . . ,an} be a set of measurements (linear
functionals). Define the incoherence of A to be

µA = max
j
|〈
∑

i

ai ,ej〉|2

Then the number of measurements required to recover x is
O(µAs log(N)).
This result is best possible (no alternative sampling strategy can
be asymptotically better).
Via probabilistic constructions, measurement sets A exist with
µA = 1.
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Compressed sensing

Compressed sensing as linear algebra

Data ⇐⇒ points in RN

Measurement ⇐⇒ linear functional
‘Most’ data ⇐⇒ Sparse vectors

Φx = b

Under the assumption that x is sparse, how many measurements
are required if N = 1000, say?
Candes-Tao is asymptotic - no explicit bounds...
What about deterministically constructing such a matrix?
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Compressed sensing

Compressed sensing as linear algebra

Φx = b

Lemma
The matrix Φ allows recovery of all t-sparse vectors if and only if each
t-sparse vector lies in a different coset of the nullspace of Φ.

But no-one knows how to (deterministically) build (useful) matrices
with this property.
Without further assumptions, recovery of t-sparse vectors is an
NP-Hard problem. (And furthermore is computationally infeasible
in practice.)
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Compressed sensing

Proxies for the null-space condition

Definition
The matrix Φ has the (`1, t)-property if, for any vector v of sparsity at
most t , the `1-minimal solution of the system Φx = Φv is equal to v .

Lemma
The matrix Φ has the (`1, t)-property if and only if, for every non-zero v
in the null-space of Φ, the sum of the t largest entries of v is less than
half of ‖v‖1.

(A statement about `1-norms but still computationally infeasible!)
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Compressed sensing

Proxies for the nullspace condition

Say that Φ has the restricted Isometry property (t , δ)-RIP if the
following inequality holds for all t-sparse vectors.

(1− δ) ≤
‖Φx‖22
‖x‖22

≤ (1 + δ)

Theorem (Candes, Tao)

If Φ has (t , δ)-RIP with δ ≤
√

2− 1, then Φ has the (`1,
t
2)-property.

With overwhelming probability an n × N matrix with entries drawn from
a Gaussian (0,1)-rv has the (`1,n/ log(N))-property, and this is
optimal.
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Compressed sensing

Sufficient conditions for deterministic constructions

µΦ = max
i 6=j

∣∣∣∣〈ci , cj〉
|ci ||cj |

∣∣∣∣
Theorem (Donoho)
The following is sufficient (but not necessary) for Φ to have the
(`1, t)-property.

t ≤ 1
2µΦ

+
1
2

So we want to construct matrices (with more columns than rows)
where all inner products of columns are small.
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Compressed sensing

The bottleneck

Theorem (Welch)

For any n × N matrix Φ, µΦ ≥ µn,N =
√

N−n
n(N−1) = 1√

n

√
N−n
N−1 .

Donoho’s method: Φ has the (`1, t)-property for all t ≤ 1
2µΦ

+ 1
2 .

The Welch bound: µΦ ≥ µn,N ≥ 1√
n .

The obvious conclusion: Donoho’s method is limited to
establishing the (`1, t)-property for

t ≤
√

n
2

+
1
2
∼ O(

√
n).

In contrast, Tao et al. give probabilistic constructions where
t ∼ O( n

log(n) ).

Ideally, we would like deterministic constructions which overcome this
‘square-root bottleneck’.
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Compressed sensing

Unfortunately - overcoming the square-root bottleneck is hard.
One construction from 2010: by Bourgain et al.
60 pages of hard additive combinatorics allows them to recover
O(n

1
2 +ε)-sparse vectors. (And this comes with restrictions on

which parameters are constructible.)
Instead, for any α we will give a construction for compressed
sensing matrices with parameters n × αn for all n > Cα. All of
these matrices recover O(

√
n)-sparse vectors.
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Equiangular frames

Equiangular frames

1 A frame is a collection of vectors (a generalisation of a basis in
harmonic analysis). We write the vectors as columns in a matrix.

2 A frame is equiangular if for all columns ci and cj , there exists
fixed α with

µ(ci , cj) =

∣∣∣∣ 〈ci , cj〉
‖ci‖‖cj‖

∣∣∣∣ = α.

