Octonions

Alan Pryde 27/03/2012

The octonions or Cayley numbers were discovered independently by Cayley in 1845 and Graves in 1848.

An **algebra** is a vector space (today, over the reals) with an additional bilinear operation which we call multiplication and denote by juxtaposition.

There are three levels of associativity:

- An algebra is **power-associative** if every subalgebra generated by one element is associative.
- It is **alternative** if every subalgebra generated by two elements is associative.
- An algebra is associative if every subalgebra generated by three elements is associative.

An algebra is a **division algebra** if ab = 0 implies either a = 0 or b = 0.

A *-algebra is an algebra A with an involution $(a^{**} = a, \mathbf{R}\text{-linear}, (ab)^* = b^*a^*)$.

A *-algebra **A** is **real** if $a^* = a$ for all $a \in \mathbf{A}$.

A unital *-algebra **A** is called **nicely normed** if $a + a^* \in \mathbf{R}$ and $aa^* = a^*a > 0$ for all non-zero $a \in \mathbf{A}$.

Given a *-algebra **A**, its **Cayley-Dickson double** is $\mathbf{A}^2 = \mathbf{A} \times \mathbf{A}$ with the product $(a,b)(c,d) = (ac-db^*,a^*d+cb)$ and involution $(a,b)^* = (a^*,-b)$.

Example 1.

- **1**. **R** is a real *-algebra and its Cayley-Dickson double is **C**. 1 = (1,0) and i = (0,1); $(\alpha + \beta i)^* = \alpha \beta i$
- $\textbf{2}. \ \ \textit{The Cayley-Dickson double of C is the quaternions H}.$

$$1 = (1,0), i = (0,1), j = (i,0), k = (0,i),$$
$$(\alpha + \beta i + \gamma j + \delta k)^* = \alpha - \beta i - \gamma j - \delta k$$

3. The Cayley-Dickson double of \mathbf{H} is the octonions \mathbf{O} .

$$1 = (1,0), b_1 = (0,1), b_2 = (i,0),$$

$$b_3 = (0,i), b_4 = (j,0), b_5 = (0,j),$$

$$b_6 = (k,0), b_7 = (0,-k)$$

$$b_i^* = b_i$$

4. The Cayley-Dickson double of O is the sedenions O^2 .

A simple calculation gives (#)

$$(a,b)^*(a,b) = (a^*a + bb^*,0)$$

$$(a,b)(a,b)^* = (aa^* + bb^*,0)$$

Proposition 2. Let A be a unital *-algebra.

- **1**. A^2 is a unital *-algebra with unit (1,0).
- **2**. The map $a \mapsto (a,0) : \mathbf{A} \to \mathbf{A}^2$ is a homomorphic embedding.
- **3**. If **A** is nicely normed, then
 - **a**. $||a|| = \sqrt{aa^*}$ defines a norm on **A**.
 - **b**. non-zero elements have multiplicative inverses.
- **4**. If **A** is nicely normed and alternative, then
 - **a**. ||ab|| = ||a|| ||b||
 - **b**. **A** is a division algebra.

Theorem 3. Let A be a *-algebra.

- 1. A^2 is never real.
- **2. A** is nicely normed \Leftrightarrow **A**² is nicely normed.
- **3**. **A** is real (and thus commutative) \Leftrightarrow **A**² is commutative.
- **4.** A is commutative and associative \Leftrightarrow A^2 is associative.
- **5**. **A** is associative and nicely normed \Leftrightarrow **A**² is alternative & nicely normed.

Corollary 4.

- **1**. **R**, **C**, **H** and **O** are all multiplicatively normed division algebras.
- **2**. **O** *is not real or commutative or associative, but it is alternative.*
- **3.** O^2 is not real or commutative or alternative, (but it is power associative).

Theorem 5.

- 1. (Hurwitz 1898) **R**, **C**, **H** and **O** are the only multiplicatively normed division algebras.
- **2**. (Zorn 1930) **R**, **C**, **H** and **O** are the only alternative division algebras.
- **3**. (Kervaire, Bott-Milnor 1958) All division algebras have dimension 1, 2, 4 or 8.

