Diagrammatically maximal and geometrically maximal knots

Jessica Purcell

Monash University, School of Mathematical Sciences

Joint work with Abhijit Champanerkar, Ilya Kofman

Part 1: Knots from a combinatorial point of view

Knot diagram

Alternating knot: Crossings alternate between over and under.

Diagram graph: Graph obtained by dropping crossing decoration on K, denoted G(K)

Diagram graph of alternating knot

Given any 4-valent graph G, \exists ! alternating knot K with G(K) = G (up to reflection).

Reduced alternating diagram

Throughout, all diagrams are connected (i.e. G(K) connected) Diagram is *reduced* if it has no *nugatory crosings*:

Undo nugatory crossings

Tait graph

Associated to any diagram K is a *Tait graph* Γ_K :

- Checkerboard color complementary regions of *K*.
- Assign a vertex to every shaded region,
- edge to every crossing,
- ullet ± sign to every edge:

Note:

- $e(\Gamma_K) = c(K)$ crossing number of diagram of K = v(G(K)).
- Signs agree on all edges of $\Gamma_K \Leftrightarrow K$ is alternating.

Example: Twist knot

Example: Twist knot

Reduced diagrams and Tait graphs

K reduced $\Leftrightarrow \Gamma_K$ has no loops, no bridges.

Determinant of a knot

Let $\tau(K)$ = number spanning trees of Tait graph Γ_K .

Definition

- If K is alternating, $det(K) = \tau(K)$.
- More generally, let $s_n(K)$ be number of spanning trees of Γ_K with n positive edges.

$$\det(K) = \left| \sum_{n} (-1)^{n} s_{n}(K) \right|$$

(Not usual definition of determinant, but equivalent)

$$|\nabla^{k}(-1)|$$

Example: Twist knot

Example: Twist knot

Determinant under crossing change

Proposition

Let K be a reduced alternating link diagram, K' obtained by changing any proper subset of crossings of K. Then

$$\det(K') < \det(K)$$
.

Determinant under crossing change

Proposition

Let K be a reduced alternating link diagram, K' obtained by changing any proper subset of crossings of K. Then

$$\det(K') < \det(K)$$
.

Proof. If only one crossing is switched, let e be corresponding edge. Note e is only negative edge in $\Gamma_{K'}$.

- K has no nugatory crossings $\Rightarrow e$ is not a bridge or loop $\Rightarrow \exists$ spanning trees T_1 , T_2 such that $e \in T_1$ and $e \notin T_2$.
- Add 2 to det(K) for T_1 , T_2 . Add 1 subtract 1 to det(K').

Similarly if more than one crossing is switched.

How big can det(K) be?

det(K) can be arbitrarily large.

However, note it grows by crossing number.

Determinant density conjecture

Conjecture

If K is any knot or link,

$$\frac{2\pi \log \det(K)}{c(K)} \leq v_{\text{oct}}$$
. \sim 3.66

Here v_{oct} is the volume of a regular hyperbolic ideal octahedron.

Equivalent to Conjecture of Kenyon

Conjecture (Kenyon, 1996)

If G is any finite planar graph,

$$\frac{\log \tau(G)}{e(G)} \leq 2C/\pi,$$

where $C \approx 0.916$ is Catalan's constant.

Equivalence:

- $\bullet 4C = v_{\rm oct}$
 - Any finite planar graph G can be realized as the rape Γ_K of an alternating link K
 - $e(\Gamma_K) = c(K)$

Part 1.5: Geometric Interlude

Some geometry of knots

 5^3 - K Can build the complement of K out of octahedra: 3-man choose too in 53- K octahedra. crossings

Some geometry of knots

$$v_{\text{oct}} = v_{\text{oct}} = v_{$$

$$\implies \frac{\operatorname{vol}(K)}{c(K)} < v_{\operatorname{oct}}.$$

Relations between vol(K) and det(K)

2nd line: K' obtained from alternating K by changing crossings.

Conjectures verified experimentally for 10.7 million knots.

Relations between vol(K) and det(K)

Known	Conjectured
$\frac{\operatorname{vol}(K)}{c(K)} \le v_{\operatorname{oct}}$	$\frac{2\pi\log\det(K)}{c(K)} \le v_{\rm oct}$
$\det(K') < \det(K)$	$\operatorname{vol}(\mathcal{K}') < \operatorname{vol}(\mathcal{K})$

2nd line: K' obtained from alternating K by changing crossings.

Conjectures verified experimentally for 10.7 million knots.

Conjecture

For any alternating hyperbolic knot,

$$\operatorname{vol}(K) < 2\pi \log \det(K)$$

How sharp is the upper bound?

