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1. Introduction

The set H of quaternions was first described by William Hamilton in 1843. It is defined
to be the associative algebra over the reals generated by the four elements 1,1, j, k with the
relations i’ = j? = k? = ijk = -1 and 1 is an identity element.

Claim 1.

() ij=k=-ji
(i) jk=1i=—-Kj
(@iii) ki =j=-ik

So quaternions are objects of the form X = Xo + X1i +X2J + X3K = Xo + X where the
coefficients x; € R. The coefficient xo = Re(X) is called the scalar or real part of X and
X = X1l +X2j + X3k = Pu(X) is the vector or purely quaternionic part. As vector spaces,
H = R%*= R+ R?®, and we can interpret i, j, k as the standard basis vectors of R?.

H inherits the standard Euclidean norm and inner product from R*. So
IXI = X3 +x2+x3+x3 and X + Y = XoYo + X1y1 +X2Y2 + X3Ys.

There is also an involution given by X* = X — X121 —X2] — X3k = Xo — X.
On pure quaternions there is also the standard vector cross product
i k
Xxxy=det] x; X2 X3
Y1 Y2 Y3

Claim 2.

(i) Re(X) = 3(X+X").

(ii) Pu(X) = (X-X*).

(iif) Xisrealif and only if X = X*.

(iv) Xis purely quaternionic if and only if X = —X*.

Claim 3. Takex,y,z € R®.

(i) Xy =—X-y+xxV.

(ii) Everyx € S?2 c R? satisfies x2 = —1.
(i) xxy = 5(xy-yx).



(iv) xyx = [Ix]|%y = 2(x - y)x
(V) Re(xyz) = —x+(y x2z) = —det(x,y,2).

Claim 4.
(i) (XY)* = Y*X*.
(i) X*X = [IX]I%.

(i) XY= IXY .
(iv) Each non-zero X is invertible with X1 = X*/||X||?.
(v) Each quaternion X is the product of 2 pure quaternions.

Claim 5.
(i) Hisafour-dimensional associative division algebra over the reals.
(i) Hisa C*-algebra (a Banach algebra with involution satisfying || X*X|| = [ X ).

Theorem 6. (Frobenius, 1878) .The only finite dimensional associative division
algebras over the reals are R, C and H.

Theorem 7. (Hurwitz, 1898) .The only finite dimensional multiplicatively normed
division algebras over the reals are R,C,H and O.

Claim 8.
(i) The set H* of non-zero quaternions is a group.

(i) The set of unit quaternions coincides with the unit sphere S® in R* and is a subgroup
of H*.



2. Matrix representations

. Xo + X1l X2 + X3l
Define the maps ¢ : H - M3(C) by ¢(X) = [ o ) ? 3_ ]
—X2 + X3l Xo — X1l
B Xo X1 X2 X3 i
—X1 Xo —X3 X
and y : H - Ma(R) by y(X) = BT T
—X2 X3 Xo —X1

—X3 —X2 X1 Xo

Claim 9.
(i) ¢ : H - M(C) is an injective *-homomorphism of algebras.

(i) det(p(X)) = IX|I*.
(iii) Restricted to the unit quaternions we get a *-isomorphism ¢ : S3— SU(2).

Claim 10.
(i) v : H - My(R). is an injective *~-homomorphism of algebras.
(i) det(y(X)) = IX]*

(iii) Restricted to the unit quaternions we get an injective *-homomorphism
v S35 SO>4).



3. Quaternions and rotations in 3-space.

Theorem 11. (Cartan—-Dieudonné ) An element of O(3) is a rotation if and only if it is
the composite of two planar reflections.

Take X € S3 c H. .So,. X is a unit quaternion and XX* = X*X = | X||?> = 1..Now
defineamap px : H — H by px(Y) = XYX*.

Claim 12. Let X be a unit quaternion.

(i) px : H - Hisan injective *-homomorphism of algebras.

(i) px : R®*> R3.

(iii) If x is a unit pure quaternion, then —py : R®— R? is reflection in the plane x*.
(iv) Ingeneral, px : R®-> R?3is a rotation, that is px € SO(3).

Now define the map .p : S® — SO(3) .by. p(X) = px.

Claim 13. p : S3 » SO(3) .is a surjective group homomorphism with kernel.
SO ={1,-1}.

So the group of unit quaternions .S® is a double cover of the special orthogonal group.
SO(3). This is the definition of the spin group Spin(3). .So Spin(3) = S® = SU(2). Note
that Spin(3) is a simply connected Lie group. On the other hand SO(3) is connected but not
simply connected. Its fundamental group is Z, = S°.

Finally, .for a unit quaternion X, we can write
X =Xo+X=Xo+ |[|[X||X =cosa +sina X where0 < a < 7.

Claim 14. For X € S3, the map px : R®*— R? is rotation through the angle
2a = 2arccos(Re X) about the axis given by x = Pu(X).
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