Graphs with no 7-wheel subdivision

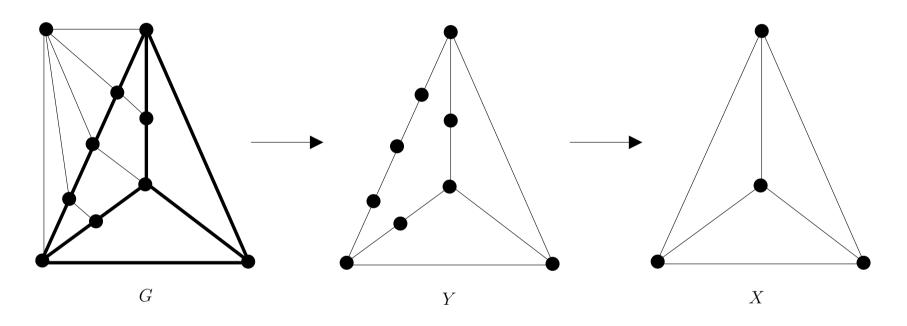
Rebecca Robinson

Monash University (Clayton Campus)

Rebecca.Robinson@infotech.monash.edu.au

(joint work with Graham Farr)

1 Topological containment



- ullet G topologically contains X
- ullet G contains an X-subdivision

Applications of topological containment

- ullet Forest does not contain any K_3 -subdivisions
- ullet Planar graph does not contain any K_5 -subdivisions or $K_{3,3}$ -subdivisions (Kuratowski, 1930)
- ullet Series-parallel graph does not contain any K_4 -subdivisions (Duffin, 1965)

Problem of topological containment:

• For some fixed pattern graph H: given a graph G, does G contain an H-subdivision?

2 Robertson and Seymour results

DISJOINT PATHS (DP)

Input: Graph G; pairs $(s_1, t_1), ..., (s_k, t_k)$ of vertices of G.

Question: Do there exist paths $P_1, ..., P_k$ of G, mutually vertex-disjoint,

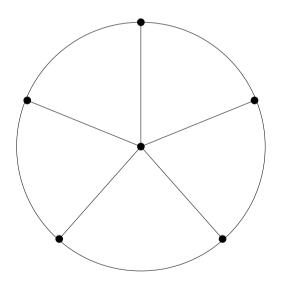
such that P_i joins s_i and t_i $(1 \le i \le k)$?

- DISJOINT PATHS is in P for any fixed k.
- ullet This implies topological containment problem for fixed H is also in P use DP repeatedly.
- We know p-time algorithms must exist for topological containment, but practical algorithms not given huge constants.

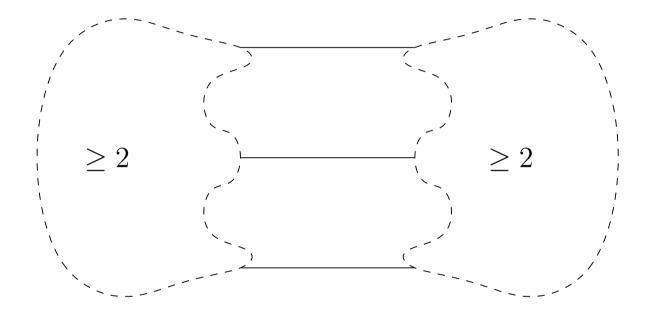
3 Previous results

Theorem (Farr, 88).

Let G be 3-connected, with no internal 3-edge-cutset. Then G has a W_5 -subdivision if and only if G has a vertex v of degree at least 5 and a circuit of size at least 5 which does not contain v.



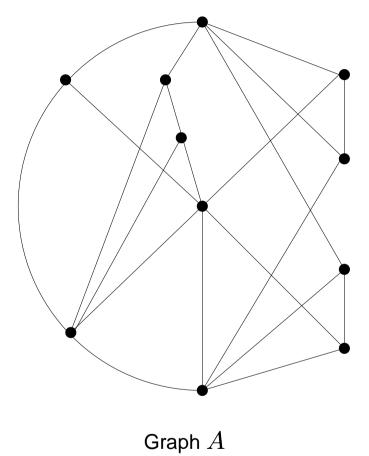
 W_5 : wheel with five spokes

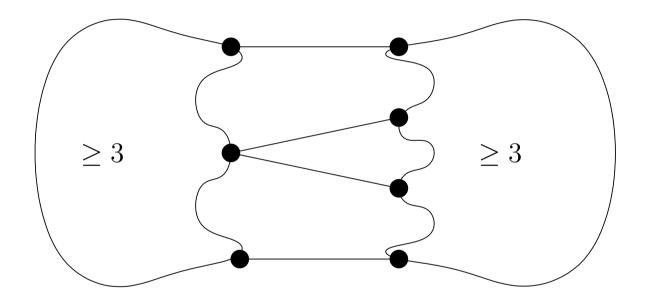


Internal 3-edge-cutset

Theorem (Robinson & Farr, 2008).

