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Turbo Codes

What are they?

A basic structure of an encoder for a turbo code consists of an
input sequence, two encoders and an interleaver, denoted by Π:
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Turbo Codes

Types of interleavers and results

There are three types of interleavers: random, pseudo-random and
deterministic interleavers. The first two classes of interleavers
provide good minimum distance but they require considerable
space. Deterministic interleavers have simple structure and are
easy to implement; they have good performance.

Recent results on deterministic interleavers have focused on
permutation polynomials over the integer ring Zn. We center on
permutation polynomials over finite fields and use their cycle
structure to obtain turbo codes that have good performance.
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Turbo Codes

Interleavers and permutations

The interleaver permutes the information block x = (x0, . . . , xN )
so that the second encoder receives a permuted sequence of the
same size denoted by x̃ = (xΠ(0), . . . , xΠ(N)) for feeding into the
Encoder 2.

The inverse function Π−1 will be needed for decoding process
when we implement a de-interleaver. However, we observe that
some decoding algorithms do not require de-interleavers.

An interleaver Π is called self-inverse if Π = Π−1.
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Permutation Polynomials and Permutation Functions

Definitions and history

Let p be a prime number, q = pm and Fq be the finite field of
order q. A permutation function over Fq is a bijective function
which maps the elements of Fq onto itself. A permutation function
P is called self-inverse if P = P−1.

There exist an extensive literature on permutation polynomials and
permutation functions over finite fields. They have been
extensively studied since Hermite in the 19th century; see Lidl and
Mullen (1993) for a list of recent open problems.
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Permutation Polynomials and Permutation Functions

Well-known permutation polynomials

Monomials: M(x) = xn for some n ∈ N is a permutation
polynomial over Fq if and only if (n, q − 1) = 1. The inverse
of M(x) is obviously the monomial M−1(x) = xm where
nm ≡ 1 (mod q − 1).

Dickson polynomials of the 1st kind:

Dn(x, a) =

bn/2c∑
k=0

n

n− k

(
n− k
k

)
(−a)kxn−2k

is a permutation polynomial over Fq if and only if
(n, q2 − 1) = 1. Thus, for a ∈ {0,±1}, the inverse of
Dn(x, a) is Dm(x, a) where nm ≡ 1 (mod q2 − 1).
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Permutation Polynomials and Permutation Functions

Well-known permutation functions

Mobius transformation: Let a, b, c, d ∈ Fq, c 6= 0 and
ad− bc 6= 0. Then, the function

T (x) =

{
ax+b
cx+d x 6= −d

c ,
a
c x = −d

c ,

is a permutation function.

It’s inverse is simply

T−1(x) =

{
dx−b
−cx+a x 6= a

c ,
−d
c x = a

c .
(1)
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Permutation Polynomials and Permutation Functions

Well-known permutation functions

Rédei functions: Let char(Fq) 6= 2 and a ∈ F∗q be a non-square
element, then we have

(x+
√
a)n = Gn(x, a) +Hn(x, a)

√
a.

The Rédei function Rn = Gn
Hn

with degree n is a rational
function over Fq. The Rédei function Rn is a permutation
function if and only if (n, q + 1) = 1.

In addition, if char(Fq) 6= 2 and a ∈ F∗q be a square element,
then Rn is a permutation function if and only if (n, q− 1) = 1.
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The Rédei function Rn = Gn
Hn

with degree n is a rational
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Our Method

Interleaver

Definition. Let P be a permutation function over Fq and α a
primitive element in Fq. An interleaver ΠP : Zq → Zq is defined by

ΠP (i) = ln(P (αi)) (2)

where ln(.) denotes the discrete logarithm to the base α over F∗q
and ln(0) = 0.

There is a one-to-one correspondence between the set of all
permutations over a fixed finite field Fq and the set of all
interleavers of size q.
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Our Method

The need of cycle structure

Let P be a permutation function over Fq. Then, we have
(ΠP )−1 = ΠP−1 . Let P be a self-inverse permutation function
over Fq. Then, we have ΠP = (ΠP )−1.

We pick permutation functions and apply them to produce
interleavers following the above definition. This generates
deterministic interleavers based on permutations on finite fields.
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Our Method

The need of cycle structure: continued

We are interested in self-inverse interleavers. This requires the
study of the cycle structure of the underlying permutation. For
self-inverse interleavers we are interested in involutions, that is, of
permutations that decompose into cycles of length 1 or 2.

We are also interested in using the cycle structure of permutation
polynomials to produce good turbo codes.
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Results

Previous and new results on cycle structures

The cycle structure of the following permutation polynomials is
known:

monomials xn, (Rubio-Corrada 2004)

Dickson polynomials Dn(x, a) where a ∈ {0,±1},
(Rubio-Mullen-Corrada-Castro 2008)

Möbius transformation.

In this work:

we give the cycle structure of Rédei functions.

We characterize Rédei function with a cycle of length j, and
then extend this to all cycles of the same length.

