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Part 1: Knots from a combinatorial point of view
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Knot diagram:
4—valent planar graph
with over—under
crossing info at

each vertex.

Alternating knot: Crossings alternate between over and under.

Diagram graph: h obtained by dropping crossing decoration
on K, denoted/G(K)
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Diagram graph of alternating knot

Given any 4-valent graph G, 3! alternating knot K with
G(K) = G (up to reflection).
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Reduced alternating diagram

Throughout, all diagrams are connected (i.e. G(K) connected)

Diagram is reduced if it has no nugatory crosings:

00

X)=>

Undo nugatory crossings
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Tait graph

Associated to any diagram K is a Tait graph I'k:

@ Checkerboard color complementary regions of K.
@ Assign a vertex to every shaded region,
@ edge to every crossing,

@ *+ sign to every edge:

VS Gk

Note:

MNk) =c(K i ber of di f K = v(G(K)).
OM (K) crossing number of diagram o (G(K)
@ Signs agree on all edges of [k < K is alternating.
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Example: Twist knot
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Example: Twist knot




Reduced diagrams and Tait graphs

K reduced < [k has no loops, no bridges.
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Determinant of a knot

Let 7(K) = number spanning trees of Tait graph k.

Definition
e If K is alternating, det(K) = 7(K).

e More generally, let s,(K) be number of spanning trees of I
with n positive edges.

det(K) = |> (—1)"sa(K)

n

(Not usual definition of determinant, but equivalent)

\& e\
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Example: Twist knot
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Example: Twist knot



Determinant under crossing change

Proposition

Let K be a reduced alternating link diagram, K’ obtained by

changing any proper subset of crossings of K. Then

det(K') < det(K).
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Determinant under crossing change

Proposition

Let K be a reduced alternating link diagram, K’ obtained by

changing any proper subset of crossings of K. Then

det(K') < det(K).

Proof. If only one crossing is switched, let e be corresponding
edge. Note e is only negative edge in [k/.

@ K has no nugatory crossings = e is not a bridge or loop
= 3 spanning trees Ty, Ty such that e € T; and e ¢ T».

e Add 2 to det(K) for T1, To, Add 1 subtract 1 to det(K’).
—~— 4\ X AV~ AN

Similarly if more than one crossing is switched. O
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How big can det(K) be?

det(K) can be arbitrarily large.

24

(ﬂ"gs‘ms 'ﬂ‘
th

However, note it grows by crossing number.
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Determinant density conjecture

If K is any knot or link,

27 log det(K)
T < Voct- {: 3“

Here vyt is the volume of a regular hyperbolic ideal octahedron.

2w n
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Equivalent to Conjecture of Kenyon

Conjecture (Kenyon, 1996)
If G is any finite planar graph,

log 7(G)
e(G)

where C ~ 0.916 /s Catalan’s constant.

<2C/m,

Equivalence:

@ Any finite planar graph G can be realized as t
[k of an ayternating link K

o e(lk) = c(K)
T
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Part 1.5: Geometric Interlude
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Some geometry of knots

S?___ K 5'3 K

Can build the complement of K out of octahedra: 3- Mmﬁ"u

Nsﬁm
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U octahedra.

crossings
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Some geometry of knots

? Gg" vol of regular hyperbolic ideal octahedron

= max vol of any hyperbolic octahedron

vol(K)
c(K)

Voct -
==
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Relations between vol(K) and det(K)

Known Conjectured
( vol(K) _ [ 27 1og det(K) -, ke
C[K] = Voct \ C(K) = Voct

e

det(K') < det(K) Y| vol(K') < vol(Ki

e —

2nd line: K’ obtained from alternating K by changing crossings.

Conjectures verified experimentally for 10.7 million knots.
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Relations between vol(K) and det(K)

Known Conjectured
vol(K) < vout 27 log det(K) < vour
c(K) c(K)

det(K’) < det(K) | vol(K’) < vol(K)

2nd line: K’ obtained from alternating K by changing crossings.