Let G be a 3-connected graph that is not topologically contained in the graph A. Suppose G has no internal 3-edge-cutsets, no internal 4-edge-cutsets, and is a graph on which neither Reduction 1A nor Reduction 2A can be performed, for k=6. Then G has a W_6 -subdivision if and only if G has a vertex v of degree at least 6.

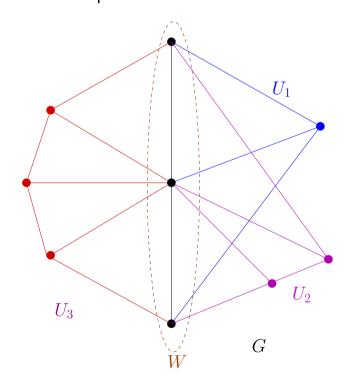




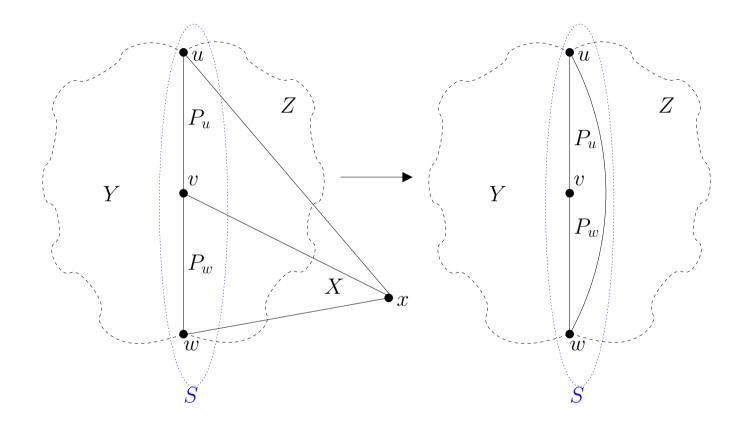
Internal 4-edge-cutset

Definition

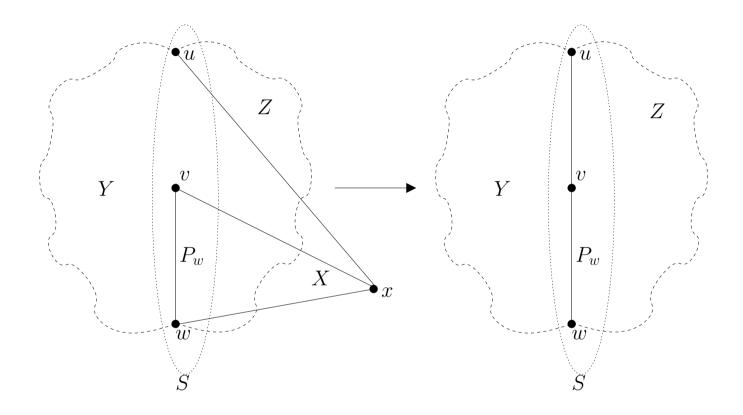
If W is a subset of graph G, then G|W denotes the set of all maximal subsets U of V(G) such that any two vertices of U are joined by a path in G with no internal vertex in W. Each element of G|W is referred to as a *bridge* of G|W.



 U_1, U_2, U_3 are all bridges of G|W.

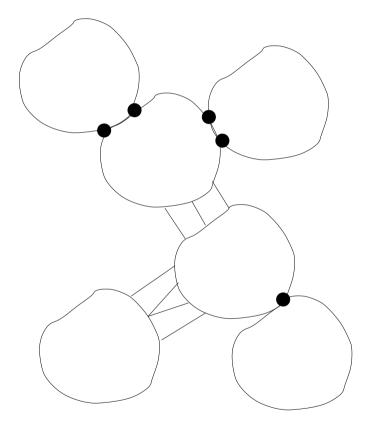


Reduction 1A



Reduction 2A

Structure of graphs with no $W_6 ext{-subdivisions}$



4 New results based on W_6 theorem

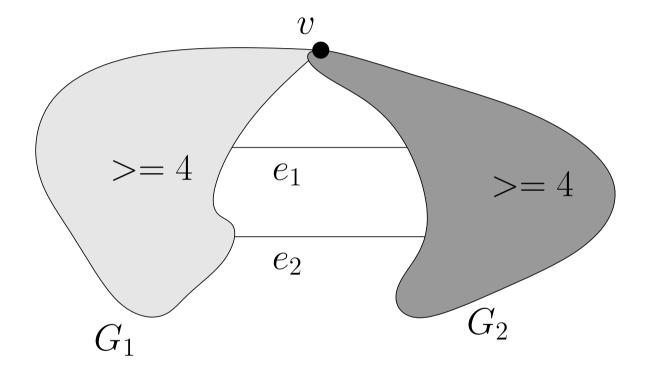
Theorem.