An exact formula for counting the number of cycles of certain
length is also provided.
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We characterize Rédei function with a cycle of length j, and
then extend this to all cycles of the same length.

An exact formula for counting the number of cycles of certain
length is also provided.

Amin Sakzad

Cycle Structure of Permutation Functions over Finite Fields and their Applications in Deterministic Interleavers for Turbo Codes



Introduction Deterministic Interleavers Experiments Conclusions

Results

Cycle Structure of Mobius Interleavers

Let T be the Mobius transformation. Its cycle structure can be
explained in terms of the eigenvalues of the coefficient matrix AT

associated to T

AT =

(
a b
c d

)
. (3)

Theorem. (Sakzad-Sadeghi-Panario-2012) Let ΠT be an
interleaver defined by T , and let AT be as above. Then ΠT is a
self-inverse interleaver if Tr(AT ) = 0.
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Results

Rédei interleavers and their cycle structure

Definition. Let Rn be a Rédei permutation function over Fq. The
interleaver ΠRn defined in (2) is called a Rédei interleaver.

We have that R−1
n = Rm for m satisfying nm ≡ 1 (mod q + 1).

Let j = ords(n) if nj ≡ 1 (mod s) and j is as smallest as possible.
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Results

Rédei interleavers and their cycle structure

Theorem. (Sakzad-Sadeghi-Panario-2012) Let j be a positive
integer. The Rédei function Rn(x, a) of Fq with (n, q + 1) = 1 has
a cycle of length j if and only if q + 1 has a divisor s such that
j = ords(n).

Furthermore, the number Nj of cycles of length j of the Rédei
function Rn over Fq with (n, q + 1) = 1 satisfies

1 +
∑
i|j

iNi = (nj − 1, q + 1).
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Results

Self-inverse Rédei interleavers

Theorem. (Sakzad-Sadeghi-Panario-2012) Let
q + 1 = pk00 p

k1
1 · · · pkrr , and p0 = 2. The permutation of Fq given

by the Rédei function Rn has cycles of the same length j or fixed
points if and only if one of the following conditions holds for each
1 ≤ l ≤ r

n ≡ 1 (mod pkll ),

j = ord
p
kl
l

(n) and j|pl − 1,

j = ord
p
kl
l

(n), kl ≥ 2 and j = pl.
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Results

Self-inverse Rédei interleavers

Theorem. (Sakzad-Sadeghi-Panario-2012) The Rédei function Rn

of Fq with (n, q + 1) = 1 has cycles of length j = 2 or 1 if and
only if for every divisor s > 1 of q+ 1 we have that n ≡ 1 (mod s)
or j = 2 is the smallest integer with nj ≡ 1 (mod s).
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Results

Example

(Sakzad-Sadeghi-Panario-2012) Let q = 7, n = 5 and a = 3 ∈ Z∗7
is a non-square. Since (5, 7 + 1) = 1 and 5× 5 ≡ 1 (mod 8), we
get a self-inverse Rédei function

R5(x, 3) =
G5(x, 3)

H5(x, 3)
=
x5 + 2x3 + 3x

5x4 + 2x2 + 2
.

Thus, since 3 is a primitive element of F7, we have

R5(0, 3) = 0, R5(31, 3) = 36, R5(32, 3) = 32, R5(33, 3) = 34,
R5(34, 3) = 33, R5(35, 3) = 35, R5(36, 3) = 31.

Hence, Π5
R is (

0 1 2 3 4 5 6
0 6 2 4 3 5 1

)
.
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Simulation Results on the BER of Turbo Codes

Experiments

We consider turbo codes generated by two systematic recursive
convolutional codes. We investigate several interleaver sizes, and
report here on interleavers of size 256 only.

Dimension 256 is commonly used, thus this dimension was chosen.
The experiments are done based on a visual basic program using a
2.2 GHz Core2 dual processor computer.
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Simulation Results on the BER of Turbo Codes

Experiments: length 256
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Simulation Results on the BER of Turbo Codes

In SNRs between 1 and 2 Dickson and Möbius self-inverse
interleavers outperform the best introduced self-inverse interleavers
(quadratic interleavers) of the same size. In addition, self-inverse
Möbius interleavers have the best performance between other
known interleavers in SNRs larger than 1.85 (dB); between 1 and
1.85 dB the QPP interleaver (Sun-Takeshita) remains the best one.
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Conclusions

Conclusions

We study some deterministic interleavers based on permutation
functions over finite fields (in the paper we also considered Skolem
sequence interleavers). Self-interleavers are simple and allow for
the use of same structure in the encoding and decoding process.

A byproduct of this work is a study of Rédei functions in detail.
We derive an exact formula for the inverse of a Rédei function.
The cycle structure of these functions are given. The exact number
of cycles of a certain length j is also provided.

For a state-of-the-art account see the forthcoming (Winter 2013?):

CRC Handbook of Finite Fields
by Gary Mullen and Daniel Panario
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Conclusions
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