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Lattices

Definitions

@ A lattice is a discrete additive subgroup of R™. For example
72 in R2.
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Definitions

@ A lattice is a discrete additive subgroup of R™. For example
72 in R2.

@ Every lattice does have a bases and every lattice point is an
integer linear combinations of bases vectors.
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Lattices

Definitions

@ A lattice is a discrete additive subgroup of R™. For example
72 in R2.

@ Every lattice does have a bases and every lattice point is an
integer linear combinations of bases vectors.

@ A lattice A can be represented with a generator matrix G by
stacking its n-dimensional bases vectors as rows of G.
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Lattices

Successive minimas

@ For an n-dimensional lattice Ag, we define the m-th
successive minima, for 1 <m <n as

em(Ag) = inf {r: dim (span (Ag N B,(0))) > m}.

The m-th successive minima of Ag is the infimum of the
numbers 7 such that there are m independent vectors of Ag

in 5,.(0).
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Lattices

Successive minimas

@ For an n-dimensional lattice Ag, we define the m-th
successive minima, for 1 <m <n as

em(Ag) = inf {r: dim (span (Ag N B,(0))) > m}.

The m-th successive minima of Ag is the infimum of the
numbers 7 such that there are m independent vectors of Ag

in B,(0).
@ The quantity €7 is also called the minimum distance of Ag.
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Lattices

Full-diversity lattices and minimum product distance

@ An n-dimensional lattice Ag is called full-diversity if for all
disjoint X,y € Ag, the number of elements in

{m: Xlm # [ylm}

be exactly n.
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Lattices

Full-diversity lattices and minimum product distance

@ An n-dimensional lattice Ag is called full-diversity if for all
disjoint X,y € Ag, the number of elements in

{m: Xlm # [ylm}

be exactly n.

@ The minimum product distance of a full-diversity lattice Ag is
denoted by dj, min(Ag) and is defined by:

dpmin(Ag) £ min H|

0#x€Ag
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Lattices

Lattice Codes

@ For any point x € A the Voronoi cell V(x) is

k
{v = Z e ||[v—x| <|[v—-yl, Yy €A, an € (C}.
m=1
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Lattices

Lattice Codes

@ For any point x € A the Voronoi cell V(x) is
k
{v = amly: [Vv=x[| < |lv-yl, ¥y €A, am € c}.
m=1

@ A lattice code C C A is a finite set of points of A.
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Lattices

Lattice Codes

@ For any point x € A the Voronoi cell V(x) is
k
{v = amly: [Vv=x[| < |lv-yl, ¥y €A, am € c}.
m=1

@ A lattice code C C A is a finite set of points of A.
o A subset A’ C A is called a sublattice if A’ is a lattice itself.
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Lattices

Lattice Codes

@ For any point x € A the Voronoi cell V(x) is
k
{v = amly: [Vv=x[| < |lv-yl, ¥y €A, am € c}.
m=1

@ A lattice code C C A is a finite set of points of A.
o A subset A’ C A is called a sublattice if A’ is a lattice itself.

@ Given a sublattice A’, we define the quotient A/A’ as a lattice
code. The notions of coding lattice and shaping lattice.
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Lattices

Figure: A full-diversity non-vanishing minimum product distance lattice
with its bases vectors.
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System Model

MIMO Channel Model 1

@ We consider a quasi-static flat-fading n x n MIMO channel as
above Figure with both CSIT and CSIR.
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System Model

MIMO Channel Model 1

@ We consider a quasi-static flat-fading n x n MIMO channel as
above Figure with both CSIT and CSIR.

@ The channel matrix is H € C"*™ with entries distributed
independently and identically as CA/(0, 1).
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System Model

MIMO Channel Model 1

@ We consider a quasi-static flat-fading n x n MIMO channel as
above Figure with both CSIT and CSIR.

@ The channel matrix is H € C"*™ with entries distributed
independently and identically as CA/(0, 1).