Let G be a 3-connected graph with at least 12 vertices. Suppose G has no internal 3-edge-cutsets, no internal 4-edge-cutsets, and is a graph on which neither Reduction 1A nor Reduction 2A can be performed, for k=6.

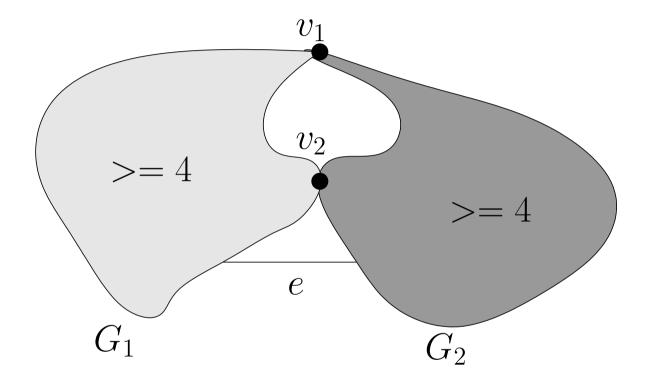
Then G has a W_6 -subdivision if and only if G contains some vertex v_0 of degree at least 6.

Let G be a 3-connected graph with at least 14 vertices. Suppose G has no type 1, 2, 3, or 4 edge-vertex-cutsets, and is a graph on which Reductions 1A, 1B, 2A, and 2B cannot be performed, for k=7. Let v_0 be a vertex of degree ≥ 6 in G.

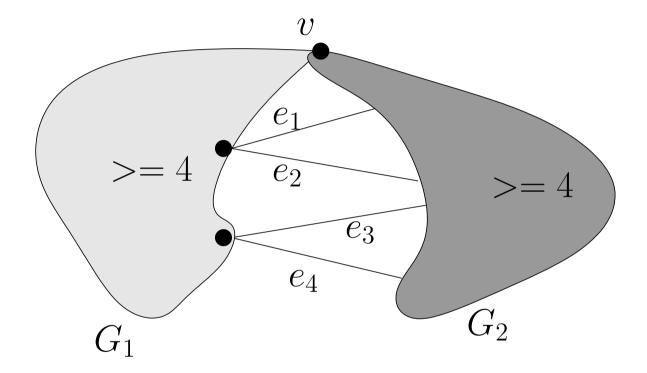
Then, either G has a W_6 -subdivision centred on v_0 , or G has a W_6 -subdivision centred on some vertex v_1 of degree ≥ 7 .



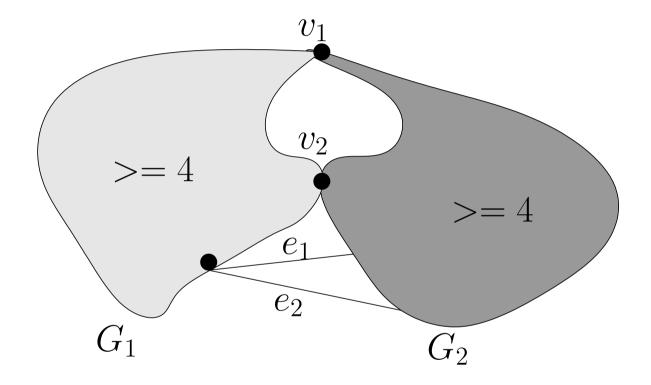
Type 1 edge-vertex-cutset



Type 2 edge-vertex-cutset



Type 3 edge-vertex-cutset

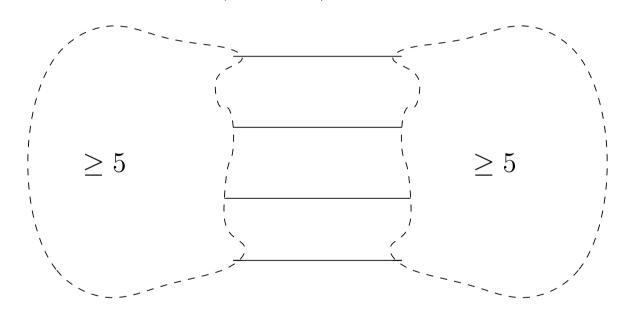


Type 4 edge-vertex-cutset

5 New result on W_7 graphs

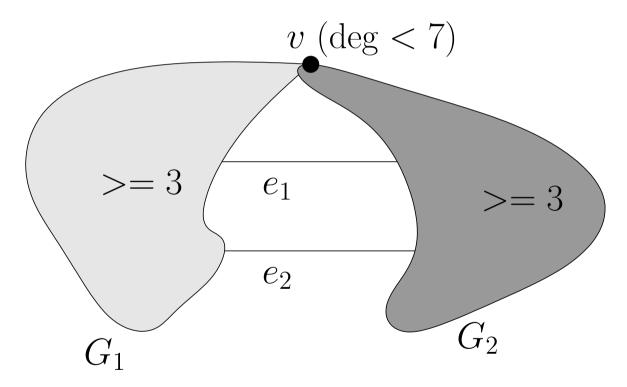
- ullet Characterization (up to bounded size pieces) of graphs that do not contain W_7 -subdivisions
- ullet Uses similar techniques to the W_5 and W_6 results