3 If α meets the Welch bound, then such a matrix meets the
square-root bottleneck exactly.

Definition
An equiangular tight frame (ETF) is a matrix in which
µ(ci , cj) =

√
N−n

n(N−1) for every pair of columns ci , cj .

ETFs exist, but not very often. An ETF recovers
√

n
2 -sparse vectors,

and this result is best possible in the mutual incoherence framework.
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Construction of compressed sensing matrices

Lemma
Let Φ be a frame and let µn,N be the Welch bound for Φ. Suppose that

(1− ε)µn,N ≤
∣∣∣∣〈ci , cj〉
|ci ||cj |

∣∣∣∣ ≤ (1 + ε)µn,N

for all columns ci 6= cj of Φ. Then Φ has the (`1, t)-property for

t ≤ 1
2(1 + ε)µn,N

+
1
2
≈

√
n

2(1 + ε)
.

Call such a frame ε-equiangular. We give constructions for
1-equiangular frames, and hence matrices with the (`1, t)-property for
t ≤

√
n

4 .
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Construction of compressed sensing matrices

Definition
Let K be a set of integers. An incidence structure ∆ on v points is a
pairwise balanced design if every block of ∆ has size contained in K ,
and every pair of points occurs in a single block. We denote such a
design by PBD(v ,K ).

Example

A PBD(11, {3,5}):

{abcde,01a,02b,03c,04d ,05e,

25a,31b,42c,53d ,14e,34a,45b,15c,12d ,23e} .
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Construction of compressed sensing matrices

We construct a 1-equiangular frame Φ as follows:

Let A be the incidence matrix of a PBD(v ,K ), ∆, with rows
labelled by blocks and columns by points.
So the inner product of a pair of columns is 1 (since any pair of
points is contained in a unique block).
For each column c, of A, we construct |c| columns of Φ as follow:

Let Hc be a complex Hadamard matrix of order |c|.
If row i of c is 0, so is row i of each of the |c| columns of Φ.
If row i of c is 1, row i of the |c| columns of Φ is a row of 1

|c|Hc .
No row of Hc is repeated.
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Construction of compressed sensing matrices

Theorem (Bryant, Ó C., 2014)

Suppose there exists a PBD(v ,K ) with
n blocks∑

b∈B |b| = N

max(K ) ≤
√

2 min(K )

Then there exists an n × N 1-equiangular frame. Equivalently, this is a
compressed sensing matrix with the (`1, t)-property for all t ≤

√
n

4 .

This is a generalisation of a construction Fickus, Mixon and
Tremain for Steiner triple systems.
More generally, for any infinite family of PBDs with fixed K , we get
O(
√

n)-recovery.
Our results can be improved in many directions: e.g.
ε-equiangularity for ε < 1 is possible, as is adding additional
columns to the construction using MUBS, etc.
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Recovery

Φx = b

So how do we actually find x?
We could use the simplex algorithm, or basis pursuit or some
algorithm for solving linear programming problems.
Noise, negative entries in signal, which Hadamard matrices, etc.
Example - a 2-(73,9,1) (from a Singer difference set).
Dimensions 146× 1314. Lower bound on performance

√
146
4 ≈ 3.

Upper bound on performance 2r − 1 = 17.
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Recovery

Sample LP recovery results

Sparsity Fourier Fourth Roots Gaussian
28 100 100 100
30 100 98 100
32 96 95 99
34 98 89 92
36 92 83 80
38 85 65 61
40 69 55 48

Time 101 73 654

(Time in seconds for 1000 recoveries.)
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Recovery

Φx = b

A more efficient recovery algorithm:
For each point (set of columns) in the original design, construct an
estimate for the corresponding entries in x (Fourier transform).
Choose the cn columns with estimates of largest absolute value,
for suitable c.
Solve the n × cn reduced system of linear equations for x .
Run time is competitive with LP, and complexity of recovery should
be O(n log n), with suitable assumptions.
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Hadamard matrices in compressed sensing

Let Φ be a matrix constructed from a PBD and a Hadamard matrix H.

If Null(Φ) contains a 2t-sparse vector then there exist t-sparse
vectors u and v with Φu = Φv .
Suppose Φ is constructed from Hadamard matrices of order r .
Then Null(Φ) contains 2r -sparse vectors. (Though a small
proportion of the total.)
But are there any sparser ones?