@ An n-layer lattice coding scheme is used. For 1 < m < n, the
m-th layer is equipped with a lattice encoder

E:RF 5 A/N cC”

Sm > X,
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System Model
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Figure: System model block diagram.
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System Model

MIMO Channel Model 2

o Let WX V" be the singular value decomposition (SVD) of H,
ie.

e W,V € C" ™ are two unitary matrices,
o 3 is a diagonal matrix given by ¥ = diag(o1,...,0y,) for
which o1 > - > 0,,.
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System Model

MIMO Channel Model 2

o Let WX V" be the singular value decomposition (SVD) of H,
ie.

e W,V € C" ™ are two unitary matrices,
o 3 is a diagonal matrix given by ¥ = diag(o1,...,0y,) for
which o1 > - > 0,,.

@ A unitary precoder matrix U = VP is then employed at the
transmitter where P € C"*™ is a unitary matrix.
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System Model

MIMO Channel Model 2

o Let WX V" be the singular value decomposition (SVD) of H,
i.e.
e W,V € C" ™ are two unitary matrices,
o 3 is a diagonal matrix given by ¥ = diag(o1,...,0y,) for
which o1 > - > 0,,.
@ A unitary precoder matrix U = VP is then employed at the
transmitter where P € C"*™ is a unitary matrix.

@ We assume that the entries of Z are i.i.d. as CA/(0,1).
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System Model

MIMO Channel Model 2

o Let WX V" be the singular value decomposition (SVD) of H,
i.e.
e W,V € C" ™ are two unitary matrices,
o 3 is a diagonal matrix given by ¥ = diag(o1,...,0y,) for
which o1 > - > 0,,.

@ A unitary precoder matrix U = VP is then employed at the
transmitter where P € C"*™ is a unitary matrix.

@ We assume that the entries of Z are i.i.d. as CA/(0,1).
o Let X = [xI... xI]T, then the received signal Y is given by

Y = /p-HUX + Z,

where p = S'E—R
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System Model

MIMO Channel Model 3

@ Upon receiving Y, we multiply it by W,
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System Model

MIMO Channel Model 3

@ Upon receiving Y, we multiply it by W,
@ Substituting U = VP, the channel can be modeled as:

Y = p SPX + 7,

where Y = W"Y and Z' = W"Z.
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System Model

MIMO Channel Model 3

@ Upon receiving Y, we multiply it by W,
@ Substituting U = VP, the channel can be modeled as:

Y = p SPX + 7,

where Y/ = W"Y and Z' = W"Z.
@ Note that Z’ continues to be distributed as CA/(0,1) because

the product of a unitary matrix by a Gaussian matrix is a
Gaussian matrix.

Amin Sakzad Full Diversity Unitary Precoded Integer-Forcing



System Model

IF Linear Receiver

@ The goal of integer-forcing linear receiver is to project P (by
left multiplying it with a receiver filtering matrix B) onto a
non-singular integer matrix A.

@ In order to uniquely recover the information symbols, the
matrix A must be invertible over the ring R. Thus, we have

Y'=BY' =,/p- BEPX + BZ"
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System Model

Unitary Precoded IF

@ A suitable signal model is

Y = p-AX+,/p-(BEP — A)X + BZ’
- Jp-AX+E

o We let P.(m,XP,A) = Pr(s;, # Sm).
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System Model

Unitary Precoded IF

@ A suitable signal model is

Y = p-AX+,/p-(BEP — A)X + BZ’
- Jp-AX+E

o We let P.(m,XP,A) = Pr(s;, # Sm).
@ The average energy of effective noise E, denoted by e,,, along
with the m-th row of Y” is defined as

G(am, bim) £ pllbnEP — an || + [[bpm]|*.

Amin Sakzad Full Diversity Unitary Precoded Integer-Forcing



System Model

Unitary Precoded IF

@ A suitable signal model is
Y' = /p-AX+ /p- (BEP - A)X +BZ’
= p-AX+E
o We let P.(m,XP,A) = Pr(s;, # Sm).

