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Quasi-ordered set

A set Q together with a relation ≤ is quasi-ordered if ≤ is:

• reflexive (a ≤ a); and

• transitive (a ≤ b ≤ c ⇒ a ≤ c)
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Good sequence

• An infinite sequence q1, q2, . . . of elements of Q, such that there exist positive

integers i, j where i < j and qi ≤ qj .

• Example: 1, 2, 3, . . .

Bad sequence

• An infinite sequence of elements of Q that is not good.
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Well-quasi-ordered (wqo) set

• A quasi-ordered set Q such that every infinite sequence in the set is good.

• (N,≤), the set of natural numbers with standard ordering, is wqo

• (Z,≤), the set of positive and negative integers with standard ordering, is not

wqo, since it contains infinite strictly decreasing sequences.

• (N, |), the set of natural numbers ordered by divisibility, is not wqo, since the

prime numbers form an infinite antichain (an infinite sequence in which any two

elements are incomparable).
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Topological containment

XG Y

• Y is a subdivision of X ; Y is the subgraph of another graph G

• G topologically contains X ; there exists a homeomorphism of X in G.
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• The set of all graphs is not wqo over topological containment.

However . . .
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Theorem (Kruskal, 1960): The set of all trees is wqo over topological containment.

• i.e. For every infinite sequence of trees T1, T2, . . . there exists some pair

Ti, Tj where i < j and Ti is topologically contained in Tj .

TjTi
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Proof. (Nash-Williams, 1963)

Cartesian product Q × Q′: (q1, q
′

1) ≤ (q2, q
′

2) iff q1 ≤ q2 and q′1 ≤ q′2

(q2, q
′
2)

Q

Q′

q1 q2

q′2

q′1 (q1, q
′
1)
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Lemma 1. If Q, Q′ are wqo, then Q × Q′ is wqo.

Proof.

Suppose Q and Q′ are wqo.

• Must show that any infinite sequence (q1, q
′

1), (q2, q
′

2), (q3, q
′

3), . . . of

elements of Q × Q′ is good.

Call qm terminal if there is no n > m such that qm ≤ qn.
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In Q:

• There must be a finite number of terminal elements qm, otherwise these

elements would form a bad subsequence.

⇒ there exists some N such that qr is not terminal if r > N .

• Select f(1) > N such that qf(1) is not terminal.

• Select f(2) > f(1) such that qf(2) ≤ qf(1).

• Select f(3) > f(2) such that qf(3) ≤ qf(2) . . . etc.

• qf(1) ≤ qf(2) ≤ qf(3) ≤ . . .
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In Q′:

• There is some corresponding infinite sequence q′
f(1), q

′

f(2), q
′

f(3), . . .

• Since Q′ is wqo, there exist i and j such that i < j and q′
f(i) ≤ q′

f(j).

⇒ (qf(i), q
′

f(i)) ≤ (qf(j), q
′

f(j))

Kruskal’s Theorem Rebecca Robinson 11



• Define SQ as the class of finite subsets of Q.

• SQ is quasi-ordered by the rule that A ≤ B iff there exists a one-to-one

non-descending mapping of A into B, where A and B are members of SQ.
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Lemma 2. If Q is wqo, then the class SQ of finite subsets of Q, SQ, is also wqo.

Proof.

Let Q be wqo. Assume the hypothesis is false.

Define A = A1, A2, A3, . . .:

• a bad subsequence in SQ

• |A1| is chosen to be minimal

• Given A1, |A2| is chosen to be minimal

• Given A1 and A2, |A3| is chosen to be minimal . . . etc.

No Ai is empty, or the sequence would be good.

⇒ Can select an element ai from each Ai.
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Let Bi = Ai − {ai}.

Suppose some sequence:

Bf(1), Bf(2), Bf(3) . . .

is bad, where f(1) ≤ f(i) for all i.

Then the sequence:

A1, A2, . . . , Af(1)−1, Bf(1), Bf(2), . . .

must also be bad.
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This contradicts the assumption that our original sequence A be of minimal size,

since Bf(1) is a smaller set than Af(1).

⇒ any sequence of Bi with f(1) ≤ f(i) must be good.

• Call B the class of sets Bi

• B must be wqo, since any bad sequence of sets Bi would have a bad infinite

subsequence in which no suffix was less than the first.
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• By Lemma 1, Q × B is wqo.

⇒ there exists i, j such that i < j and (ai, Bi) ≤ (aj , Bj)

⇒ ai ≤ aj and Bi ≤ Bj

Since ai ∪ Bi = Ai and aj ∪ Bj = Aj , this implies Ai ≤ Aj .

This contradicts the assumption that our original sequence A is bad.
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Theorem 1 (Kruskal’s theorem). The set of all trees is wqo.

Proof.

Let T = T1, T2, T3, . . . be an infinite sequence of trees, such that:

• T is bad.

• |V (T1)| is minimal, |V (T2)| is minimal with respect to T1 . . . etc.
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Define Bi as the set of branches of Ti at the successors of its root.

Bi

Ti

B = B1 ∪ B2 ∪ B3 ∪ . . .
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Suppose there exists an infinite sequence R1, R2, R3, . . . such that:

• Ri ∈ Bf(i) and f(1) ≤ f(i) for all i, and

• the sequence is bad.

Then T1, T2, . . . , Tf(1)−1, R1, R2, . . . is also a bad sequence, since if

Ti ≤ R ∈ Bj then Ti ≤ Tj which contradicts the badness of T if i < j.

But if such a bad sequence exists, then T is no longer minimal.
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• Thus, no such bad sequence R1, R2, R3, . . . exists.

• This means no sequence of elements of B is bad, since any such sequence

would have a bad subsequence where no suffix is less than the first.

• So B is wqo.
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By Lemma 2, this means SB (the class of finite subsets of B) is also wqo:

• Bi ≤ Bj for some i, j such that i < j

• There exists a one-to-one non-descending mapping φ : Bi → Bj .

BjBi
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For each R ∈ Bi, R ≤ φ(R).

⇒ there exists a homeomorphism hR of R into φ(R).

We can thus define a homeomorphism h of Ti into Tj :

• identify the roots of Ti and Tj

• h coincides with hR on the vertices of each R ∈ Bi.

⇒ Ti ≤ Tj , so T cannot be a bad sequence.
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