System Model
Diversity Analysis for Unitary Precoded Integer-Forcing
Optimal Design of Full-Diversity Unitary Precoders
Simulation Results
Conclusions

Full Diversity Unitary Precoded Integer-Forcing

Amin Sakzad
Clayton School of IT
Joint work with Emanuele Viterbo

May 2015

- 1 Lattices
- 2 System Model
- 3 Diversity Analysis for Unitary Precoded Integer-Forcing
- 4 Optimal Design of Full-Diversity Unitary Precoders
- Simulation Results
- **6** Conclusions

Definitions

• A lattice is a discrete additive subgroup of \mathbb{R}^n . For example \mathbb{Z}^2 in \mathbb{R}^2 .

Definitions

- A lattice is a discrete additive subgroup of \mathbb{R}^n . For example \mathbb{Z}^2 in \mathbb{R}^2 .
- Every lattice does have a bases and every lattice point is an integer linear combinations of bases vectors.

Definitions

- A lattice is a discrete additive subgroup of \mathbb{R}^n . For example \mathbb{Z}^2 in \mathbb{R}^2 .
- Every lattice does have a bases and every lattice point is an integer linear combinations of bases vectors.
- A lattice Λ can be represented with a generator matrix \mathbf{G} by stacking its n-dimensional bases vectors as rows of \mathbf{G} .

Successive minimas

• For an n-dimensional lattice $\Lambda_{\mathbf{G}}$, we define the m-th successive minima, for $1 \le m \le n$ as

$$\epsilon_m(\Lambda_{\mathbf{G}}) \triangleq \inf \left\{ r \colon \dim \left(\operatorname{span} \left(\Lambda_{\mathbf{G}} \cap \mathcal{B}_r(\mathbf{0}) \right) \right) \geq m \right\}.$$

The m-th successive minima of $\Lambda_{\mathbf{G}}$ is the infimum of the numbers r such that there are m independent vectors of $\Lambda_{\mathbf{G}}$ in $\mathcal{B}_r(\mathbf{0})$.

Successive minimas

• For an n-dimensional lattice $\Lambda_{\mathbf{G}}$, we define the m-th successive minima, for $1 \le m \le n$ as

$$\epsilon_m(\Lambda_{\mathbf{G}}) \triangleq \inf \left\{ r \colon \dim \left(\operatorname{span} \left(\Lambda_{\mathbf{G}} \cap \mathcal{B}_r(\mathbf{0}) \right) \right) \geq m \right\}.$$

The m-th successive minima of $\Lambda_{\mathbf{G}}$ is the infimum of the numbers r such that there are m independent vectors of $\Lambda_{\mathbf{G}}$ in $\mathcal{B}_r(\mathbf{0})$.

• The quantity ϵ_1 is also called the minimum distance of $\Lambda_{\mathbf{G}}$.

Full-diversity lattices and minimum product distance

• An n-dimensional lattice $\Lambda_{\mathbf{G}}$ is called full-diversity if for all disjoint $\mathbf{x}, \mathbf{y} \in \Lambda_{\mathbf{G}}$, the number of elements in

$$\{m \colon [\mathbf{x}]_m \neq [\mathbf{y}]_m\}$$

be exactly n.

Full-diversity lattices and minimum product distance

• An n-dimensional lattice $\Lambda_{\mathbf{G}}$ is called full-diversity if for all disjoint $\mathbf{x}, \mathbf{y} \in \Lambda_{\mathbf{G}}$, the number of elements in

$$\{m \colon [\mathbf{x}]_m \neq [\mathbf{y}]_m\}$$

be exactly n.

