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Definitions

A lattice is a discrete additive subgroup of Rn. For example
Z
2 in R

2.
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Definitions

A lattice is a discrete additive subgroup of Rn. For example
Z
2 in R

2.

Every lattice does have a bases and every lattice point is an
integer linear combinations of bases vectors.
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Definitions

A lattice is a discrete additive subgroup of Rn. For example
Z
2 in R

2.

Every lattice does have a bases and every lattice point is an
integer linear combinations of bases vectors.

A lattice Λ can be represented with a generator matrix G by
stacking its n-dimensional bases vectors as rows of G.

Amin Sakzad Full Diversity Unitary Precoded Integer-Forcing



Lattices
System Model

Diversity Analysis for Unitary Precoded Integer-Forcing
Optimal Design of Full-Diversity Unitary Precoders

Simulation Results
Conclusions

Successive minimas

For an n-dimensional lattice ΛG, we define the m-th
successive minima, for 1 ≤ m ≤ n as

ǫm(ΛG) , inf {r : dim (span (ΛG ∩ Br(0))) ≥ m} .

The m-th successive minima of ΛG is the infimum of the
numbers r such that there are m independent vectors of ΛG

in Br(0).
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Successive minimas

For an n-dimensional lattice ΛG, we define the m-th
successive minima, for 1 ≤ m ≤ n as

ǫm(ΛG) , inf {r : dim (span (ΛG ∩ Br(0))) ≥ m} .

The m-th successive minima of ΛG is the infimum of the
numbers r such that there are m independent vectors of ΛG

in Br(0).

The quantity ǫ1 is also called the minimum distance of ΛG.
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Full-diversity lattices and minimum product distance

An n-dimensional lattice ΛG is called full-diversity if for all
disjoint x,y ∈ ΛG, the number of elements in

{m : [x]m 6= [y]m}

be exactly n.
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Full-diversity lattices and minimum product distance

An n-dimensional lattice ΛG is called full-diversity if for all
disjoint x,y ∈ ΛG, the number of elements in

{m : [x]m 6= [y]m}

be exactly n.

The minimum product distance of a full-diversity lattice ΛG is
denoted by dp,min(ΛG) and is defined by:

dp,min(ΛG) , min
0 6=x∈ΛG

∏

m

|[x]m| .
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Lattice Codes

For any point x ∈ Λ the Voronoi cell V(x) is
{
v =

k∑

m=1

αmℓm : ‖v − x‖ ≤ ‖v − y‖, ∀y ∈ Λ, αm ∈ C

}
.
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Lattice Codes

For any point x ∈ Λ the Voronoi cell V(x) is
{
v =

k∑

m=1

αmℓm : ‖v − x‖ ≤ ‖v − y‖, ∀y ∈ Λ, αm ∈ C

}
.

A lattice code C ⊆ Λ is a finite set of points of Λ.
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Lattice Codes

For any point x ∈ Λ the Voronoi cell V(x) is
{
v =

k∑

m=1

αmℓm : ‖v − x‖ ≤ ‖v − y‖, ∀y ∈ Λ, αm ∈ C

}
.

A lattice code C ⊆ Λ is a finite set of points of Λ.

A subset Λ′ ⊆ Λ is called a sublattice if Λ′ is a lattice itself.
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Lattice Codes

For any point x ∈ Λ the Voronoi cell V(x) is
{
v =

k∑

m=1

αmℓm : ‖v − x‖ ≤ ‖v − y‖, ∀y ∈ Λ, αm ∈ C

}
.

A lattice code C ⊆ Λ is a finite set of points of Λ.

A subset Λ′ ⊆ Λ is called a sublattice if Λ′ is a lattice itself.

Given a sublattice Λ′, we define the quotient Λ/Λ′ as a lattice
code. The notions of coding lattice and shaping lattice.

