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What is a Sparse Structure?
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Class Resolutions
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Topological resolution of a class C
Shallow topological minors at depth t:

H G

≤ 2t

C Õ t = {H : some ≤ 2t-subdivision of H is a subgraph of some G ∈ C}.

Topological resolution:

C ⊆ C Õ 0 ⊆ C Õ 1 ⊆ . . . ⊆ C Õ t ⊆ . . . ⊆ C Õ∞

time
//
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The Somewhere dense — Nowhere dense dichotomy

A class C is somewhere dense if there exists τ such that C Õ τ
contains all graphs.

⇐⇒ (∃τ) ω(C Õ τ) =∞.

A class C is nowhere dense otherwise.

⇐⇒ (∀τ) ω(C Õ τ) <∞.
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Every kind of shallow minors

Minor Topological minor Immersion

≤ t




≤ 2t





≤ 2t

≤ s + 1
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Class Taxonomy

d χ ω

Minors

Bounded
expansion

Bounded
expansion

Nowhere
dense

Topological
minors

Bounded
expansion

Bounded
expansion

Nowhere
dense

Immersions

Bounded
expansion

Bounded
expansion

Nowhere
dense

Definition
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Class Taxonomy

d χ ω

Minors Bounded
expansion

Bounded
expansion

Nowhere
dense

Topological
minors

Bounded
expansion

Bounded
expansion

Nowhere
dense

Immersions Bounded
expansion

Bounded
expansion

Nowhere
dense

Theorem (Nešetřil, POM 2012)
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The Nowhere Dense World

Nowhere denseAlmost wide

Bounded

expansion

Excluded

topological minor

Locally bounded

expansion

Locally excluded

minor
Excluded minor

Bounded genus
Locally bounded

tree-width

PlanarBounded degree

More. . .
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Density
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What is unavoidable in dense graphs?

Theorem (Erdős, Simonovits, Stone 1966)

ex(n,H) =

(
1− 1

χ(H)− 1

)(
n

2

)
+ o(n2).

Theorem (Bukh, Jiang 2016)

ex(n,C2k) ≤ 80
√
k log k n1+

1
k +O(n).

Theorem (Jiang 2010)

ex(n,K
(≤p)
t ) = O(n

1+ 10
p ).
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Concentration

Theorem (Jiang 2010)

ex(n,K
(≤p)
t ) = O(n

1+ 10
p ).

C ⊆ C Õ 0 ⊆ . . . ⊆ C Õ t ⊆ . . . ⊆ C Õ 10t
ε ⊆ . . . ⊆ C Õ∞

‖G‖ > Ct |G|1+ε

OO

Kt

OO

‖G‖= number of edges |G|= number of vertices

Hence:

lim sup
G∈C Õ t

log ‖G‖
log |G| > 1 + ε =⇒ lim sup

G∈C Õ 10t
ε

log ‖G‖
log |G| = 2.
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Classification by logarithmic density

Theorem (Class trichotomy — Nešetřil and POM)

Let C be an infinite class of graphs. Then

sup
t

lim sup
G∈C Õ t

log ‖G‖
log |G| ∈ {−∞, 0, 1, 2}.

• bounded size class ⇐⇒ −∞ or 0;
• nowhere dense class ⇐⇒ −∞, 0 or 1;
• somewhere dense class ⇐⇒ 2.
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Decomposing



Overview Resolutions Density Decomposing Flatening Model Checking Structural Sparsity Limits

Tree-depth

Definition

The tree-depth td(G) of a graph G is
the minimum height of a rooted forest
Y s.t.

G ⊆ Closure(Y ).

td(Pn) = log2(n+ 1)
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Low tree-depth decompositions

χp(G) is the minimum of colors such that every subset I of ≤ p
colors induces a subgraph GI so that td(GI) ≤ |I|.

Theorem (Nešetřil and POM; 2006, 2010)

∀p, sup
G∈C

χp(G) <∞ ⇐⇒ C has bounded expansion.

∀p, lim sup
G∈C

logχp(G)

log |G| = 0 ⇐⇒ C is nowhere dense.

