Quaternions

Alan Pryde 24/11/11

1. Introduction

The set **H** of quaternions was first described by William Hamilton in 1843. It is defined to be the associative algebra over the reals generated by the four elements 1, i, j, k with the relations $i^2 = j^2 = k^2 = ijk = -1$ and 1 is an identity element.

Claim 1.

- (i) ij = k = -ji
- (ii) jk = i = -kj
- (iii) ki = j = -ik

So quaternions are objects of the form $X = x_0 + x_1i + x_2j + x_3k = x_0 + x$ where the coefficients $x_j \in \mathbf{R}$. The coefficient $x_0 = Re(X)$ is called the scalar or real part of X and $x = x_1i + x_2j + x_3k = Pu(X)$ is the vector or purely quaternionic part. As vector spaces, $\mathbf{H} = \mathbf{R}^4 = \mathbf{R} + \mathbf{R}^3$, and we can interpret i, j, k as the standard basis vectors of \mathbf{R}^3 .

H inherits the standard Euclidean **norm** and **inner product** from \mathbb{R}^4 . So $||X|| = \sqrt{x_0^2 + x_1^2 + x_2^2 + x_3^2}$ and $X \cdot Y = x_0 y_0 + x_1 y_1 + x_2 y_2 + x_3 y_3$.

There is also an **involution** given by $X^* = x_0 - x_1i - x_2j - x_3k = x_0 - x$.

On pure quaternions there is also the standard vector cross product

$$x \times y = \det \begin{bmatrix} i & j & k \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}$$

Claim 2.

- (i) $Re(X) = \frac{1}{2}(X + X^*).$
- (ii) $Pu(X) = \frac{1}{2}(X X^*).$
- (iii) X is real if and only if $X = X^*$.
- (iv) X is purely quaternionic if and only if $X = -X^*$.

Claim 3. Take $x, y, z \in \mathbf{R}^3$.

- (i) $xy = -x \cdot y + x \times y$.
- (ii) Every $x \in S^2 \subset \mathbf{R}^3$ satisfies $x^2 = -1$.
- (iii) $x \times y = \frac{1}{2}(xy yx)$.

- (iv) $xyx = ||x||^2 y 2(x \cdot y)x$
- (v) $\operatorname{Re}(xyz) = -x \cdot (y \times z) = -\det(x, y, z)$.

Claim 4.

- (i) $(XY)^* = Y^*X^*$.
- (ii) $X^*X = ||X||^2$.
- (iii) ||XY|| = ||X|| ||Y||.
- (iv) Each non-zero X is invertible with $X^{-1} = X^*/\|X\|^2$.
- (\mathbf{v}) Each quaternion X is the product of 2 pure quaternions.

Claim 5.

- (i) **H** is a four-dimensional associative division algebra over the reals.
- (ii) **H** is a C^* -algebra (a Banach algebra with involution satisfying $||X^*X|| = ||X||^2$).

Theorem 6. (*Frobenius*, 1878). The only finite dimensional associative division algebras over the reals are R, C and H.

Theorem 7. (*Hurwitz*, 1898). The only finite dimensional multiplicatively normed division algebras over the reals are **R**, **C**, **H** and **O**.

Claim 8.

- (i) The set $\mathbf{H}^{\#}$ of non-zero quaternions is a group.
- (ii) The set of unit quaternions coincides with the unit sphere S^3 in \mathbf{R}^4 and is a subgroup of $\mathbf{H}^{\#}$.

2. Matrix representations

Define the maps
$$\varphi : \mathbf{H} \to \mathbf{M}_2(\mathbf{C})$$
 by $\varphi(X) = \begin{bmatrix} x_0 + x_1 i & x_2 + x_3 i \\ -x_2 + x_3 i & x_0 - x_1 i \end{bmatrix}$

and
$$\psi : \mathbf{H} \to \mathbf{M}_4(\mathbf{R})$$
 by $\psi(X) = \begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ -x_1 & x_0 & -x_3 & x_2 \\ -x_2 & x_3 & x_0 & -x_1 \\ -x_3 & -x_2 & x_1 & x_0 \end{bmatrix}$.

Claim 9.

- (i) $\varphi: \mathbf{H} \to \mathbf{M}_2(\mathbf{C})$ is an injective *-homomorphism of algebras.
- (ii) $\det(\varphi(X)) = ||X||^2$.
- (iii) Restricted to the unit quaternions we get a *-isomorphism $\varphi: S^3 \to SU(2)$.

Claim 10.

- (i) $\psi: \mathbf{H} \to \mathbf{M}_4(\mathbf{R})$. is an injective *-homomorphism of algebras.
- (ii) $\det(\psi(X)) = ||X||^4$.
- (iii) Restricted to the unit quaternions we get an injective *-homomorphism $.\psi: S^3 \to SO(4).$

3. Quaternions and rotations in 3-space.

Theorem 11. (Cartan–Dieudonné) An element of O(3) is a rotation if and only if it is the composite of two planar reflections.

Take $X \in S^3 \subset \mathbf{H}$. .So,. X is a unit quaternion and $XX^* = X^*X = \|X\|^2 = 1$. .Now define a map $\rho_X : \mathbf{H} \to \mathbf{H}$ by $\rho_X(Y) = XYX^*$.

Claim 12. Let X be a unit quaternion.

- (i) $\rho_X : \mathbf{H} \to \mathbf{H}$ is an injective *-homomorphism of algebras.
- (ii) $\rho_X : \mathbf{R}^3 \to \mathbf{R}^3$.
- (iii) If x is a unit pure quaternion, then $-\rho_x : \mathbf{R}^3 \to \mathbf{R}^3$ is reflection in the plane x^{\perp} .
- (iv) In general, $\rho_X : \mathbf{R}^3 \to \mathbf{R}^3$ is a rotation, that is $\rho_X \in SO(3)$.

Now define the map $.\rho: S^3 \to SO(3)$.by. $\rho(X) = \rho_X$.

Claim 13. $\rho: S^3 \to SO(3)$ is a surjective group homomorphism with kernel. $S^0 = \{1, -1\}$.

So the group of unit quaternions $.S^3$ is a double cover of the special orthogonal group. SO(3). This is the definition of the spin group Spin(3). .So $Spin(3) = S^3 = SU(2)$. Note that Spin(3) is a simply connected Lie group. On the other hand SO(3) is connected but not simply connected. Its fundamental group is $\mathbb{Z}_2 = S^0$.

Finally, .for a unit quaternion X, we can write $X = x_0 + x = x_0 + \|x\| \widehat{x} = \cos \alpha + \sin \alpha \widehat{x}$ where $0 \le \alpha < \pi$.

Claim 14. For $X \in S^3$, the map $\rho_X : \mathbf{R}^3 \to \mathbf{R}^3$ is rotation through the angle $2\alpha = 2\arccos(\operatorname{Re} X)$ about the axis given by x = Pu(X).

Reference

I.R. Porteous "Clifford algebras and the classical groups" (Cambridge, 1995)