Amin Sakzad Full Diversity Unitary Precoded Integer-Forcing



Lattices
System Model

Diversity Analysis for Unitary Precoded Integer-Forcing
Optimal Design of Full-Diversity Unitary Precoders

Simulation Results
Conclusions

Figure: A full-diversity non-vanishing minimum product distance lattice
with its bases vectors.
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MIMO Channel Model 1

We consider a quasi-static flat-fading n× n MIMO channel as
above Figure with both CSIT and CSIR.
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MIMO Channel Model 1

We consider a quasi-static flat-fading n× n MIMO channel as
above Figure with both CSIT and CSIR.

The channel matrix is H ∈ C
n×n with entries distributed

independently and identically as CN (0, 1).
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MIMO Channel Model 1

We consider a quasi-static flat-fading n× n MIMO channel as
above Figure with both CSIT and CSIR.

The channel matrix is H ∈ C
n×n with entries distributed

independently and identically as CN (0, 1).

An n-layer lattice coding scheme is used. For 1 ≤ m ≤ n, the
m-th layer is equipped with a lattice encoder

E : Rk → Λ/Λ′ ⊂ C
n

sm 7→ xm.

Amin Sakzad Full Diversity Unitary Precoded Integer-Forcing



Lattices
System Model

Diversity Analysis for Unitary Precoded Integer-Forcing
Optimal Design of Full-Diversity Unitary Precoders

Simulation Results
Conclusions

Figure: System model block diagram.
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MIMO Channel Model 2

Let WΣVh be the singular value decomposition (SVD) of H,
i.e.

W,V ∈ Cn×n are two unitary matrices,
Σ is a diagonal matrix given by Σ = diag(σ1, . . . , σn) for
which σ1 ≥ · · · ≥ σn.
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MIMO Channel Model 2

Let WΣVh be the singular value decomposition (SVD) of H,
i.e.

W,V ∈ Cn×n are two unitary matrices,
Σ is a diagonal matrix given by Σ = diag(σ1, . . . , σn) for
which σ1 ≥ · · · ≥ σn.

A unitary precoder matrix U = VP is then employed at the
transmitter where P ∈ C

n×n is a unitary matrix.
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MIMO Channel Model 2

Let WΣVh be the singular value decomposition (SVD) of H,
i.e.

W,V ∈ Cn×n are two unitary matrices,
Σ is a diagonal matrix given by Σ = diag(σ1, . . . , σn) for
which σ1 ≥ · · · ≥ σn.

A unitary precoder matrix U = VP is then employed at the
transmitter where P ∈ C

n×n is a unitary matrix.

We assume that the entries of Z are i.i.d. as CN (0, 1).
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MIMO Channel Model 2

Let WΣVh be the singular value decomposition (SVD) of H,
i.e.

W,V ∈ Cn×n are two unitary matrices,
Σ is a diagonal matrix given by Σ = diag(σ1, . . . , σn) for
which σ1 ≥ · · · ≥ σn.

A unitary precoder matrix U = VP is then employed at the
transmitter where P ∈ C

n×n is a unitary matrix.

We assume that the entries of Z are i.i.d. as CN (0, 1).

Let X = [xT
1 , . . . ,x

T
n ]

T , then the received signal Y is given by

Y =
√
ρ ·HUX+ Z,

where ρ = SNR
n

.
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MIMO Channel Model 3

Upon receiving Y, we multiply it by Wh.
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MIMO Channel Model 3

Upon receiving Y, we multiply it by Wh.

Substituting U = VP, the channel can be modeled as:

Y′ =
√
ρ ·ΣPX+ Z′,

where Y′ = WhY and Z′ = WhZ.
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MIMO Channel Model 3

Upon receiving Y, we multiply it by Wh.

Substituting U = VP, the channel can be modeled as:

Y′ =
√
ρ ·ΣPX+ Z′,

where Y′ = WhY and Z′ = WhZ.

Note that Z′ continues to be distributed as CN (0, 1) because
the product of a unitary matrix by a Gaussian matrix is a
Gaussian matrix.
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IF Linear Receiver

The goal of integer-forcing linear receiver is to project ΣP (by
left multiplying it with a receiver filtering matrix B) onto a
non-singular integer matrix A.

