Kruskal's Theorem

Rebecca Robinson

May 29, 2007

Quasi-ordered set

A set Q together with a relation \leq is *quasi-ordered* if \leq is:

- reflexive ($a \leq a$); and
- transitive ($a \le b \le c \Rightarrow a \le c$)

Good sequence

- An infinite sequence q_1, q_2, \ldots of elements of Q, such that there exist positive integers i, j where i < j and $q_i \le q_j$.
- Example: 1, 2, 3, ...

Bad sequence

ullet An infinite sequence of elements of Q that is not good.

Well-quasi-ordered (wqo) set

- A quasi-ordered set Q such that every infinite sequence in the set is good.
- (\mathbb{N}, \leq) , the set of natural numbers with standard ordering, is wqo
- (\mathbb{Z}, \leq) , the set of positive and negative integers with standard ordering, is *not* wqo, since it contains infinite strictly decreasing sequences.
- $(\mathbb{N}, |)$, the set of natural numbers ordered by divisibility, is *not* wqo, since the prime numbers form an *infinite antichain* (an infinite sequence in which any two elements are incomparable).

Topological containment

- ullet Y is a subdivision of X; Y is the subgraph of another graph G
- *G topologically contains X*; there exists a homeomorphism of *X* in *G*.

• The set of all graphs is not wqo over topological containment.

However ...

Theorem (Kruskal, 1960): The set of all trees is wqo over topological containment.

• i.e. For every infinite sequence of trees T_1, T_2, \ldots there exists some pair T_i, T_j where i < j and T_i is topologically contained in T_j .

Cartesian product $Q \times Q'$: $(q_1, q_1') \leq (q_2, q_2')$ iff $q_1 \leq q_2$ and $q_1' \leq q_2'$

Lemma 1. If Q, Q' are wqo, then $Q \times Q'$ is wqo.

Proof.

Suppose Q and Q^{\prime} are wqo.

• Must show that any infinite sequence $(q_1,q_1'),(q_2,q_2'),(q_3,q_3'),\ldots$ of elements of $Q\times Q'$ is good.

Call q_m terminal if there is no n > m such that $q_m \le q_n$.

In Q:

- ullet There must be a finite number of terminal elements q_m , otherwise these elements would form a bad subsequence.
 - \Rightarrow there exists some N such that q_r is not terminal if r > N.
- ullet Select f(1)>N such that $q_{f(1)}$ is not terminal.
- Select f(2) > f(1) such that $q_{f(2)} \leq q_{f(1)}$.
- Select f(3) > f(2) such that $q_{f(3)} \leq q_{f(2)} \dots$ etc.
- $q_{f(1)} \le q_{f(2)} \le q_{f(3)} \le \dots$

In Q':

- ullet There is some corresponding infinite sequence $q'_{f(1)}, q'_{f(2)}, q'_{f(3)}, \dots$
- Since Q' is wqo, there exist i and j such that i < j and $q'_{f(i)} \le q'_{f(j)}$.

$$\Rightarrow (q_{f(i)}, q'_{f(i)}) \le (q_{f(j)}, q'_{f(j)})$$

- ullet Define SQ as the class of finite subsets of Q.
- ullet SQ is quasi-ordered by the rule that $A\leq B$ iff there exists a one-to-one non-descending mapping of A into B, where A and B are members of SQ.

Lemma 2. If Q is wqo, then the class SQ of finite subsets of Q, SQ, is also wqo.

Proof.

Let Q be wqo. Assume the hypothesis is false.

Define $A = A_1, A_2, A_3, ...$:

- ullet a bad subsequence in SQ
- ullet $|A_1|$ is chosen to be minimal
- Given A_1 , $|A_2|$ is chosen to be minimal
- ullet Given A_1 and A_2 , $|A_3|$ is chosen to be minimal ...etc.

No A_i is empty, or the sequence would be good.

 \Rightarrow Can select an element a_i from each A_i .

Let
$$B_i = A_i - \{a_i\}$$
.

Suppose some sequence:

$$B_{f(1)}, B_{f(2)}, B_{f(3)} \dots$$

is bad, where $f(1) \leq f(i)$ for all i.

Then the sequence:

$$A_1, A_2, \dots, A_{f(1)-1}, B_{f(1)}, B_{f(2)}, \dots$$

must also be bad.

This contradicts the assumption that our original sequence A be of minimal size, since $B_{f(1)}$ is a smaller set than $A_{f(1)}$.

 \Rightarrow any sequence of B_i with $f(1) \leq f(i)$ must be good.

- Call \mathcal{B} the class of sets B_i
- \mathcal{B} must be wqo, since any bad sequence of sets B_i would have a bad infinite subsequence in which no suffix was less than the first.

- \bullet By Lemma 1, $Q\times \mathcal{B}$ is wqo.
 - \Rightarrow there exists i, j such that i < j and $(a_i, B_i) \le (a_j, B_j)$
 - $\Rightarrow a_i \leq a_j \text{ and } B_i \leq B_j$

Since $a_i \cup B_i = A_i$ and $a_j \cup B_j = A_j$, this implies $A_i \leq A_j$.

This contradicts the assumption that our original sequence A is bad.

Theorem 1 (Kruskal's theorem). The set of all trees is wqo.

Proof.

Let $T = T_1, T_2, T_3, \ldots$ be an infinite sequence of trees, such that:

- \bullet T is bad.
- ullet $|V(T_1)|$ is minimal, $|V(T_2)|$ is minimal with respect to $T_1 \dots$ etc.

Define B_i as the set of branches of T_i at the successors of its root.

 T_i

$$B = B_1 \cup B_2 \cup B_3 \cup \dots$$

Suppose there exists an infinite sequence R_1, R_2, R_3, \ldots such that:

- $R_i \in B_{f(i)}$ and $f(1) \leq f(i)$ for all i, and
- the sequence is bad.

Then $T_1, T_2, \ldots, T_{f(1)-1}, R_1, R_2, \ldots$ is also a bad sequence, since if $T_i \leq R \in B_j$ then $T_i \leq T_j$ which contradicts the badness of T if i < j.

But if such a bad sequence exists, then T is no longer minimal.

- Thus, no such bad sequence R_1, R_2, R_3, \ldots exists.
- ullet This means no sequence of elements of B is bad, since any such sequence would have a bad subsequence where no suffix is less than the first.
- ullet So B is wqo.

By Lemma 2, this means SB (the class of finite subsets of B) is also wqo:

- $B_i \leq B_j$ for some i, j such that i < j
- There exists a one-to-one non-descending mapping $\phi: B_i \to B_j$.

For each $R \in B_i$, $R \leq \phi(R)$.

 \Rightarrow there exists a homeomorphism h_R of R into $\phi(R)$.

We can thus define a homeomorphism h of T_i into T_j :

- ullet identify the roots of T_i and T_j
- h coincides with h_R on the vertices of each $R \in B_i$.
- $\Rightarrow T_i \leq T_j$, so T cannot be a bad sequence.