@ The average energy of effective noise E, denoted by e,,, along
with the m-th row of Y” is defined as

G(am, bim) £ pllbnEP — an || + [[bpm]|*.

@ We refer to the above signal model as Unitary Precoded
Integer-Forcing.
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Diversity Analysis for Unitary Precoded Integer-Forcing

Our Approach

The optimum value of b, that minimizes the rate is given a,, is

-1
b = p - am SP" (In +p TP (EP)h) 2 5. a, (SP)" S

With this, the quantization noise term along the m-th layer is

G(am,bm) =

1>l

plBnEP — an[” + by,
p-an(I— (TP)"S™'P)a!

m

P an (I +p-(ZP)" ZP>_1 al

m
-1
p-anP" (I +p- Zh2> PaZﬁL
p-a,P'LL"Pal,

h_h
pam>

p-anpL,L
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Diversity Analysis for Unitary Precoded Integer-Forcing

Upper Bound on Probability of Error

Theorem

The probability of error for decoding the m-th layer in Z[i] is upper
bounded as

P.(m, 5P, Z[i)) < exp (—e i (Ag;1))

where c is some constant independent of p.
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Diversity Analysis for Unitary Precoded Integer-Forcing

Sketch of Proof 1

Since the minimum Euclidean distance of Z is unity, an error is
declared if e,,, > 4. The P, (m, EP,ZQ") equals

B (S, P

. E(exp(tem))
s A w» ()
gy ElexP (t\/P - (b EP =y, X )+t - (b, 21,,)))
>0 exp (@)
_ i E(exp(t\/p -(meP—am, Xm)))E(exp (t - (b, z.,)))
t>0 2 exp (\/—t) .
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Diversity Analysis for Unitary Precoded Integer-Forcing

Sketch of Proof 2

@ Since Z/

r ~N(0,1), we have

2 2
E (exp (¢ - (bm,z,))) < exp <M> .

2
o Let gy =t /p - (b, TP — ay,).

E (exp(ty/p - (dm:%m))) = | | B (exp (t3/p - [am];j[xml5))

|
=l 1

IN

sinh (t\/ﬁ\ [Qm]j[xm]j‘)
1 t\/ﬁ| [Qm]j [Xm]j|

2 12 2 f
13 p|[Qm]]| 13 pHQmH
exp [ ———1— | <exp | ——"—
6 2
7j=1

<

=t



Diversity Analysis for Unitary Precoded Integer-Forcing

Sketch of Proof 3

Overall we get P.(m,XP,Z) less than or equal to

t2p|[bm ZP— 2 2| b ||
exp( pllbm ° am|| )exp( I 2mII

< 2mi
S s (+F)
2
exp (t G(agn,bm))
= 2min
>0 exp (@)

= 2exp __—r .
4G (am,, by)
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Diversity Analysis for Unitary Precoded Integer-Forcing

Sketch of Proof 4

By appropriately choosing a,;, and b,,, we get
G(am, bm)

"; = ezn(AL’?})’

and

(2n)3 + (3n)? B (2n)3 + (3n)?

2
€ (ALh) S =
" P 6%n—m+1(A£g) E%n—m—l—l(AL*l)

P

Therefore, we have

P > egn—m—i—l(AL;l)
G(am,by) — co

and
Pe (m’ sz Z2n) S exXp (-Cﬁ%n_m+1(AL;1)) .
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Diversity Analysis for Unitary Precoded Integer-Forcing

Diversity Analysis

Overall for the worst layer

P.(2n,XP,Z) < exp (—ce%(AL;1)) .
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Diversity Analysis for Unitary Precoded Integer-Forcing

Diversity Analysis

Overall for the worst layer

P.(2n,XP,Z) < exp (—ce%(AL;Q) .

