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Abstract

We consider the spread of infectious disease through contact networks of Configuration Model type.
We assume that the disease spreads through contacts and infected individuals recover into an immune
state. We discuss a number of existing mathematical models used to investigate this system, and show
relations between the underlying assumptions of the models. In the process we offer simplifications of
some of the existing models. The distinctions between the underlying assumptions are subtle, and in
many if not most cases this subtlety is irrelevant. Indeed, under appropriate conditions the models
are equivalent. We compare the benefits and disadvantages of the different models, and discuss their
application to other populations (e.g., clustered networks). Finally we discuss ongoing challenges for
network-based epidemic modeling.
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Looking for Clusters Ill:
Biological Networks
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Looking for Clusters IV:
Social Networks
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Looking for Clusters V:
Euclidean 2-factors




Looking for Clusters VI:
Percolation




Yo ILji— b oy p A
I e I N | TR
=, o = r
L
2 e YL I
|_ﬁj_|._||u__mwrﬂﬂwmr___ Ujy
UG Fldse n
|n_rln___|m_r o m.__:Irn___u_r_u_IT
i = Al s §
rmw__mm_w_m _rtp_wv-__-uvzwm
dalrtE el 5

it i
I IH_I__H_

' —

I
i _u_l_l_lL

! 11
. P 5

0

N

=)
Il
o

More Edges Means
More Clustering

Epin: _nm.l,lsm.uum _nm_ﬁnm Il r.m “ SpEaijaees
T B R e THE R
e [t
== . Ho:
el
I_.nl 1 1 o o M|
e
M.#_ Shl iRt T
T T __iLI_ LT 1 L
TSR HAT A 9Hn
I_l.l 1] IH] | & ]
e e
TS ERR )
O I | 1 J_ll_ ! LT
M ST e e
~
o
Il
Q.




PriD=k]

ARLE et

Degree Distributions Differ

El o \ —8- degree distbution | Threshold T=0.01%)
B o = - - - hinomial fitting carve

30 »

by -’ ‘

'I""*""'J""I'"'I""I""I""|""I""I""I""

cleaialyag Rl NS T
1] 15 o] 25 ki 35 &0 a5 50 55 &l 65 T
The degree k

Classic Erd6s-Renyi Model

Facebook
Friends

Lattice

Fraction

1le-05

Fraction

le-01

1e-03

1le-07

— Global
5




Network Structure Affects Cluster Size
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Random Networks as Controls

A common technique to analyze the properties of a single
network is to use statistical randomization methods to create a
reference network which is used for comparison purposes.

Mondragon and Zhou, 2012.
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For a sequence D of nonzero degrees, G(D) is a
uniformly chosen graph with degree sequence D.

Will assume D is non-decreasing and all degrees are positive.
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Change in number of open edges:
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A Heuristic Argument

Change in number of open edges:
diw) — 2

Probability pick w:

v d(W)/%d(U)

Expected change:
%d(U)(d(U) - 2)/uZd(U)

Giant Component if and only if
> d(u)(d(u)-2) is positive??
u




Molloy-Reed(1995) Result

Under considerable technical conditions including maximum

degree at most n'/8:

Z d(u)(d(u) — 2) > en implies a giant component exists.
u

Z d(u)(d(u) — 2) < — &n  implies no giant component exists.
u
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Why Can't We Prove The Result For Graphs With High

Degree Vertices? -\ -\ I /
|
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Cannot translate results from the non-simple case.
Hard to prove concentration results.



OUR QUESTION REVISITED

Does a uniformly chosen graph on a given degree sequence
have a giant component?

For a sequence D of nonzero degrees, G(D) is a
uniformly chosen graph with degree sequence D.

Will assume D is non-decreasing and all degrees are positive.



Four Definitions

M is the sum of the degrees in D which are not 2.
D is f-well behaved if M is at least f(n).

jy=min (2 s.t. éd}(d}— 2) >0, n)

J=1

n
Rp= Yd
J



One Crucial Observation

S d(u)(d(u)-2) is at least R_
J=1
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f d(u)(d(u)-2) is at least R |
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and for some Y > 0 remains above RD/Z until the sum of the degrees of the
vertices explored is at least YR_..



One Crucial Observation

f d(u)(d(u)-2) is at least R |
J=1

and for some Y > 0 remains above RD/Z until the sum of the degrees of the
vertices explored is at least YR_..

But goes negative once all the vertices with index > j _ are explored.
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Two Theorems

Theorem 1: For any f —o and b—0, if a well behaved degree
distribution D satisfies R < b(n)M then G(D) has no giant
component.

Theorem 2: For any f —o0 and ¢ > 0 if a well behaved degree
distribution D satisfies R_>¢&M then G(D) has a giant
component

(Joos, Perarnau-Llobet, Rautenbach, Reed 2015)
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What About Badly Behaved Graphs?



Badly Behaved graphs do not have 0-1 Behaviour



Badly Behaved graphs do not have 0-1 Behaviour

For all 0<e<1, the probability of a component of size at
least en lies between ¢ and 1-c for some constant ¢
between 0 and 1.



Badly Behaved graphs do not have 0-1 Behaviour

For all 0<e<1, the probability of a component of size at
least en lies between ¢ and 1-c for some constant ¢
between 0 and 1.

If all vertices of degree 2 just taking a random 2-factor.



Badly Behaved graphs do not have 0-1 Behaviour

For all 0<e<1, the probability of a component of size at
least en lies between ¢ and 1-c for some constant ¢
between 0 and 1.

If all vertices of degree 2 just taking a random 2-factor.

If M is at most some constant b, with probability p(b)>0 all
but en/2 of the vertices lie in cyclic components.



Two Theorems

Theorem 1: For any f —o and b—0, if a well behaved degree
distribution D satisfies R < b(n)M then G(D) has no giant
component.

Theorem 2: For any f —o0 and ¢ > 0 if a well behaved degree
distribution D satisfies R_>¢&M then G(D) has a giant
component

(Joos, Perarnau-Llobet, Rautenbach, Reed 2015)



Differences in the Proof

Determine if there is a component K of the multigraph obtained by
suppressing degree 2 vertices satisfying:

(*) 1E(K)| >&'M.

Use a combinatorial switching argument to obtain bounds on edge
probabilities in this multigraph.



Differences in the Proof - when No Giant Component Exists

Begin the random process with a large enough set of high degree vertices
that our process has negative drift.



Differences in the Proof - when No Giant Component Exists

Begin the random process with a large enough set of high degree vertices
that our process has negative drift.

Show drift becomes more and more negative over time, if the process does
not die out.



Differences in the Proof - when A Giant Component Exists

Focus on the set H = {v | d(v) > (YM)/log(M)}



Differences in the Proof - when A Giant Component Exists

Focus on the set H = {v | d(v) > (YM)/log(M)}

We can show, using our combinatorial switching argument, that depending on
the sum of the sizes of the components intersecting H, either

(a) thereis a giant component containing all of H, or

(b) we can reduce to a problem with H empty.



Demonstrating The Switching Argument



Demonstrating The Switching Argument

Theorem: If |E|>8n log n then,
Prob(G has a component with (1-o(1))n vertices)= 1-o(1).



Future Work

Tight bounds on the size of the largest component in terms of R |



Thank you for your attention!




