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TOPOLOGICAL CONTAINMENT

1 Topological containment

G Y

e (5 topologically contains X

e (7 contains an X -subdivision
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TOPOLOGICAL CONTAINMENT

Applications of topological containment
e Forest — does not contain any K 3-subdivisions

e Planar graph — does not contain any K 5-subdivisions or Kg,g-subdivisions
(Kuratowski, 1930)

e Series-parallel graph — does not contain any K 4-subdivisions (Duffin, 1965)
Problem of topological containment:

e For some fixed pattern graph H: given a graph (G, does (G contain an

H -subdivision?
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ROBERTSON AND SEYMOUR RESULTS

2 Robertson and Seymour results

DISJOINT PATHS (DP)
Input: Graph G; pairs (s1,t1), ..., (S, tx) of vertices of G.
Question: Do there exist paths P1, ..., Py of GG, mutually vertex-disjoint,

such that P; joins s; and t; (1 <1 < k)?
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ROBERTSON AND SEYMOUR RESULTS

e DISJOINT PATHS is in P for any fixed k.

e This implies topological containment problem for fixed H is also in P — use DP

repeatedly.

e \We know p-time algorithms must exist for topological containment, but practical

algorithms not given — huge constants.
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PREVIOUS RESULTS

3 Previous results

Theorem (Farr, 88).

Let G be 3-connected, with no internal 3-edge-cutset. Then (G has a

W-subdivision if and only if G has a vertex v of degree at least 5 and a circuit of

size at least 5 which does not contain v.

Ws: wheel with five spokes
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PREVIOUS RESULTS

Graphs with no 7-wheel subdivision

Internal 3-edge-cutset

Rebecca Robinson



PREVIOUS RESULTS

Theorem (Robinson & Farr, 2008).

Let G be a 3-connected graph that is not topologically contained in the graph A.
Suppose (G has no internal 3-edge-cutsets, no internal 4-edge-cutsets, and is a
graph on which neither Reduction 1A nor Reduction 2A can be performed, for

k = 6. Then GG has a Wg-subdivision if and only if G has a vertex v of degree at
least 6.

Graphs with no 7-wheel subdivision Rebecca Robinson



PREVIOUS RESULTS

Graph A
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PREVIOUS RESULTS

Graphs with no 7-wheel subdivision

Internal 4-edge-cutset

Rebecca Robinson

10



PREVIOUS RESULTS

Definition
If W is a subset of graph (7, then G’|W denotes the set of all maximal subsets U

of V' (G) such that any two vertices of U are joined by a path in G with no internal
vertex in W. Each element of G|W is referred to as a bridge of G|W .

Ui, Uz, Us are all bridges of G|W .
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PREVIOUS RESULTS
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PREVIOUS RESULTS
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PREVIOUS RESULTS

Structure of graphs with no Wg-subdivisions
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NEW RESULTS BASED ON Wg THEOREM

4 New results based on W theorem

Theorem.

Let G be a 3-connected graph with at least 12 vertices. Suppose (G has no internal
3-edge-cutsets, no internal 4-edge-cutsets, and is a graph on which neither

Reduction 1A nor Reduction 2A can be performed, for £ = 6.

Then GG has a Wg-subdivision if and only if G contains some vertex vg of degree at
least 6.
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NEW RESULTS BASED ON Wg THEOREM

Theorem.

Let G be a 3-connected graph with at least 14 vertices. Suppose (G has no type 1,
2, 3, or 4 edge-vertex-cutsets, and is a graph on which Reductions 1A, 1B, 2A, and

2B cannot be performed, for kK = 7. Let vg be a vertex of degree > 6 in G.

Then, either GG has a Wg-subdivision centred on vg, or G has a Wg-subdivision

centred on some vertex vy of degree > 7.
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NEW RESULTS BASED ON Wg THEOREM
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NEW RESULTS BASED ON Wg THEOREM
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NEW RESULTS BASED ON Wg THEOREM
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NEW RESULTS BASED ON Wg THEOREM
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NEW RESULT ON W7 GRAPHS

5 New result on W5 graphs

e Characterization (up to bounded size pieces) of graphs that do not contain

W~-subdivisions

e Uses similar techniques to the Wy and W results
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NEW RESULT ON W7 GRAPHS

Theorem.