• The minimum product distance of a full-diversity lattice $\Lambda_{\mathbf{G}}$ is denoted by $d_{p,\min}(\Lambda_{\mathbf{G}})$ and is defined by:

$$d_{p,\min}(\Lambda_{\mathbf{G}}) \triangleq \min_{\mathbf{0} \neq \mathbf{x} \in \Lambda_{\mathbf{G}}} \prod_{m} |[\mathbf{x}]_{m}|.$$

ullet For any point $\mathbf{x} \in \Lambda$ the Voronoi cell $\mathcal{V}(\mathbf{x})$ is

$$\left\{\mathbf{v} = \sum_{m=1}^{k} \alpha_m \boldsymbol{\ell}_m \colon \|\mathbf{v} - \mathbf{x}\| \le \|\mathbf{v} - \mathbf{y}\|, \ \forall \mathbf{y} \in \Lambda, \ \alpha_m \in \mathbb{C}\right\}.$$

ullet For any point $\mathbf{x} \in \Lambda$ the Voronoi cell $\mathcal{V}(\mathbf{x})$ is

$$\left\{ \mathbf{v} = \sum_{m=1}^{k} \alpha_m \ell_m \colon \|\mathbf{v} - \mathbf{x}\| \le \|\mathbf{v} - \mathbf{y}\|, \ \forall \mathbf{y} \in \Lambda, \ \alpha_m \in \mathbb{C} \right\}.$$

• A lattice code $C \subseteq \Lambda$ is a finite set of points of Λ .

ullet For any point $\mathbf{x} \in \Lambda$ the Voronoi cell $\mathcal{V}(\mathbf{x})$ is

$$\left\{ \mathbf{v} = \sum_{m=1}^{k} \alpha_m \boldsymbol{\ell}_m \colon \|\mathbf{v} - \mathbf{x}\| \le \|\mathbf{v} - \mathbf{y}\|, \ \forall \mathbf{y} \in \Lambda, \ \alpha_m \in \mathbb{C} \right\}.$$

- A lattice code $C \subseteq \Lambda$ is a finite set of points of Λ .
- A subset $\Lambda' \subseteq \Lambda$ is called a sublattice if Λ' is a lattice itself.

ullet For any point $\mathbf{x} \in \Lambda$ the Voronoi cell $\mathcal{V}(\mathbf{x})$ is

$$\left\{ \mathbf{v} = \sum_{m=1}^{k} \alpha_m \ell_m \colon \|\mathbf{v} - \mathbf{x}\| \le \|\mathbf{v} - \mathbf{y}\|, \ \forall \mathbf{y} \in \Lambda, \ \alpha_m \in \mathbb{C} \right\}.$$

- A lattice code $C \subseteq \Lambda$ is a finite set of points of Λ .
- A subset $\Lambda' \subseteq \Lambda$ is called a sublattice if Λ' is a lattice itself.
- Given a sublattice Λ' , we define the quotient Λ/Λ' as a lattice code. The notions of coding lattice and shaping lattice.

Figure: A full-diversity non-vanishing minimum product distance lattice with its bases vectors.

• We consider a quasi-static flat-fading $n \times n$ MIMO channel as above Figure with both CSIT and CSIR.

- We consider a quasi-static flat-fading $n \times n$ MIMO channel as above Figure with both CSIT and CSIR.
- The channel matrix is $\mathbf{H} \in \mathbb{C}^{n \times n}$ with entries distributed independently and identically as $\mathcal{CN}(0,1)$.

- We consider a quasi-static flat-fading $n \times n$ MIMO channel as above Figure with both CSIT and CSIR.
- The channel matrix is $\mathbf{H} \in \mathbb{C}^{n \times n}$ with entries distributed independently and identically as $\mathcal{CN}(0,1)$.
- An n-layer lattice coding scheme is used. For $1 \le m \le n$, the m-th layer is equipped with a lattice encoder

$$\mathcal{E}: \mathcal{R}^k \to \Lambda/\Lambda' \subset \mathbb{C}^n$$
$$\mathbf{s}_m \mapsto \mathbf{x}_m.$$

Figure: System model block diagram.

- Let $\mathbf{W} \mathbf{\Sigma} \mathbf{V}^h$ be the singular value decomposition (SVD) of \mathbf{H} , i.e.
 - ullet $\mathbf{W},\mathbf{V}\in\mathbb{C}^{n imes n}$ are two unitary matrices,
 - Σ is a diagonal matrix given by $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$ for which $\sigma_1 \geq \dots \geq \sigma_n$.