Is $v_{\rm oct}$ the best possible? I.e. does \exists sequence of knots K_n with

$$\lim_{n\to\infty}\frac{2\pi\log\det(K_n)}{c(K_n)}\to v_{\rm oct}?$$

How sharp is the upper bound?

Is $v_{\rm oct}$ the best possible? I.e. does \exists sequence of knots K_n with

$$\lim_{n\to\infty}\frac{2\pi\log\det(K_n)}{c(K_n)}\to v_{\rm oct}?$$

Answer: Yes.

Part 2: Sequences of knots.

Sequences of knots

Kn

When does a sequence of knots "converge"?

• Geometrically: Metric space $S^3 - K$ converges in Gromov-Hausdorff sense.

Combinatorially: Diagrams converge.

Følner sequences of graphs

Let G be any possibly infinite graph, H a finite subgraph.

ot in H}H

 $\partial H = \{ \text{vertices of } H \text{ that share an edge with a vertex not in } H \}$

 $|\cdot|$ = number of vertices in a graph.

An exhaustive nested sequence of countably many graphs

$$\{H_n \subset G \mid H_n \subset H_{n+1} \text{ and } \cup_n H_n = G\}$$

is a Følner sequence for G if

$$\lim_{n\to\infty}\frac{|\partial H_n|}{|H_n|}=0.$$

G is amenable if a Følner sequence for G exists.

Example: infinite square lattice

Make alternating: infinite weave

Call this the *infinite weave*, denoted W.

Combinatorial theorem

Theorem (Champanerkar–Kofman–P)

Let K_n be a sequence of alternating link diagrams such that

- \exists subgraphs $G_n \subset G(K_n)$ that form a Følner sequence for G(W), the infinite square lattice
- $\lim_{n\to\infty}\frac{|G_n|}{c(K_n)}=1$

Then

$$\lim_{n\to\infty}\frac{2\pi\log\det(K_n)}{c(K_n)}=v_{\rm oct}.$$

We say sequence K_n is diagrammatically maximal.

Geometric

Theorem (Champanerkar–Kofman–P)

Let K_n be a sequence of alternating link diagrams with no cycle of tangles such that

- **1** \exists subgraphs $G_n \subset G(K_n)$ that form a Følner sequence for G(W), the infinite square lattice
- $\lim_{n\to\infty}\frac{|G_n|}{c(K_n)}=1$

Then

$$\lim_{n\to\infty}\frac{\operatorname{vol}(K_n)}{c(K_n)}=v_{\mathrm{oct}}.$$

We say K_n is geometrically maximal.

Question: Is K_n geometrically maximal \Leftrightarrow diagrammatically maximal?

Proof of combinatorial theorem

Let K_n satisfy

- **1** ∃ subgraphs $G_n \subset G(K_n)$ that form a Følner sequence for G(W), the infinite square lattice,
- $\lim_{n\to\infty}\frac{|G_n|}{c(K_n)}=1$

Tait graphs of K_n also form a Følner sequence for the infinite square lattice.

Proof of combinatorial theorem

Lyons (2005): Graphs H_n that approach G(W) satisfy

$$\lim_{n\to\infty}\frac{\log\tau(H_n)}{|H_n|}=\frac{1}{\pi}$$

Two to one correspondence, vertices to crossings

$$\Longrightarrow \lim_{n\to\infty} \frac{2\pi \log \det(K_n)}{c(K_n)} = 4C = v_{\rm oct}.$$

A word on Gromov-Hausdorff convergence

Question: Does $K_n \to G$, i.e. Følner convergence of diagrams, imply $S^3 - K_n \to S^3 - G$ Gromov–Hausdorff convergence of spaces?

A word on Gromov-Hausdorff convergence

Question: Does $K_n \to G$, i.e. Følner convergence of diagrams, imply $S^3 - K_n \to S^3 - G$ Gromov–Hausdorff convergence of spaces?

Unknown - difficult to show in general.

Weaving knots

Start of (P,9) torus knot - make alternating

Diagrams converge to infinite weave

$$\Longrightarrow rac{2\pi \log \det(W(p,q))}{c(W(p,q))} o v_{
m oct}, \quad ext{ and } \quad rac{{
m vol}(W(p,q))}{c(W(p,q))} o v_{
m oct}$$

Theorem (Champanerkar–Kofman–P)

Complements of weaving knots converge in the Gromov–Hausdorff sense to $S^3 - W$.

Other knots

Question:

Let K_n be a sequence of geoemtrically maximal, diagrammatically maximal knots.

Does $S^3 - K_n$ always converge to $\mathbb{R}^3 - \mathcal{W}$ in the Gromov–Hausdorff sense?