In order to uniquely recover the information symbols, the
matrix A must be invertible over the ring R. Thus, we have

Y′′ = BY′ =
√
ρ ·BΣPX+BZ′.
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Unitary Precoded IF

A suitable signal model is

Y′′ =
√
ρ ·AX+

√
ρ · (BΣP−A)X+BZ′

=
√
ρ ·AX+E

We let Pe(m,ΣP,Λ) = Pr(sm 6= ŝm).
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Unitary Precoded IF

A suitable signal model is

Y′′ =
√
ρ ·AX+

√
ρ · (BΣP−A)X+BZ′

=
√
ρ ·AX+E

We let Pe(m,ΣP,Λ) = Pr(sm 6= ŝm).

The average energy of effective noise E, denoted by em, along
with the m-th row of Y′′ is defined as

G(am,bm) , ρ‖bmΣP− am‖2 + ‖bm‖2.
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Unitary Precoded IF

A suitable signal model is

Y′′ =
√
ρ ·AX+

√
ρ · (BΣP−A)X+BZ′

=
√
ρ ·AX+E

We let Pe(m,ΣP,Λ) = Pr(sm 6= ŝm).

The average energy of effective noise E, denoted by em, along
with the m-th row of Y′′ is defined as

G(am,bm) , ρ‖bmΣP− am‖2 + ‖bm‖2.

We refer to the above signal model as Unitary Precoded

Integer-Forcing.
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Our Approach

The optimum value of bm that minimizes the rate is given am is

bm = ρ · amΣPh
(
In + ρ ·ΣP (ΣP)h

)−1
, ρ · am (ΣP)h S−1.

With this, the quantization noise term along the m-th layer is

G(am,bm) = ρ‖bmΣP− am‖2 + ‖bm‖2
= ρ · am(I− (ΣP)h S−1ΣP)ahm

= ρ · am
(
I+ ρ · (ΣP)hΣP

)−1
ahm

= ρ · amPh
(
I+ ρ ·ΣhΣ

)−1
Pahm

= ρ · amPhLLhPahm

, ρ · amLpL
h
pa

h
m,
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Upper Bound on Probability of Error

Theorem

The probability of error for decoding the m-th layer in Z[i] is upper
bounded as

Pe(m,ΣP,Z[i]) ≤ exp
(
−cǫ22n−m+1(ΛL

−1
p
)
)
,

where c is some constant independent of ρ.
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Sketch of Proof 1

Since the minimum Euclidean distance of Z is unity, an error is

declared if em ≥
√
ρ

2 . The Pe

(
m,ΣP,Z2n

)
equals

= Pr

(
|em| ≥

√
ρ

2

)
= 2Pr

(
em ≥

√
ρ

2

)

≤ 2min
t>0

E(exp(tem))

exp
(√

ρt

2

)

= 2min
t>0

E(exp
(
t
√
ρ ·〈bmΣP−am,xm〉+t ·〈bm, z′m〉

)
)

exp
(√

ρt

2

)

= min
t>0

E(exp(t
√
ρ ·〈bmΣP−am,xm〉))E(exp (t ·〈bm, z′m〉))

1
2 exp

(√
ρt

2

) .
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Sketch of Proof 2

Since z′m ∼ N (0, 1), we have

E
(
exp

(
t · 〈bm, z′m〉

))
≤ exp

(
t2‖bm‖2

2

)
.

Let qm , t
√
ρ · (bmΣP− am).

E (exp(t
√
ρ · 〈qm,xm〉)) =

2n∏

j=1

E (exp (t
√
ρ · [qm]j [xm]j))

≤
2n∏

j=1

sinh
(
t
√
ρ|[qm]j [xm]j|

)

t
√
ρ|[qm]j [xm]j |

≤
2n∏

j=1

exp

(
t2ρ|[qm]j|2

6

)
≤ exp

(
t2ρ‖qm‖2

2
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Sketch of Proof 3

Overall we get Pe(m,ΣP,Z) less than or equal to

≤ 2min
t>0

exp
(
t2ρ‖bmΣP−am‖2

2

)
exp

(
t2‖bm‖2

2

)

exp
(√

ρt

2

)