- Let $\mathbf{W} \mathbf{\Sigma} \mathbf{V}^h$ be the singular value decomposition (SVD) of \mathbf{H} , i.e.
 - ullet $\mathbf{W},\mathbf{V}\in\mathbb{C}^{n imes n}$ are two unitary matrices,
 - Σ is a diagonal matrix given by $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_n)$ for which $\sigma_1 \ge \dots \ge \sigma_n$.
- A unitary precoder matrix U = VP is then employed at the transmitter where $P \in \mathbb{C}^{n \times n}$ is a unitary matrix.

- Let $\mathbf{W} \mathbf{\Sigma} \mathbf{V}^h$ be the singular value decomposition (SVD) of \mathbf{H} , i.e.
 - \bullet $\mathbf{W}, \mathbf{V} \in \mathbb{C}^{n \times n}$ are two unitary matrices,
 - Σ is a diagonal matrix given by $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_n)$ for which $\sigma_1 \ge \dots \ge \sigma_n$.
- A unitary precoder matrix U = VP is then employed at the transmitter where $P \in \mathbb{C}^{n \times n}$ is a unitary matrix.
- We assume that the entries of ${\bf Z}$ are i.i.d. as $\mathcal{CN}(0,1)$.

- Let $\mathbf{W} \mathbf{\Sigma} \mathbf{V}^h$ be the singular value decomposition (SVD) of \mathbf{H} , i.e.
 - $\mathbf{W}, \mathbf{V} \in \mathbb{C}^{n \times n}$ are two unitary matrices,
 - Σ is a diagonal matrix given by $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_n)$ for which $\sigma_1 \geq \dots \geq \sigma_n$.
- A unitary precoder matrix U = VP is then employed at the transmitter where $P \in \mathbb{C}^{n \times n}$ is a unitary matrix.
- We assume that the entries of \mathbf{Z} are i.i.d. as $\mathcal{CN}(0,1)$.
- ullet Let $\mathbf{X} = [\mathbf{x}_1^T, \dots, \mathbf{x}_n^T]^T$, then the received signal \mathbf{Y} is given by

$$\mathbf{Y} = \sqrt{\rho} \cdot \mathbf{H} \mathbf{U} \mathbf{X} + \mathbf{Z},$$

where
$$\rho = \frac{\mathsf{SNR}}{n}$$
.

• Upon receiving Y, we multiply it by W^h .

- Upon receiving Y, we multiply it by W^h .
- Substituting U = VP, the channel can be modeled as:

$$\mathbf{Y}' = \sqrt{\rho} \cdot \mathbf{\Sigma} \mathbf{P} \mathbf{X} + \mathbf{Z}',$$

where $\mathbf{Y}' = \mathbf{W}^h \mathbf{Y}$ and $\mathbf{Z}' = \mathbf{W}^h \mathbf{Z}$.

- ullet Upon receiving \mathbf{Y} , we multiply it by \mathbf{W}^h .
- ullet Substituting U=VP, the channel can be modeled as:

$$\mathbf{Y}' = \sqrt{\rho} \cdot \mathbf{\Sigma} \mathbf{P} \mathbf{X} + \mathbf{Z}',$$

where $\mathbf{Y}' = \mathbf{W}^h \mathbf{Y}$ and $\mathbf{Z}' = \mathbf{W}^h \mathbf{Z}$.

• Note that \mathbf{Z}' continues to be distributed as $\mathcal{CN}(0,1)$ because the product of a unitary matrix by a Gaussian matrix is a Gaussian matrix.

IF Linear Receiver

- The goal of integer-forcing linear receiver is to project ΣP (by left multiplying it with a receiver filtering matrix B) onto a non-singular integer matrix A.
- In order to uniquely recover the information symbols, the matrix ${\bf A}$ must be invertible over the ring ${\cal R}$. Thus, we have

$$\mathbf{Y}'' = \mathbf{B}\mathbf{Y}' = \sqrt{\rho} \cdot \mathbf{B}\mathbf{\Sigma} \mathbf{P} \mathbf{X} + \mathbf{B} \mathbf{Z}'.$$

Unitary Precoded IF

A suitable signal model is

$$\mathbf{Y}'' = \sqrt{\rho} \cdot \mathbf{A}\mathbf{X} + \sqrt{\rho} \cdot (\mathbf{B}\boldsymbol{\Sigma}\mathbf{P} - \mathbf{A})\mathbf{X} + \mathbf{B}\mathbf{Z}'$$
$$= \sqrt{\rho} \cdot \mathbf{A}\mathbf{X} + \mathbf{E}$$

• We let $P_e(m, \Sigma \mathbf{P}, \Lambda) = \Pr(\mathbf{s}_m \neq \widehat{\mathbf{s}_m})$.