(extends DeVos, Ding, Oporowski, Sanders, Reed, Seymour, Vertigan
on low tree-width decomposition of proper minor closed classes, 2004)
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Logarithmic density (again)

Theorem (Nešetřil and POM)

Somewhere dense

∀F : sup
t

lim sup
G∈C Õ t

log(#F ⊆ G)

log |G|

=|F |
33

∈{−∞,0,1,...α(F )} ++
Nowhere dense

Remark
Proof based on Low Tree-Depth Decompositions and regularity
properties of bounded height trees. Details
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Flatening
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Quasi-wide classes

A class C of graphs is quasi-wide if
∀d ∃s ∀m ∃N : ∀G ∈ C, |G| ≥ N , ∃S,A ⊆ V (G) with
• |S| ≤ s, |A| ≥ m,
• ∀x 6= y ∈ A \ S, distG−S(x, y) > d.

−→



Overview Resolutions Density Decomposing Flatening Model Checking Structural Sparsity Limits

Quasi-wide classes

A class C of graphs is quasi-wide if
∀d ∃s ∀m ∃N : ∀G ∈ C, |G| ≥ N , ∃S,A ⊆ V (G) with
• |S| ≤ s, |A| ≥ m,
• ∀x 6= y ∈ A \ S, distG−S(x, y) > d.

Theorem (Nešetril and POM)

A hereditary class of graphs is quasi-wide if and only if it is
nowhere dense.
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r-neighbourhood covers

r
2r
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r-neighbourhood covers

Theorem (Grohe, Kreutzer, Siebertz 2013)

For every C nowhere dense (resp. bounded expansion) class of
graphs there is f s.t.
∀r ∈ N, ε > 0, and G ∈ C with |G| ≥ f(r, ε) there exists a family
X of subgraphs of G s.t.
• the maximum radius of H ∈ X is ≤ 2r;
• every v ∈ G has all its r-neighborhood in some H ∈ X ;
• every v ∈ G belongs to at most |G|ε (resp. K(C, r, ε))
subgraphs in X .

Remark
Actually a characterization of nowhere dense and bounded
expansion monotone classes.
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Model Checking
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Model checking

Theorem (Dvořák, Kráľ, Thomas 2010)

For every class C with bounded expansion, every property of
graphs definable in first-order logic can be decided in time O(n)
on C.

Theorem (Kazana, Segoufin 2013)

For every class C with bounded expansion, every first-order
definable subset can be enumerated in lexicographic order in
constant time between consecutive outputs and linear time
preprocessing time.
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Model checking

Theorem (Grohe, Kreutzer, Siebertz 2014)

For every nowhere dense class C and every ε > 0, every property
of graphs definable in first-order logic can be decided in time
O(n1+ε) on C.
Theorem (Dvořák, Kráľ, Thomas 2010; Kreutzer 2011)

if a monotone class C is somewhere dense, then deciding first-
order properties of graphs in C is not fixed-parameter tractable
(unless FPT = W[1].

Remark
Hence a characterization of nowhere dense/somewhere dense
dichotomy in terms of algorithmic complexity.
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Excluded Structures
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Nowhere dense

At each depth, an excluded





topological minor

minor

immersion
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Bounded expansion

At each depth, bounded

{
average degree

chromatic number

}
of





topological minors

minors

immersions
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Forbidden structure for bounded expansion?

Conjecture
Every monotone nowhere dense class of graphs C
• either has bounded expansion,
• or contains, for some k ∈ N, the k-th subdivisions of graphs
with arbitrarily large girth and chromatic number.

Conjecture (Thomassen)

δ(G) ≥ Fδ(d, g)

⇓

∃H ⊆ G :

{
δ(H) ≥ d,
girth(H) ≥ g

(g = 6: Kühn, Osthus 2002)

Conjecture (Erdős–Hajnal)

χ(G) ≥ Fχ(c, g)

⇓

∃H ⊆ G :

{
χ(H) ≥ c,
girth(H) ≥ g

(g = 4: Rödl 1977)
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Commercial Break
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Structurally sparse classes
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What is a Sparse Structure? (the return)
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Structurally Sparse Classes

Definition (outline)

A class is structurally sparse if it can be “interpreted” in a sparse
class.