Comparison with Clifford Algebras

The **Clifford algebra Cl(n)** = **Cl(0, n, 0)** is a unital associative algebra with generators $e_1, e_2, \dots e_n$ satisfying the relations $e_i^2 = -1$ and $e_j e_k = -e_k e_j$ for $j \neq k$.

Proposition 6.

- 1. Cl(0) = R
- **2**. Cl(1) = C
- 3. Cl(2) = H
- 4. $Cl(3) \neq 0$

Remark 7.

- **1**. **O** and **Cl(3)** each have generators e_1, e_2, e_3 .
- **2**. **O** and **Cl(3)** each have basis elements $1, e_1, e_2, e_1e_2, e_3, e_1e_3, e_2e_3, (e_1e_2)e_3$.
- **3**. Renaming these elements respectively $1, b_1, b_2, b_3, b_4, b_5, b_6, b_7$ we obtain multiplication tables for the basis elements of **O** and **Cl(3)** respectively as follows:

1	b_1	b_2	b_3	b_4	b_5	b_6	b_7
b_1	-1	b_3	$-b_{2}$	b_5	$-b_{4}$	$-b_{7}$	b_6
b_2	$-b_{3}$	-1	b_1	b_6	b_7	$-b_{4}$	$-b_{5}$
b_3	b_2	$-b_1$	-1	b_7	$-b_{6}$	b_5	$-b_4$
b_4	$-b_{5}$	$-b_{6}$	$-b_{7}$	-1	b_1	b_2	b_3
b_5	b_4	$-b_{7}$	b_6	$-b_1$	-1	$-b_3$	b_2
b_6	b_7	b_4	$-b_{5}$	$-b_{2}$	b_3	-1	$-b_1$
b_7	$-b_6$	b_5	b_4	$-b_{3}$	$-b_{2}$	b_1	-1

1	b_1	b_2	b_3	b_4	b_5	b_6	b_7
b_1	-1	b_3	$-b_{2}$	b_5	$-b_4$	b_7	$-b_6$
b_2	$-b_3$	-1	b_1	b_6	$-b_{7}$	$-b_4$	b_5
b_3	b_2	$-b_1$	-1	b_7	b_6	$-b_5$	$-b_4$
b_4	$-b_5$	$-b_6$	b_7	-1	b_1	b_2	$-b_3$
b_5	b_4	$-b_{7}$	$-b_{6}$	$-b_1$	-1	b_3	b_2
b_6	b_7	b_4	b_5	$-b_2$	$-b_{3}$	-1	$-b_1$
b_7	$-b_6$	b_5	$-b_{4}$	$-b_{3}$	b_2	$-b_1$	1

- **4. O** is an alternative division algebra Cl(3) is associative but has zero divisors, for example $(1 + b_7)(1 b_7) = 0$.
- **5**. In **O** the involution satisfies $b_j^* = -b_j$ for all j. In **Cl(3)** an involution satisfies $b_j^* = -b_j$ for all $j \neq 7$ and $b_7^* = b_7$.

Twisted group algebras

Consider the additive group \mathbb{Z}_2^3 whose elements we label

$$1 = (0,0,0), b_1 = (1,0,0), b_2 = (0,1,0), b_3 = (1,1,0), b_4 = (0,0,1), b_5 = (1,0,1), b_6 = (0,1,1), b_7 = (1,1,1).$$

This group has multiplication table

1	b_1	b_2	b_3	b_4	b_5	b_6	b_7
b_1	1	b_3	b_2	b_5	b_4	b_7	b_6
b_2	b_3	1	b_1	b_6	b_7	b_4	b_5
b_3	b_2	b_1	1	b_7	b_6	b_5	b_4
b_4	b_5	b_6	b_7	1	b_1	b_2	b_3
b_5	b_4	b_7	b_6	b_1	1	b_3	b_2
b_6	b_7	b_4	b_5	b_2	b_3	1	b_1
b_7	b_6	b_5	b_4	b_3	b_2	b_1	1

The group algebra $\mathbf{R}(\mathbf{Z}_2^3) = span\{1, b_1, b_2, b_3, b_4, b_5, b_6, b_7\}$ is the associative algebra of all formal linear combinations with product induced by the product in $G = \mathbf{Z}_2^3$. Note that $\mathbf{R}(\mathbf{Z}_2^3)$ is commutative, but not a division ring because $(1 + b_1)(1 - b_1) = 0$.