Conjectures verified experimentally for 10.7 million knots.

For any alternating hyperbolic knot,

vol(K) < 27 log det(K)




How sharp is the upper bound?

Is voct the best possible? |.e. does d sequence of knots K, with

2 n
im 7 log det(K),) vn?
n—00 c(Kn)
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How sharp is the upper bound?

Is voct the best possible? |.e. does d sequence of knots K, with

2 n
im 7 log det(K),) vn?
n—00 c(Kn)

Answer: Yes.
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Part 2: Sequences of knots.
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Sequences of knots

K

When does a sequence of knots “converge”?

@ Geometrically: Metric space 63 — K\}onverges in

Gromov-Hausdorff sense.

— =
o Combinatorially: Diagrams converge. @ .

N g(a\
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F@lner sequences of graphs

Let G be any possibly infinite graph, H a finite subgraph.
OH.= {vertices of H that share an edge with a vert(gi Eot in H}H

u: number of vertices in a graph.

An exhaustive nested sequence of countably many graphs
{H, C G | Hdn C Hpy1 and U, H, = G}
k_..———-—_l

is a Fglner sequence for G if

G is amenable if a Fglner sequence for G exists.
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Example: infinite square lattice




(]
>
(gv]
()
=
(]
=
=
=
=
muU

=
)
T
[
—
Q
=
T
Q
4
T

A
I.

Call this the infinite weave, denoted W.
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Combinatorial theorem

Theorem (Champanerkar—Kofman—P)

Let K, be a sequence of alternating link diagrams such that

© I subgraphs G, C G(K,) that form a Fglner sequence for

G(W), the infinite square lattice

G
<) Jm o(Kn) 1

Then —e——

o

. 2rmlogdet(Kp,)
im —————=
n—oco c(Kn)

= Voct-

I.e. maximum in conjecture is a small as possible.

We say sequence K, is diagrammatically maximal.
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Geometric

Theorem (Champanerkar—-Kofman—P)

Let K, be a sequence of alternating link diagrams with no cycle of
tangles such that

/‘“

© I subgraphs G, C G(K,) that form a Fglner sequence for
G(W), the infinite square lattice

: G|

| =1

I ey

Then

lim
n—oo C Kn)

We say K, is geometrically maximal.
Question: Is K, geometrically maximal < diagrammatically

maximal?
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Proof of combinatorial theorem

Let K, satisfy
@ I subgraphs G, C G(Kj,) that form a Fglner sequence for
G(W), the infinite square lattice,

Q@ Ilim |G| =1

Tait graphs of K,, also form a Fglner sequence for the infinite

square lattice.
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Proof of combinatorial theorem

Lyons (2005): Graphs H, that approach G(W) satisfy

jim 1087 (Hn) _ oct

n—oo ’Hn| T
Two to one correspondence, vertices to crossings

e im 27 log det(Kp)

am C(Kn) =4C = Voct -
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A word on Gromov—Hausdorff convergence

Question: Does K, — G, i.e. Fglner convergence of diagrams,

imply S3 — K,, — S3 — G Gromov—Hausdorff convergence of
spaces?
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A word on Gromov—Hausdorff convergence

Question: Does K, — G, i.e. Fglner convergence of diagrams,

imply S3 — K,, — S3 — G Gromov—Hausdorff convergence of
spaces?

Unknown — difficult to show in general.
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Start w| (P1q) Fovss kmot ~I ke aliernagin ;.
W(.4)

Diagrams converge to infinite weave

27 log det(W(p, q)) vol(W(p, q))
Wipq) e

Theorem (Champanerkar—-Kofman—P)

Complements of weaving knots converge in the Gromov—Hausdorff
"“h_—-___'_-_i—u
sense to S3 — W.
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Question:

Let K, be a sequence of geoemtrically maximal, diagrammatically
maximal knots.

Does S3 — K, always converge to R3 — W in the

Gromov—Hausdorff sense?
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