• small classes;
• random-free classes;
• classes with few (local) types of vertices;
• classes excluding some special (generic) structures.
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Special Generic Structures

u v

uv̄ ūv uvūv̄

000001010011100101110111 a1 a2 a3 an

b1 b2 b3 bn

NIP Stability

Nowhere dense

Bounded expansion
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Interpretation

G = (V,E)
I(G) = (η(G), φ(G))

I = (η, φ)

η(x1, x2) := (deg(x1) = 3) ∧ (deg(x2) = 3)

φ(x1, x2; y1, y2) := ((x1 ∼ y1) ∧ (x2 = y2)) ∨ ((x1 = y1) ∧ (x2 ∼ y2))
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Stability & NIP
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Stability and Order property

a1 a2 a3 an

b1 b2 b3 bn

G |= φ(āi, b̄j) ⇐⇒ i < j
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NIP and VC-dimension

a

b

c

∅

{b}

{b, c}

{a, b, c}
{c}

{a, c}

{a, b}
{a}

φ(G, ȳ) = {x̄ : G |= φ(x̄, ȳ)}

K(φ,G) = {φ(G, ȳ) : ȳ ∈ G}

{a, b, c} {a, b} {a, c} {a} {b, c} {b} {c} ∅

a b c
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Bounded VC-dimension

Theorem (Grohe, Turán 2004)

For any monotone graph class C, the following are equivalent:
1. MSO has bounded VC dimension on C;
2. C has bounded treewidth.

Theorem (Adler, Adler 2010; Laskowski 1992)

For any monotone graph class C, the following are equivalent:
1. FO has bounded VC dimension on C (NIP);
2. FO has bounded order property on C (Stability);
3. C is nowhere dense.

Example
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A Glimpse at Model Theory World

NSOP

o-minimal

strongly minimal

ω-stable

superstable

dp-minimal

NIP

stable

(Qn, <1, . . . , <n)

(Q, <) RCF

ACF

ACVF

EIF

FRER

SSSG

Free groups

ZFC

Rado

universal
bowtie-free

graph

atomless
Boolean
algebra

(Z,+, ., 0, 1)

ACVF Algebraically Closed
Value Fields

RCF Real Closed Field

ACF Algebraically Closed
Field

EIF Everywhere Infinite
Forest (Fraïssé limit
of finite trees)

FRER Finitely Refining
Equivalence
Relations

SSSG Strictly Stable
Superflat Graph

(based on model theory universe by Gabriel Conant)
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Shatter function

πS(n)= max
|A|≤n

∣∣{C ∩A : C ∈ S}
∣∣ shatter function

Theorem
Let C be a monotone class of graphs.
For r ∈ N let Sr = {Nr(G, v) : v ∈ V (G), G ∈ C}.

Then C is
• a somewhere dense class iff (∃r) πSr(n) = 2n;
• a nowhere dense class iff (∀r) πSr(n) is polynomial in n;
• a bounded expansion class iff (∀r) πSr(n) is linear in n.

Proof.
Adler–Adler (2010) + Sauer–Shelah (1972) +
Reidl–Villaamil–Stavropoulos (2016)
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Structural Limits
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Structural Limits

Definition (Stone pairing)

Let G be a graph and let φ be a first-order formula with p free
variables.

〈φ,G〉 =
|φ(G)|
|G|p = Pr(G |= φ(X1, . . . , Xp))

for independently and uniformly distributed Xi ∈ G.

A sequence (An) is FO-convergent if, for every φ ∈ FO, the
sequence 〈φ,A1〉, . . . , 〈φ,An〉, . . . is convergent.



Overview Resolutions Density Decomposing Flatening Model Checking Structural Sparsity Limits

Representation theorem

Theorem (Nešetřil, POM 2012)

There are maps A 7→ µA and φ 7→ k(φ), such that
• A 7→ µA is injective;
• µA is Sω-invariant;
• 〈φ,A〉 =

∫
S k(φ) dµA;

• a sequence (An)n∈N is FO-convergent iff µAn converges
weakly.

Thus if µAn ⇒ µ, it holds

〈φ, µ〉 :=

∫

S
k(φ) dµ = lim

n→∞

∫

S
k(φ) dµAn = lim

n→∞
〈φ,An〉.
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Modelings

Definition
A modeling A is a graph on a standard probability space s.t.
every first-order definable set is measurable.