Any function $\alpha: G \times G \to \{\pm 1\}$ induces a new product on $\mathbf{R}(G)$ given by $a \times b = \alpha(a,b)ab$ for $a,b \in G$. The new algebra, not necessarily associative, is called a **twisted group algebra**. So

Proposition 8. **O** and Cl(3) are twisted group algebras of the group \mathbb{Z}_2^3 over \mathbb{R} .

The Fano plane and O

The non-zero elements of \mathbb{Z}_2^3 are also the points of the seven point projective plane.

Copies of pure quaternions:

$$(b_7,b_2,b_5)$$

 (b_5,b_3,b_6)
 (b_6,b_1,b_7)
 (b_1,b_2,b_3)
 (b_1,b_4,b_5)
 (b_2,b_4,b_6)
 (b_3,b_4,b_7)

Left regular representations

If $A = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}, \mathbb{Cl}(3)$ or $\mathbb{R}(\mathbb{Z}_2^3)$ and $n = \dim(\mathbb{A})$, the **coordinate map** $\mu : \mathbb{A} \to \mathbb{R}^n$ is a linear isomorphism. For each $a \in \mathbb{A}$ there is a unique matrix $L_a \in M_n(\mathbb{R})$ such that $\mu(ab) = L_a\mu(b)$. The map $\psi : \mathbb{A} \to M_n(\mathbb{R}) : a \mapsto L_a$ is the **left regular representation**.

Remark 9.

- **1**. $\psi : \mathbf{A} \to M_n(\mathbf{R})$ is injective and linear.
- **2**. $\psi(1) = I$.
- **3**. For the associative algebras, ψ is an algebra homomorphism.
- **4.** For the *-algebras, ψ is a *-map.
- **5.** For the division algebras, $\psi(aa^*) = \psi(a)\psi(a^*) = ||a||^2 I$.
- **6**. For the division algebras, $\psi(\mathbf{A})$ is a linear subspace consisting of invertible matrices and zero.

5

Example 10.

1. If $z = \alpha + \beta i \in \mathbb{C}$ then $\mu(z) = (\alpha, \beta)$,

$$\psi(z) = \left[\begin{array}{cc} \alpha & -\beta \\ \beta & \alpha \end{array} \right] and$$

$$\psi(z^*) = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} = \psi(z)^T.$$

2. If
$$z = \alpha + \beta i + \gamma j + \delta k \in \mathbf{H}$$
 then $\mu(z) = (\alpha, \beta, \gamma, \delta)$,

$$\psi(z) = \begin{bmatrix} \alpha & -\beta & -\gamma & -\delta \\ \beta & \alpha & -\delta & \gamma \\ \gamma & \delta & \alpha & -\beta \\ \delta & -\gamma & \beta & \alpha \end{bmatrix}$$

and again $\psi(z^*) = \psi(z)^T$.

3. If $z = \alpha_0 + \alpha_1 b_1 + \alpha_2 b_2 + ... + \alpha_7 b_7 \in \mathbf{O}$ then $\mu(z) = (\alpha_0, \alpha_1, ..., \alpha_7)$,

$$\psi(z) = \begin{bmatrix}
\alpha_0 & -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 & -\alpha_5 & -\alpha_6 & -\alpha_7 \\
\alpha_1 & \alpha_0 & -\alpha_3 & \alpha_2 & -\alpha_5 & \alpha_4 & \alpha_7 & -\alpha_6 \\
\alpha_2 & \alpha_3 & \alpha_0 & -\alpha_1 & -\alpha_6 & -\alpha_7 & \alpha_4 & \alpha_5 \\
\alpha_3 & -\alpha_2 & \alpha_1 & \alpha_0 & -\alpha_7 & \alpha_6 & -\alpha_5 & \alpha_4 \\
\alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 & \alpha_0 & -\alpha_1 & -\alpha_2 & -\alpha_3 \\
\alpha_5 & -\alpha_4 & \alpha_7 & -\alpha_6 & \alpha_1 & \alpha_0 & \alpha_3 & -\alpha_2 \\
\alpha_6 & -\alpha_7 & -\alpha_4 & \alpha_5 & \alpha_2 & -\alpha_3 & \alpha_0 & \alpha_1 \\
\alpha_7 & \alpha_6 & -\alpha_5 & -\alpha_4 & \alpha_3 & \alpha_2 & -\alpha_1 & \alpha_0
\end{bmatrix}$$