= 2min
t>0

exp
(
t2G(am,bm)

2

)

exp
(√

ρt

2

)

= 2exp

( −ρ

4G(am,bm)

)
.
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Sketch of Proof 4

By appropriately choosing am and bm, we get

G(am,bm)

ρ
= ǫ2m(ΛLh

p
),

and

ǫ2m(ΛLh
p
) ≤ (2n)3 + (3n)2

ǫ22n−m+1(Λ
∗
Lh
p
)
=

(2n)3 + (3n)2

ǫ22n−m+1(ΛL
−1
p
)
.

Therefore, we have

ρ

G(am,bm)
≥

ǫ22n−m+1(ΛL
−1
p
)

c0
.

and
Pe

(
m,ΣP,Z2n

)
≤ exp

(
−cǫ22n−m+1(ΛL

−1
p
)
)
.
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Diversity Analysis

Overall for the worst layer

Pe(2n,ΣP,Z) ≤ exp
(
−cǫ21(ΛL

−1
p
)
)
.
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Diversity Analysis

Overall for the worst layer

Pe(2n,ΣP,Z) ≤ exp
(
−cǫ21(ΛL

−1
p
)
)
.

Definition

Let the average probability

Pe = EH (Pe(ΣP,Z)) ,

where the expectation is taken over all channel matrices H. In an
2n× 2n MIMO system and at a high SNR, if Pe is approximated
by (c.SNR)−δ, then δ is called the diversity gain (or diversity
order). For a MIMO system with precoding, if δ = (2n)2, then, we
say that the precoder achieves full-diversity order.
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Main Theorem 1

Theorem

Let the precoding matrix P be such that [Pv]1 6= 0, where
v ∈ Z

2n is the vector satisfying ǫ21(ΛL
−1
p
) = ‖L−1

p v‖2, then the

unitary precoded integer-forcing achieves full-diversity (2n)2.
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Main Theorem 2

Theorem

Let the precoding matrix P be such that dp,min(ΛP) 6= 0, then
the achievable diversity of the unitary precoded integer-forcing is

(2n)2.
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Type I UPIF:Definition

Based on the first main Theorem, the optimal Type I UPIF is as
follows:

P1,opt = arg max
P∈O2n

min
v∈Z2n\{0}
[Pv]1 6=0

‖L−1Pv‖2
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Type I UPIF:Definition

Based on the first main Theorem, the optimal Type I UPIF is as
follows:

P1,opt = arg max
P∈O2n

min
v∈Z2n\{0}
[Pv]1 6=0

‖L−1Pv‖2

In other words, we should design a precoder matrix P such that
the minimum distance of the lattice Λ

L
−1
p

with generator matrix

L−1P is maximized.
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Type II UPIF: 2× 2 Case

We numerically search for

P
(R)
1,opt = arg max

P(θ)∈O2

min
[P(θ)v]1 6=0

‖L−1P(θ)v‖2,

for

P(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, θ ∈ [0 : 0.0001 : π/4]

It follows that

L−1P(θ) = ξ

(
cos η 0
0 sin η

)(
cos θ sin θ
− sin θ cos θ

)
,

with

ξ =
√

2 + ρ(σ2
1 + σ2

2), η = tan−1

(√
1 + ρσ2

2√
1 + ρσ2

1

)
.
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Figure: The variation of tan θ based on the variation of tan η in a 2× 2
complex MIMO Channel using real Type I UPIF.
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Coding Gain

The coding gain formula is:

γ(Λ
L
−1
p
) =

ǫ21(ΛL
−1
p
)

det
(
L−1
p

) 2

2n

.
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Coding Gain

The coding gain formula is:

γ(Λ
L
−1
p
) =

ǫ21(ΛL
−1
p
)

det
(
L−1
p

) 2

2n

.