Definition
Let the average probability

P, =En (PE(EP, Z)) )

where the expectation is taken over all channel matrices H. In an
2n x 2n MIMO system and at a high SNR, if P, is approximated
by (c.SNR)_5, then ¢ is called the diversity gain (or diversity
order). For a MIMO system with precoding, if § = (2n)2, then, we
say that the precoder achieves full-diversity order.
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Diversity Analysis for Unitary Precoded Integer-Forcing

Main Theorem 1

Theorem
Let the precoding matrix P be such that [Pv]; # 0, where
v € Z*" is the vector satisfying € (AL;1) = \|L§1v| 2 then the

unitary precoded integer-forcing achieves full-diversity (2n)?.
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Diversity Analysis for Unitary Precoded Integer-Forcing

Main Theorem 2

Theorem

Let the precoding matrix P be such that dy, min(Ap) # 0, then
the achievable diversity of the unitary precoded integer-forcing is

(2n)2.
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Optimal Design of Full-Diversity Unitary Precoders

Type | UPIF:Definition

Based on the first main Theorem, the optimal Type | UPIF is as
follows:

P, = arg max min |L7'Pv|?
PEOD2, vez2\ {0}
[Pv]17#£0
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Optimal Design of Full-Diversity Unitary Precoders

Type | UPIF:Definition

Based on the first main Theorem, the optimal Type | UPIF is as
follows:

P, = arg max min |L7'Pv|?
PEOD2, vez2\ {0}
[Pv]17#£0

In other words, we should design a precoder matrix P such that
the minimum distance of the lattice A; -1 with generator matrix
P

L~ !P is maximized.
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Optimal Design of Full-Diversity Unitary Precoders

Type Il UPIF: 2 x 2 Case

@ We numerically search for
p®)

Lopt = aIg Max min ||L_1P(9)v||2,

P(9)602 [P(Q)V]l;ﬁo

cosf sind
—sinf cosf

P(0) = <

@ |t follows that

1 B cosp 0 cosf sinf
L P(O)—£< 0 sinn><—sin0 cos@)’

with

/1 2
E=1/2+p(o} +03), n = tan™?! V_£ro
1+ po?
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Optimal Design of Full-Diversity Unitary Precoders

tan(0)

tan(n)

Figure: The variation of tan 6 based on the variation of tann in a 2 x 2
complex MIMO Channel using real Type | UPIF.
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Optimal Design of Full-Diversity Unitary Precoders

Coding Gain

The coding gain formula is:

6%(AL—1)

P

YA 1) = ———
M et (L;l)%
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Optimal Design of Full-Diversity Unitary Precoders

Coding Gain

The coding gain formula is:

e2(Ay 1)
det (L") 2"

The coding gain measures the increase in density of ALP—I over the
integer lattice Z*" with ~ (Z*") = 1.
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Optimal Design of Full-Diversity Unitary Precoders

=
N
N

=
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~

> 108

02 04 06 038 1
tan(n)

Figure: The variation of ’Y(ALEI) based on the variation of tan in a
2 x 2 complex MIMO Channel using real Type | UPIF.
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Optimal Design of Full-Diversity Unitary Precoders

8000 T T T T T T T T

Figure: The histogram of *y(AL;1) in a 2 x 2 complex MIMO Channel
using real Type | UPIF.
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Optimal Design of Full-Diversity Unitary Precoders

Type Il UPIF:Definition

Based on Theorem 4, the optimal Type Il UPIF is as follows:

1
P2,0Pt = arg PIrel(a‘Q)Q(n d]?m]n (AP) N

Amin Sakzad Full Diversity Unitary Precoded Integer-Forcing



Optimal Design of Full-Diversity Unitary Precoders

Type Il UPIF:Definition

Based on Theorem 4, the optimal Type Il UPIF is as follows:

1
P2,0Pt = arg PIrel(a‘Q)Q(n d]?m]n (AP) N

The solution for the above maximization is provided by OV04 as
well as GBB97 using algebraic number theoretic lattices. A list of
full-diversity algebraic rotations is available in Emanuele’s Website.
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Simulation Results

Procedure: Modulo Lattice Decoding

O Infinite lattice decoding: Each component of By’ is
decoded to the nearest point in Z[i] to get y. In particular,
we use y = |By'].
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Simulation Results

Procedure: Modulo Lattice Decoding

O Infinite lattice decoding: Each component of By’ is
decoded to the nearest point in Z[i] to get y. In particular,
we use y = |By'].