Let G be a 3-connected graph with at least 38 vertices. Suppose G has no internal 3 or 4-edge-cutsets, no internal (1,1,1,1)-cutsets . . .



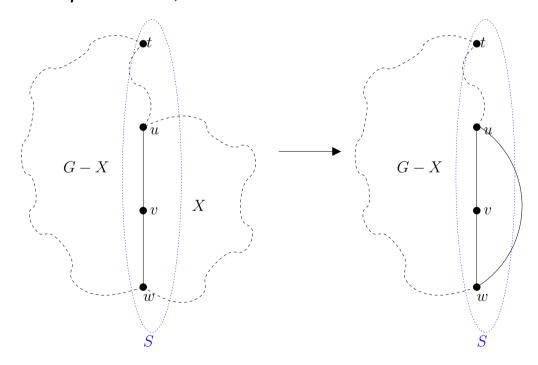
Internal (1,1,1,1)-cutset

Let G be a 3-connected graph with at least 38 vertices. Suppose G has no internal 3 or 4-edge-cutsets, no internal (1,1,1,1)-cutsets, no type 1, 1a, 2, 2a, 3, 3a, 4, or 4a edge-vertex-cutsets . . .

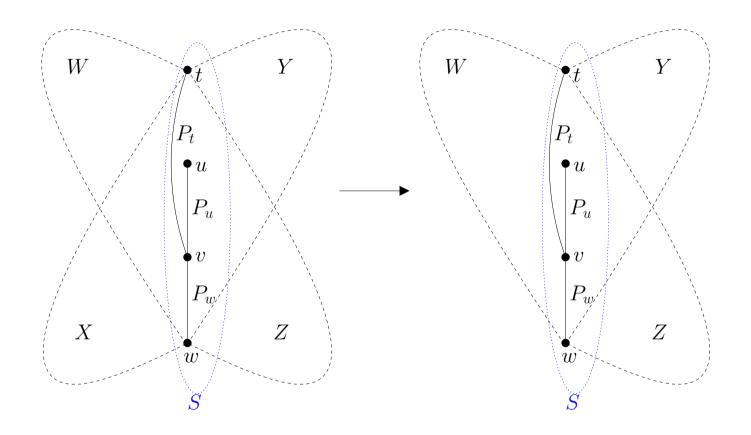


Type 1a edge-vertex-cutset

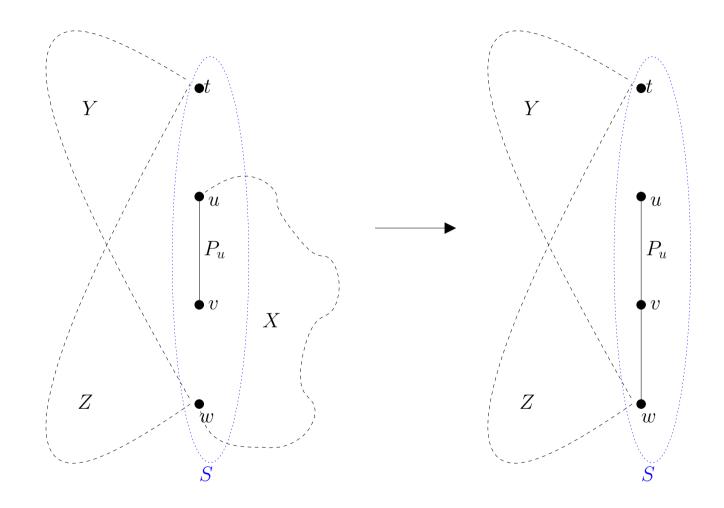
Let G be a 3-connected graph with at least 38 vertices. Suppose G has no internal 3 or 4-edge-cutsets, no internal (1,1,1,1)-cutsets, no type 1, 1a, 2, 2a, 3, 3a, 4, or 4a edge-vertex-cutsets, and is a graph on which Reductions 1A, 1B, 1C, 2A, 2B, 3, 4, 5, and 6 cannot be performed, for $k=7\dots$