Let G be a 3-connected graph with at least 38 vertices. Suppose (G has no internal

3 or 4-edge-cutsets, no internal (1,1, 1, 1)-cutsets ...
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NEW RESULT ON W7 GRAPHS

Theorem.

Let (G be a 3-connected graph with at least 38 vertices. Suppose (G has no internal
3 or 4-edge-cutsets, no internal (1,1, 1, 1)-cutsets, no type 1, 1a, 2, 2a, 3, 3a, 4, or
4a edge-vertex-cutsets . ..

v (deg < 7)

; 1 2
Type 1a edge-vertex-cutset
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NEW RESULT ON W7 GRAPHS

Theorem.

Let G be a 3-connected graph with at least 38 vertices. Suppose (G has no internal
3 or 4-edge-cutsets, no internal (1,1, 1, 1)-cutsets, no type 1, 1a, 2, 2a, 3, 3a, 4, or
4a edge-vertex-cutsets, and is a graph on which Reductions 1A, 1B, 1C, 2A, 2B, 3,
4,5, and 6 cannot be performed, fork =7 ...

et et

G-X | ' G-X
oU X
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Reduction 3
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NEW RESULT ON W7 GRAPHS
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NEW RESULT ON W7 GRAPHS
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NEW RESULT ON W7 GRAPHS
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NEW RESULT ON W7 GRAPHS

Theorem.

Let G be a 3-connected graph with at least 38 vertices. Suppose (G has no internal
3 or 4-edge-cutsets, no internal (1,1, 1, 1)-cutsets, no type 1, 1a, 2, 2a, 3, 3a, 4, or
4a edge-vertex-cutsets, and is a graph on which Reductions 1A, 1B, 1C, 2A, 2B, 3,
4,5, and 6 cannot be performed, for k = 7.

Then GG has a Wr-subdivision if and only if G contains some vertex vy of degree at
least 7.
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NEW RESULT ON W7 GRAPHS

Proof — a summary.
e Suppose the conditions of the hypothesis hold for some graph G.

e By the strengthened W result, there exists some vertex v of degree > 7in GG

that has a WWg-subdivision H centred on it.

Vg

(%)

(% U3

V4

e How does u connect to the rest of H in order to preserve 3-connectivity?
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NEW RESULT ON W7 GRAPHS

Three possibilities:

(a) Path from vy to some vertex w11 on the rim of the Wg-subdivision, not meeting

any spoke.
(b) Two paths from u to two separate spokes of H.

(c) Path from vg to some vertex u1 on one of the spokes of the 1¥5-subdivision,

such that this path that does not meet H except at its end points.
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NEW RESULT ON W7 GRAPHS

e Cases (a) and (c) are straightforward to deal with.

e Case (b) takes up most of the proof.

e All possible configurations in case (b) result in a 1¥/7-subdivision except for

three.
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NEW RESULT ON W7 GRAPHS

U4

Case (b)(i)

Graphs with no 7-wheel subdivision Rebecca Robinson

32



NEW RESULT ON W7 GRAPHS

U4 = U2

Case (b)(ii)
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NEW RESULT ON W7 GRAPHS

U1 = Uy

U2

Uy

Case (b)(iii)

Graphs with no 7-wheel subdivision Rebecca Robinson

34



NEW RESULT ON W7 GRAPHS

e These graphs meet the 3-connectivity requirements, but not the other

requirements of the hypothesis: eg. forbidden reductions.
® So there must be more structure to the graphs.

e More in-depth case analysis required, based on different ways of adding this

structure.

e C program to automate parts of this analysis; many parts of the proof depend

on results generated by this program.
The program:
® constructs the various simple graphs that arise as cases in the proof, and

e tests each graph for the presence of a ¥/7-subdivision.
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NEW RESULT ON W7 GRAPHS