and again $\psi(z^*) = \psi(z)^T$.

4. If $z = \alpha_0 + \alpha_1 b_1 + \alpha_2 b_2 + ... + \alpha_7 b_7 \in \mathbf{Cl(3)}$ then $\mu(z) = (\alpha_0, \alpha_1, ..., \alpha_7)$,

$$\psi(z) = \begin{bmatrix}
\alpha_0 & -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 & -\alpha_5 & -\alpha_6 & \alpha_7 \\
\alpha_1 & \alpha_0 & -\alpha_3 & \alpha_2 & -\alpha_5 & \alpha_4 & -\alpha_7 & -\alpha_6 \\
\alpha_2 & \alpha_3 & \alpha_0 & -\alpha_1 & -\alpha_6 & \alpha_7 & \alpha_4 & \alpha_5 \\
\alpha_3 & -\alpha_2 & \alpha_1 & \alpha_0 & -\alpha_7 & -\alpha_6 & \alpha_5 & -\alpha_4 \\
\alpha_4 & \alpha_5 & \alpha_6 & -\alpha_7 & \alpha_0 & -\alpha_1 & -\alpha_2 & -\alpha_3 \\
\alpha_5 & -\alpha_4 & \alpha_7 & \alpha_6 & \alpha_1 & \alpha_0 & -\alpha_3 & \alpha_2 \\
\alpha_6 & -\alpha_7 & -\alpha_4 & -\alpha_5 & \alpha_2 & \alpha_3 & \alpha_0 & -\alpha_1 \\
\alpha_7 & \alpha_6 & -\alpha_5 & \alpha_4 & \alpha_3 & -\alpha_2 & \alpha_1 & \alpha_0
\end{bmatrix}$$

and again $\psi(z^*) = \psi(z)^T$.

5. If
$$z = \alpha_0 + \alpha_1 b_1 + \alpha_2 b_2 + ... + \alpha_7 b_7 \in \mathbf{R}(\mathbf{Z}_2^3)$$

then $\mu(z) = (\alpha_0, \alpha_1, \ldots, \alpha_7),$

$$\psi(z) = \begin{bmatrix}
\alpha_0 & \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 \\
\alpha_1 & \alpha_0 & \alpha_3 & \alpha_2 & \alpha_5 & \alpha_4 & \alpha_7 & \alpha_6 \\
\alpha_2 & \alpha_3 & \alpha_0 & \alpha_1 & \alpha_6 & \alpha_7 & \alpha_4 & \alpha_5 \\
\alpha_3 & \alpha_2 & \alpha_1 & \alpha_0 & \alpha_7 & \alpha_6 & \alpha_5 & \alpha_4 \\
\alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 & \alpha_0 & \alpha_1 & \alpha_2 & \alpha_3 \\
\alpha_5 & \alpha_4 & \alpha_7 & \alpha_6 & \alpha_1 & \alpha_0 & \alpha_3 & \alpha_2 \\
\alpha_6 & \alpha_7 & \alpha_4 & \alpha_5 & \alpha_2 & \alpha_3 & \alpha_0 & \alpha_1 \\
\alpha_7 & \alpha_6 & \alpha_5 & \alpha_4 & \alpha_3 & \alpha_2 & \alpha_1 & \alpha_0
\end{bmatrix}$$

References

J.C. Baez, "The octonions", Bull. Amer. Math. Soc. 39 (2002), 145-205.

I.R. Porteous, "Clifford algebras and the classical groups", CUP, 1995.