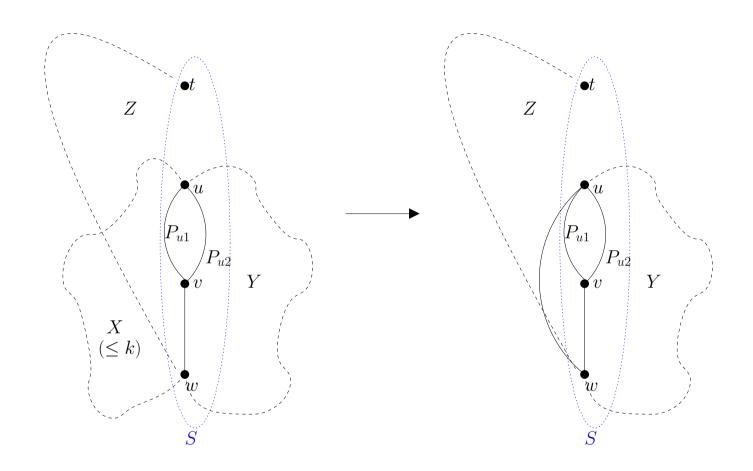
Reduction 3



Reduction 4



Reduction 5



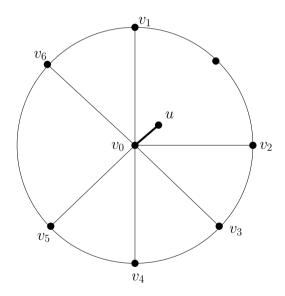
Reduction 6

Let G be a 3-connected graph with at least 38 vertices. Suppose G has no internal 3 or 4-edge-cutsets, no internal (1,1,1,1)-cutsets, no type 1, 1a, 2, 2a, 3, 3a, 4, or 4a edge-vertex-cutsets, and is a graph on which Reductions 1A, 1B, 1C, 2A, 2B, 3, 4, 5, and 6 cannot be performed, for k=7.

Then G has a W_7 -subdivision if and only if G contains some vertex v_0 of degree at least 7.

Proof — a summary.

- Suppose the conditions of the hypothesis hold for some graph G.
- ullet By the strengthened W_6 result, there exists some vertex v_0 of degree ≥ 7 in G that has a W_6 -subdivision H centred on it.

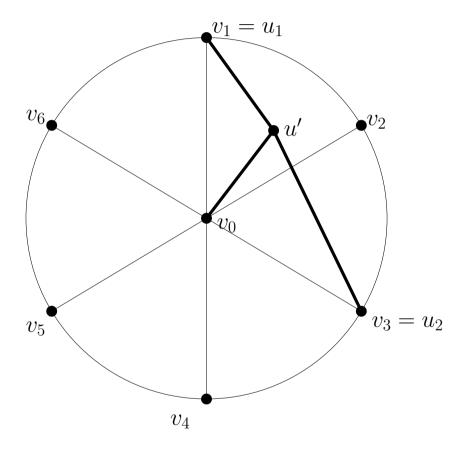


ullet How does u connect to the rest of H in order to preserve 3-connectivity?

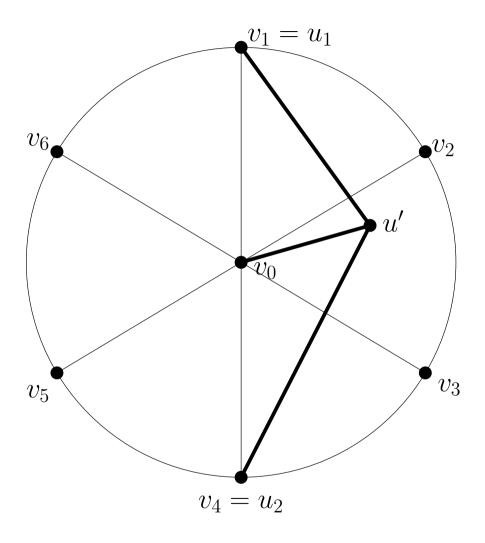
Three possibilities:

- (a) Path from v_0 to some vertex u_1 on the rim of the W_6 -subdivision, not meeting any spoke.
- (b) Two paths from u to two separate spokes of H.
- (c) Path from v_0 to some vertex u_1 on one of the spokes of the W_5 -subdivision, such that this path that does not meet H except at its end points.

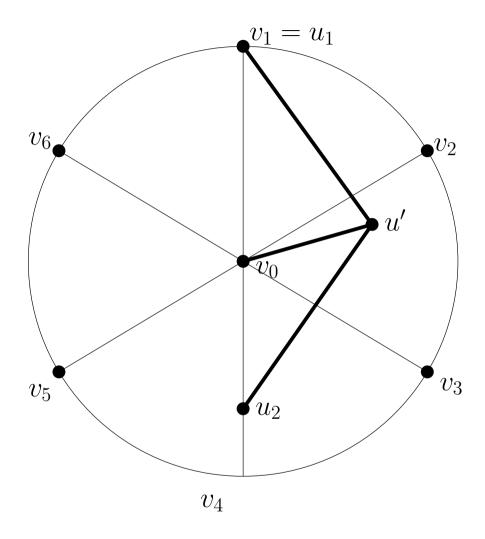
- Cases (a) and (c) are straightforward to deal with.
- Case (b) takes up most of the proof.
- ullet All possible configurations in case (b) result in a W_7 -subdivision except for three.