〈φ,A〉 = ν⊗pA (φ(A)).

Theorem (Nešetřil, POM 2013)

If a monotone class C has modeling limits then C is nowhere dense.
Proof

Conjecture
A monotone class C has modeling limits iff C is nowhere dense.
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Thank you for your
attention.



Hints: Random Graphs Hints: Sunflowers Hints: VC dimension Hints: Modelings

Hints: Random Graphs
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Bounded Expansion Random Graphs
Demaine, Reidl, Rossmanith, Villaamil, Sikdar, Sullivan 2015

• Configuration Model and the Chung-Lu Model with specified
asymptotic degree sequences
Power law d−γ γ > 2

Power law w/ cutoff d−γe−λd γ > 2, λ > 0

Exponential e−λd λ > 0

Stretched exponential dβ−1e−λd
β

λ, β > 0

Gaussian exp
(
− (d−µ)2

2σ2

)
µ, σ

Log-normal d−1 exp
(
− (log d−µ)2

2σ2

)
µ, σ

• generalization of Erdős-Rényi graphs (perturbed bounded-
degree graphs), which includes the stochastic block model
with small probabilities.

Back
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Hints: Sunflowers
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(k, F )-sunflower (C,F1, . . . ,Fk)

G F

Y1

Yk

Y2

KC

F1

F2

Fk

Xk

X2

X1

∀X1 ∈ F1, . . .∀Xk ∈ Fk

G[C∪X1∪· · ·∪Xk] ≈ F
⇒ k ≤ α(F ) and

(#F ⊆ G) ≥
k∏

i=1

|Fi|.
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Finding a large sunflower

Let F be a graph of order p, let k ∈ N and let 0 < ε < 1.
For every graph G such that (#F ⊆ G) > |G|k+ε there exists in
G a (k + 1, F )-sunflower (C,F1, . . . ,Fk+1) with

min
i
|Fi| ≥

( |G|
χp(G)p/ε

)τ(ε,p)
.

Hence ∃G′ ⊆ G such that

|G′| ≥
(

|G|
χp(G)p/ε

)τ(ε,p)
and (#F ⊆ G′) ≥

( |G′| − |F |
k + 1

)k+1

.

Back
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Hints: VC dimension
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Example

Problem
Prove that there exist functions f, g such that

∀n, r ∈ N ∀graph G
If there exists an orientation of G and a subset X ⊆ V (G) with
|X| = f(n, r), such that ∀u 6= v ∈ X there exists in oriented G
• either a directed path of length r from u to v;
• or a directed path of length r from v to u.

Then G contains a g(r)-subdivision of Kn.
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But not
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Example

Theorem
If there exists an orientation of G and a subset X ⊆ V (G) with
|X| = f(n, r), such that ∀u 6= v ∈ X
• either there exists a directed path of length r from u to v;
• or there exists a directed path of length r from v to u.

Then G contains a g(r)-subdivision of Kn.

Proof.
Assume for contradiction ∃C (monotone) nowhere dense with
graphs with arbitrarily large X, and let η(x, y) := ∃ directed
path of length r from u to v.
Unbounded tournaments ⇒ Unbounded transitive tournaments
⇒ Unbounded order property ⇒ somewhere dense E

Simple proof but does not give f and g!

Back
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Hints: Modelings
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Proof (sketch)

• Assume C is somewhere dense. There exists p ≥ 1 such that
Subp(Kn) ∈ C for all n;

• For an oriented graph G, define G′ ∈ C:

p

p

G

p

p

x y

x′ y′

︷ ︸︸ ︷
(2p+ 1)(|G| − dG(x))− 1

︷ ︸︸ ︷
(2p+ 1)(|G| − dG(y))− 1

p︷ ︸︸ ︷ p︷ ︸︸ ︷ p︷ ︸︸ ︷G′

• ∃ basic interpretation I, such that for every graph G,
I(G′) ∼= G[k(G)]

def
= G+, where k(G) = (2p+ 1)|G|.
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Proof (sketch)

Gn

G′
n

L

FO

1/2

A

I I

G+
n

FO
I(A)

G+
n WI(A)

L

⇓

⇐⇒ G+
n

L
1/2

Back
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