 1 1 1 1
1 -1 0 0
0 0 1 -1




1
1

-1
-1

 = 0.
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Hadamard matrices in compressed sensing

Lemma (Ó C, 2014)

Let H be a complex Hadamard matrix of order n, and v a linear
combination of k ≤ n

t rows of H. Then v contains at least t non-zero
entries. Furthermore, if v contains exactly t non-zero entries, t | n and
v is a linear combination of exactly n

t rows.
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Hadamard matrices in compressed sensing

Example

Suppose Φ is constructed with real Hadamard matrices of order r .
Then, provided the PBD contains three non-collinear points, the
following is an element of the null-space of Φ of sparsity 3

2 r :

 1 1 1 1 0 0
1 -1 0 0 1 1
0 0 1 -1 1 -1




0
1
0

-1
0
1

 = 0.
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Hadamard matrices in compressed sensing

Lemma
Let Φ be a CS matrix built from normalised Hadamard matrices of
order r and a PBD. The minimal support of an element of Null(Φ) is

3
2 r if H contains a ±1 row.

More generally k+1
k r if H contains k orthogonal rows of k th roots of

unity.
Otherwise, 2r .

Fourier matrices over pth roots of unity are optimal in this framework.
Question: What are other constructions for families of Hadamard
matrices in which no linear combination of t rows vanishes in more
than t positions?
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Pairwise balanced designs

Given a PBD, we know how to construct a compressed sensing
matrix with the (`1,

√
n

4 )-property.
For which (n,N) does there exist a PBD with n blocks in which the
sum of the block sizes is N?
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Pairwise balanced designs

Theorem (Wilson)
Let K be a set of integers with
gcd{k − 1 | k ∈ K} = gcd{k(k − 1) | k ∈ K} = 1. Then there exists a
constant C such that, for every v > C, there exists a PBD(v ,K ,1).

A necessary condition for existence of a PBD with block sizes K is that
there exists a solution to the equation∑

k∈K

αk

(
k
2

)
=

(
v
2

)
Say that a solution to this equation is realisable if there exists a PBD
with αk blocks of size k for each k ∈ K . Wilson states that for each
sufficiently large v , some solution is realisable.
We want more.
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Pairwise balanced designs

Say that a set of graphs F is good if, for every G ∈ F , the gcd of the
vertex degrees of G is 1.

Theorem (Caro-Yuster)
Let F be a good family of graphs. Denote by αG the number of edges
in G. Then exists a constant C such that for all v > C, every solution of
the equation ∑

G∈F

αG|G| =

(
v
2

)
is realisable.

Decompositions into complete graphs⇔ PBDs
But: a family of complete graphs is never good...
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Pairwise balanced designs

Consider
F = {F1 = Kn−1 + Kn,F2 = Kn + Kn+1,F3 = Kn−1 + Kn + Kn+1}.
Suppose Kv is F-totally-decomposable.
Decomposing the Fi into blocks, what decompositions can we
obtain?
Observe: decomposing into βj copies of Fj , we obtain αi blocks of
size i .

 1 0 1
1 1 1
0 1 1

 β1
β2
β3

 =
(
αn−1 αn αn+1

)
.
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Pairwise balanced designs

 0 1 −1
−1 1 0

1 −1 1

 αn−1
αn

αn+1

 =

 x1
x2
x3

 .

Theorem
For all sufficiently large v, and every choice of αi satisfying the
following conditions, there exists a PBD(v , {n − 1,n,n + 1},1) with αi
blocks of size i.

αn ≥ αn−1

αn ≥ αn+1

αn+1 + αn−1 ≥ αn

αn−1

(
n − 1

2

)
+ αn

(
n
2

)
+ αn+1

(
n + 1

2

)
=

(
v
2

)
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Pairwise balanced designs

Using arguments of this type, we obtain:

Theorem
Let h ∈ Q, and let K = {bhc − 1, bhc, bhc+ 1}.

There exists a constant Ch, depending only on h
For every n > Ch, there exists some v ∈ N
Such that there exists a PBD(v ,K ,1) with n blocks and average
block size h.

Corollary

For any h ∈ Q and all sufficiently large n, there exists an n × bhnc
compressed sensing matrix with the (`1,O(

√
n)) property.
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