Case (b)(i)



Case (b)(ii)



Case (b)(iii)

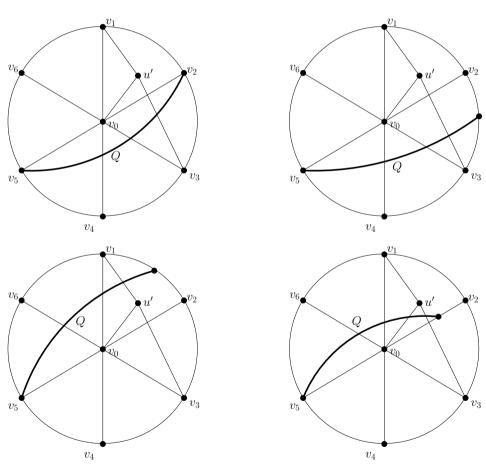
- These graphs meet the 3-connectivity requirements, but not the other requirements of the hypothesis: eg. forbidden reductions.
- So there must be more structure to the graphs.
- More in-depth case analysis required, based on different ways of adding this structure.
- C program to automate parts of this analysis; many parts of the proof depend on results generated by this program.

The program:

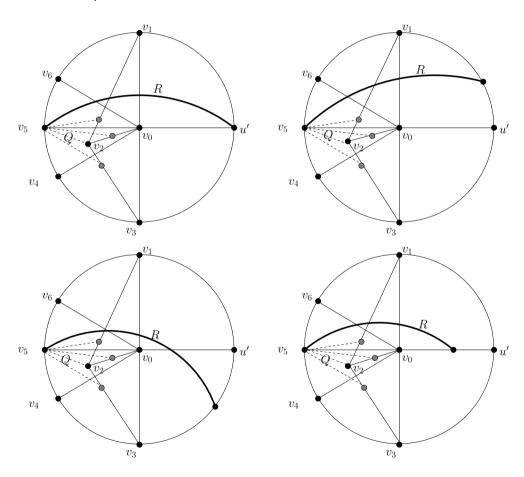
- constructs the various simple graphs that arise as cases in the proof, and
- ullet tests each graph for the presence of a W_7 -subdivision.

Case (b)(i): further detail

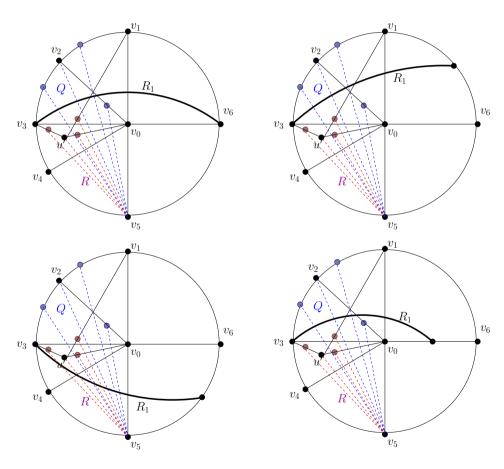
- **1.** Path Q from H_2 to H_4
 - ullet Four cases with no W_7 -subdivision



- **1.1.** Path R from U(u) to $H_2 \cup H_4$
 - ullet 16 cases with no W_7 -subdivision

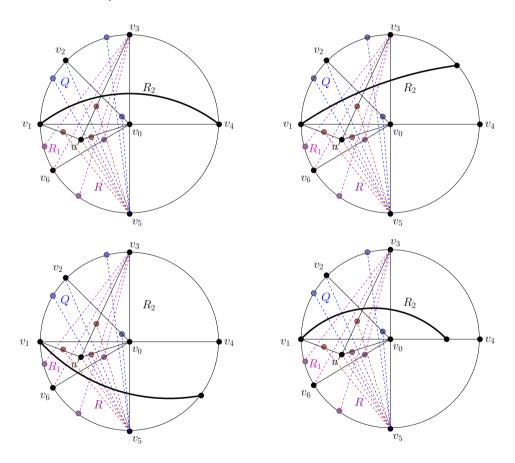


- **1.1.1.** Path R_1 such that $S_1 = \{v_0, v_1, v_5\}$ is not a separating set
 - ullet 64 cases with no W_7 -subdivision