Case (b)(i): further detalil
1. Path () from Hoy to Hy

e Four cases with no 1¥/7-subdivision

Graphs with no 7-wheel subdivision
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NEW RESULT ON W7 GRAPHS

1.1. Path R from U (u) to Hy U Hy

® 16 cases with no W-subdivision

U1
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NEW RESULT ON W7 GRAPHS

1.1.1. Path R such that S7 = {Uo, V1, v5} IS not a separating set

e 64 cases with no W~-subdivision

U1

Vg
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NEW RESULT ON W7 GRAPHS

1.1.1.1. Path Rs such that S5 = {vg, vs, v5 } is not a separating set

® 256 cases with no WW--subdivision

V3
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NEW RESULT ON W+ GRAPHS

1.1.1.1.1. Path R3 such that S3 = {vg, v1, v3, U5 } is not a separating set —

always results in a Wr7-subdivision

Graphs with no 7-wheel subdivision Rebecca Robinson

40



NEW RESULT ON W7 GRAPHS

1.1.1.1.2. No such path: so S3 forms a separating set.

Us U1

(%
Vg

U4
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NEW RESULT ON W7 GRAPHS

It can be shown that either:

e a IV,-subdivision exists centred on some vertex in S3
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NEW RESULT ON W7 GRAPHS

e aninternal (1,1, 1, 1)-cutset exists in G

Uy

U1

(%)

Us \ Ss |

1

(> 5 vertices),

1

Uy
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NEW RESULT ON W7 GRAPHS

e or Reduction 4 can be performed on G

U, UL,,,,,W\/ [P
(%) ’

Us \ Ss

1 (< 5 vertices)

Uy

Uy
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NEW RESULT ON W7 GRAPHS

1.1.1.2. No path R5 exists: S forms a separating set.
(%] U2

(%

U4
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NEW RESULT ON W7 GRAPHS

Suppose there are only two bridges of G|S3: Us and Uy.
Lemma.

Let (G be a 3-connected graph with at least 19 vertices. Suppose (G has no internal
3 or 4-edge-cutsets, no type 1, 2, 2a, 3, 3a, or 4 edge-vertex-cutsets, and is a graph
on which none of Reductions 1A, 1B, 1C, 2A, and 3 can be performed. Let

S = {u, v, w} be a separating set of vertices in G such that v is adjacent to both

u and w, and such that there are exactly two bridges, X and Y , of G|S. Suppose

that v has at least four neighbours in X \ S'. Then G contains a Wr-subdivision.

These conditions hold, so (G must contain a W ,-subdivision.
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NEW RESULT ON W7 GRAPHS

Suppose there exists a third bridge A of G|S2. Then either:
e a W--subdivision exists

e or one of the forbidden Reductions can be performed

(%

(O Uy Vg

Us
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NEW RESULT ON W7 GRAPHS

1.1.2. No path R, exists: S7 forms a separating set.

,’/\?}1

Us

(%
Vg

Uy
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NEW RESULT ON W7 GRAPHS

1.2. No path R exists: W forms a separating set.

(%

U4

Graphs with no 7-wheel subdivision Rebecca Robinson

49



NEW RESULT ON W7 GRAPHS

2. No path () from Hy to Hy.

Us

e Again, either a WW-subdivision exists, or a forbidden reduction can be
performed.
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NEW RESULT ON W7 GRAPHS

Structure of graphs with no WW--subdivisions

e First, must ‘reduce’ a graph as much as possible, using the six forbidden

reductions.

e The resulting graph in its reduced form must be composed of ‘pieces’ that
contain at least 38 vertices.

e Each piece must:
— be 3-connected;

— contain no internal 3- or 4-edge cutsets, or any of the other types of

forbidden separating sets; and

— contain no vertices of degree > 7.
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NEW RESULT ON W7 GRAPHS

® Each of the pieces are joined together in a tree-like structure

e Each piece is joined to the rest of the graph so that either:

— there exists a separating set of size < 2, the removal of which disconnects

one piece from another; or

— there exists either an internal 3- or 4-edge cutset, or one of the forbidden

separating sets, the removal of which disconnects one piece from another.
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NEW RESULT ON W7 GRAPHS
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