@ Projecting onto lattice codewords: Then, “mod 2"
operation is performed independently on the components of
y. With this, we get r =y (mod 2).
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Simulation Results

Procedure: Modulo Lattice Decoding

O Infinite lattice decoding: Each component of By’ is
decoded to the nearest point in Z[i] to get y. In particular,
we use y = |By'].

@ Projecting onto lattice codewords: Then, “mod 2"
operation is performed independently on the components of
y. With this, we get r =y (mod 2).

© Decoupling the lattice codewords: Further, we solve the
system of linear equations r = As (mod 2) over the ring
{0,1} to obtain the decoded vector S.
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Simulation Results

Comparison Cases: MIMO X-Codes and Y-Codes

The UPIF scheme and MIMO precoding X-codes and Y-codes
share similar properties, which make them suitable for comparison:
@ both schemes use SVD decomposition technique to transform
the channel matrix into a diagonal one,
@ the precoder matrices in both systems must be
unitary/orthogonal matrices,
@ both the detectors at the receiver side, i.e. lattice reduction
based IF linear receiver and a combination of two

2-dimensional ML decoders, provide full receive diversity in
2 x 2 MIMO.
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Simulation Results

CER 2 x 2 MIMO Channel

—o— Type | UPIF
—&— X-Precoders ML|
Type | UPML

Codeword Error Rate

Figure: Type | UPIF in comparison with, X-Precoders decoded with
sphere decoding algorithm, and Type Il UPML in a 2 x 2 complex MIMO
Channel.
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Simulation Results

CER for 2 x 2 MIMO Channel

3 4-QAM 16-QAM

Codeword Error Rate

5 10 15 20 25 30 35 40 45
E./No = p (dB)

Figure: Type Il UPIF in comparison with X-Codes and Type Il UPML in
a 2 x 2 complex MIMO Channel.

Amin Sakzad Full Diversity Unitary Precoded Integer-Forcing



Simulation Results

CER for 4 x 4 MIMO Channel

10 : : : :
107}
@
‘f-ﬂ‘ -2
C 107}
g
]
°
S
§ 10°}
g
o
107t
—o— Type Il UPIF
—&— X-Codes-ML
Type Il UPML
10’5 i i i i i i i
0 5 10 15 20 25 30 35 40

E,/No = p (dB)

Figure: Type Il UPIF in comparison with X-Codes and Type |l UPML in
a 4 x 4 complex MIMO Channel.
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Simulation Results

CER for 2 x 2 MIMO Channel

10 T
—e— Type | UPIF
Type | UPML
| — © —Type Il UPIF
10" | = — — Type Il uPML|
)
g -2
T 107
8
i
°
g
5
3 10 "k
3
S
107
10'5 i i
25 30 35 40

E./Ny = p (dB)

Figure: Type | versus Type Il UPIF and UPML schemes in a 2 x 2
complex MIMO Channel.
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Conclusions

Conclusions

@ A unitary precoding scheme has been introduced to be
employed at the transmitter of a flat-fading MIMO channel in
the presence of both CSIT and CSIR, where an IF linear
receiver is employed.

@ The diversity gains of the proposed approach has been
analyzed both theoretically and numerically.
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Conclusions

Further Research Topics

@ Designing full-diversity unitary precoders with IF receiver at
the destination without having CSIT is of interest.

@ Let the transmitter have access to limited feedback over a
delay-free link from the IF receiver. Designing a suitable
codebook of unitary precoding matrices which attains higher
rates and obtain higher coding gains seems to be a promising
research topic.
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Conclusions

Thank you!
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