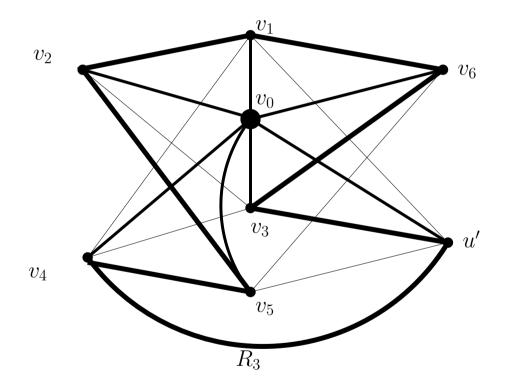


1.1.1.1. Path R_2 such that $S_2=\{v_0,v_3,v_5\}$ is not a separating set

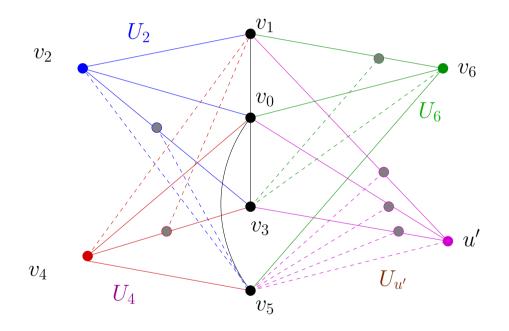
ullet 256 cases with no W_7 -subdivision



1.1.1.1. Path R_3 such that $S_3=\{v_0,v_1,v_3,v_5\}$ is not a separating set — always results in a W_7 -subdivision

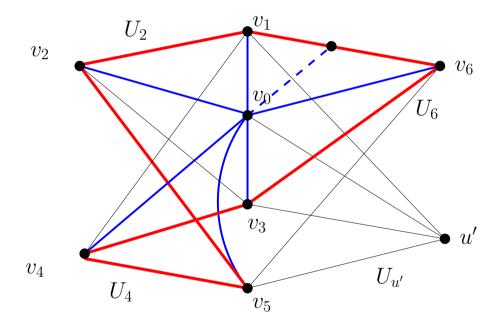


1.1.1.2. No such path: so S_3 forms a separating set.

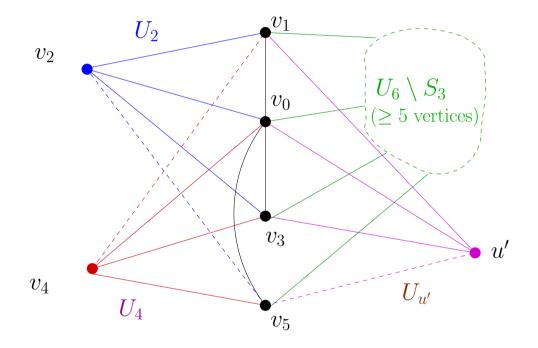


It can be shown that either:

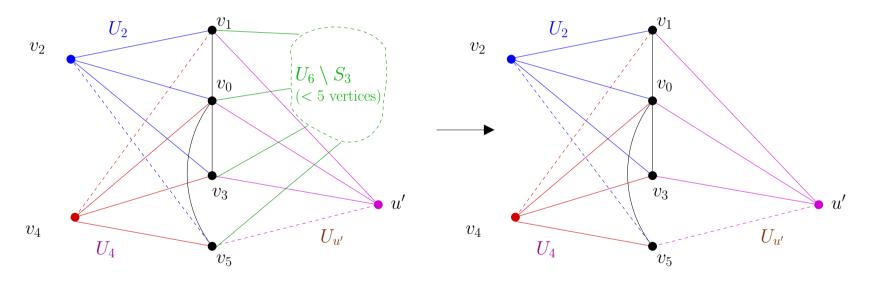
ullet a W_7 -subdivision exists centred on some vertex in S_3



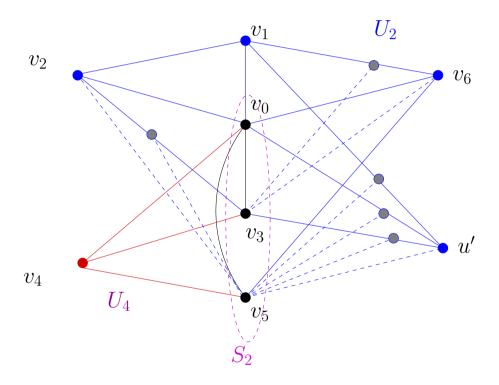
 $\bullet\,$ an internal (1,1,1,1)-cutset exists in G



$\bullet\,$ or Reduction 4 can be performed on G



1.1.1.2. No path R_2 exists: S_2 forms a separating set.



Suppose there are *only* two bridges of $G|S_2$: U_2 and U_4 .