The coding gain measures the increase in density of Λ
L
−1
p

over the

integer lattice Z
2n with γ

(
Z
2n
)
= 1.
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Figure: The variation of γ(Λ
L

−1

p

) based on the variation of tan η in a

2× 2 complex MIMO Channel using real Type I UPIF.
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Figure: The histogram of γ(Λ
L

−1

p

) in a 2× 2 complex MIMO Channel

using real Type I UPIF.
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Type II UPIF:Definition

Based on Theorem 4, the optimal Type II UPIF is as follows:

P2,opt = arg max
P∈O2n

d
1

n

pmin (ΛP) .
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Type II UPIF:Definition

Based on Theorem 4, the optimal Type II UPIF is as follows:

P2,opt = arg max
P∈O2n

d
1

n

pmin (ΛP) .

The solution for the above maximization is provided by OV04 as
well as GBB97 using algebraic number theoretic lattices. A list of
full-diversity algebraic rotations is available in Emanuele’s Website.
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Procedure: Modulo Lattice Decoding

1 Infinite lattice decoding: Each component of By′ is
decoded to the nearest point in Z[i] to get ŷ. In particular,
we use ŷ = ⌊By′⌉.
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Procedure: Modulo Lattice Decoding

1 Infinite lattice decoding: Each component of By′ is
decoded to the nearest point in Z[i] to get ŷ. In particular,
we use ŷ = ⌊By′⌉.

2 Projecting onto lattice codewords: Then, “mod 2”
operation is performed independently on the components of
ŷ. With this, we get r ≡ ŷ (mod 2).
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Procedure: Modulo Lattice Decoding

1 Infinite lattice decoding: Each component of By′ is
decoded to the nearest point in Z[i] to get ŷ. In particular,
we use ŷ = ⌊By′⌉.

2 Projecting onto lattice codewords: Then, “mod 2”
operation is performed independently on the components of
ŷ. With this, we get r ≡ ŷ (mod 2).

3 Decoupling the lattice codewords: Further, we solve the
system of linear equations r ≡ As (mod 2) over the ring
{0, 1} to obtain the decoded vector ŝ.
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Comparison Cases: MIMO X-Codes and Y-Codes

The UPIF scheme and MIMO precoding X-codes and Y-codes
share similar properties, which make them suitable for comparison:

both schemes use SVD decomposition technique to transform
the channel matrix into a diagonal one,

the precoder matrices in both systems must be
unitary/orthogonal matrices,

both the detectors at the receiver side, i.e. lattice reduction
based IF linear receiver and a combination of two
2-dimensional ML decoders, provide full receive diversity in
2× 2 MIMO.
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CER 2× 2 MIMO Channel
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Figure: Type I UPIF in comparison with, X-Precoders decoded with
sphere decoding algorithm, and Type II UPML in a 2× 2 complex MIMO
Channel.
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CER for 2× 2 MIMO Channel
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Figure: Type II UPIF in comparison with X-Codes and Type II UPML in
a 2× 2 complex MIMO Channel.
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CER for 4× 4 MIMO Channel
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Figure: Type II UPIF in comparison with X-Codes and Type II UPML in
a 4× 4 complex MIMO Channel.

Amin Sakzad Full Diversity Unitary Precoded Integer-Forcing



Lattices
System Model

Diversity Analysis for Unitary Precoded Integer-Forcing
Optimal Design of Full-Diversity Unitary Precoders

Simulation Results
Conclusions

CER for 2× 2 MIMO Channel
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Figure: Type I versus Type II UPIF and UPML schemes in a 2× 2
complex MIMO Channel.
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Conclusions

A unitary precoding scheme has been introduced to be
employed at the transmitter of a flat-fading MIMO channel in
the presence of both CSIT and CSIR, where an IF linear
receiver is employed.

The diversity gains of the proposed approach has been
analyzed both theoretically and numerically.
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Further Research Topics

Designing full-diversity unitary precoders with IF receiver at
the destination without having CSIT is of interest.

Let the transmitter have access to limited feedback over a
delay-free link from the IF receiver. Designing a suitable
codebook of unitary precoding matrices which attains higher
rates and obtain higher coding gains seems to be a promising
research topic.
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Thank you!
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