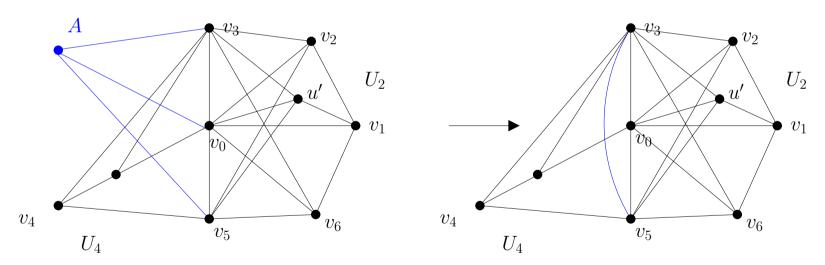
Lemma.

Let G be a 3-connected graph with at least 19 vertices. Suppose G has no internal 3 or 4-edge-cutsets, no type 1, 2, 2a, 3, 3a, or 4 edge-vertex-cutsets, and is a graph on which none of Reductions 1A, 1B, 1C, 2A, and 3 can be performed. Let $S = \{u, v, w\}$ be a separating set of vertices in G such that v is adjacent to both v and v and such that there are exactly two bridges, v and v and v are v at least four neighbours in v and v are v are v and v are v and v are v and v are v are v and v are v are v and v are v and v are v and v are v are v and v are v are v and v are v are v and v are v are v and v are v and v are v and v are v and v are v are v are v are v and v are v and v are v are v and v are v are v and v are v are v are v and v are v and v are v are v and v are v are v and v are v and v are v ar

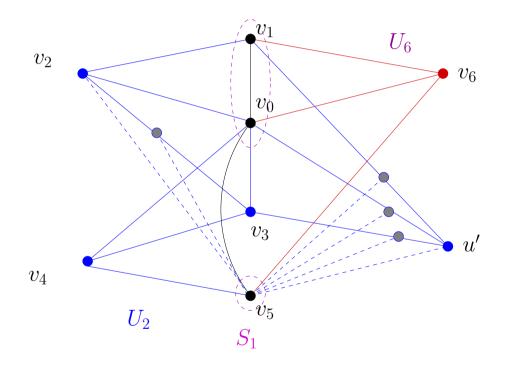
These conditions hold, so G must contain a W_7 -subdivision.

Suppose there exists a third bridge A of $G \mid S_2$. Then either:

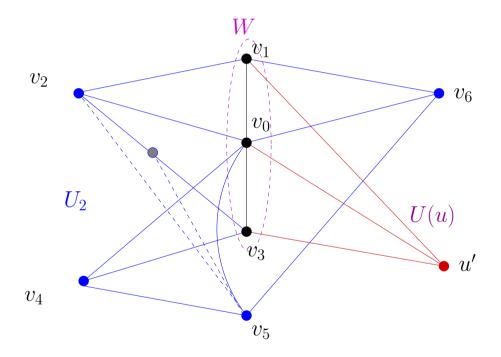
- ullet a W_7 -subdivision exists
- or one of the forbidden Reductions can be performed



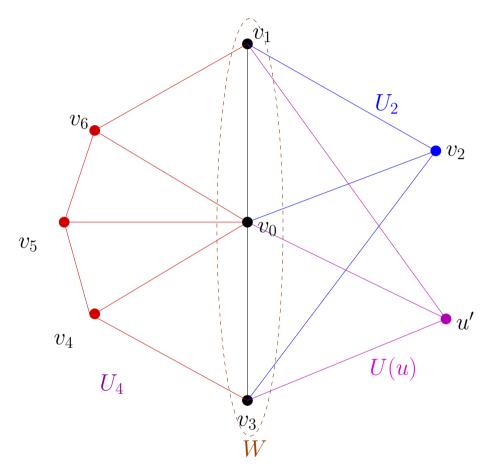
1.1.2. No path R_1 exists: S_1 forms a separating set.



1.2. No path ${\cal R}$ exists: ${\cal W}$ forms a separating set.



2. No path Q from H_2 to H_4 .



ullet Again, either a W_7 -subdivision exists, or a forbidden reduction can be performed.

Structure of graphs with no W_7 -subdivisions

- First, must 'reduce' a graph as much as possible, using the six forbidden reductions.
- The resulting graph in its reduced form must be composed of 'pieces' that contain at least 38 vertices.
- Each piece must:
 - be 3-connected;
 - contain no internal 3- or 4-edge cutsets, or any of the other types of forbidden separating sets; and
 - contain no vertices of degree ≥ 7 .

- Each of the pieces are joined together in a tree-like structure
- Each piece is joined to the rest of the graph so that either:
 - there exists a separating set of size ≤ 2 , the removal of which disconnects one piece from another; or
 - there exists either an internal 3- or 4-edge cutset, or one of the forbidden separating sets, the removal of which disconnects one piece from another.