Unitary Precoded IF

A suitable signal model is

$$\mathbf{Y}'' = \sqrt{\rho} \cdot \mathbf{A}\mathbf{X} + \sqrt{\rho} \cdot (\mathbf{B}\boldsymbol{\Sigma}\mathbf{P} - \mathbf{A})\mathbf{X} + \mathbf{B}\mathbf{Z}'$$
$$= \sqrt{\rho} \cdot \mathbf{A}\mathbf{X} + \mathbf{E}$$

- We let $P_e(m, \Sigma P, \Lambda) = \Pr(\mathbf{s}_m \neq \widehat{\mathbf{s}_m}).$
- The average energy of effective noise E, denoted by e_m , along with the m-th row of \mathbf{Y}'' is defined as

$$G(\mathbf{a}_m, \mathbf{b}_m) \triangleq \rho \|\mathbf{b}_m \mathbf{\Sigma} \mathbf{P} - \mathbf{a}_m\|^2 + \|\mathbf{b}_m\|^2.$$

Unitary Precoded IF

A suitable signal model is

$$\mathbf{Y}'' = \sqrt{\rho} \cdot \mathbf{A}\mathbf{X} + \sqrt{\rho} \cdot (\mathbf{B}\boldsymbol{\Sigma}\mathbf{P} - \mathbf{A})\mathbf{X} + \mathbf{B}\mathbf{Z}'$$
$$= \sqrt{\rho} \cdot \mathbf{A}\mathbf{X} + \mathbf{E}$$

- We let $P_e(m, \Sigma \mathbf{P}, \Lambda) = \Pr(\mathbf{s}_m \neq \widehat{\mathbf{s}_m})$.
- The average energy of effective noise E, denoted by e_m , along with the m-th row of Y'' is defined as

$$G(\mathbf{a}_m, \mathbf{b}_m) \triangleq \rho \|\mathbf{b}_m \mathbf{\Sigma} \mathbf{P} - \mathbf{a}_m\|^2 + \|\mathbf{b}_m\|^2.$$

We refer to the above signal model as *Unitary Precoded Integer-Forcing*.

Our Approach

The optimum value of \mathbf{b}_m that minimizes the rate is given \mathbf{a}_m is

$$\mathbf{b}_{m} = \rho \cdot \mathbf{a}_{m} \mathbf{\Sigma} \mathbf{P}^{h} \left(\mathbf{I}_{n} + \rho \cdot \mathbf{\Sigma} \mathbf{P} \left(\mathbf{\Sigma} \mathbf{P} \right)^{h} \right)^{-1} \triangleq \rho \cdot \mathbf{a}_{m} \left(\mathbf{\Sigma} \mathbf{P} \right)^{h} \mathbf{S}^{-1}.$$

With this, the quantization noise term along the m-th layer is

$$G(\mathbf{a}_{m}, \mathbf{b}_{m}) = \rho \|\mathbf{b}_{m} \mathbf{\Sigma} \mathbf{P} - \mathbf{a}_{m}\|^{2} + \|\mathbf{b}_{m}\|^{2}$$

$$= \rho \cdot \mathbf{a}_{m} (\mathbf{I} - (\mathbf{\Sigma} \mathbf{P})^{h} \mathbf{S}^{-1} \mathbf{\Sigma} \mathbf{P}) \mathbf{a}_{m}^{h}$$

$$= \rho \cdot \mathbf{a}_{m} \left(\mathbf{I} + \rho \cdot (\mathbf{\Sigma} \mathbf{P})^{h} \mathbf{\Sigma} \mathbf{P} \right)^{-1} \mathbf{a}_{m}^{h}$$

$$= \rho \cdot \mathbf{a}_{m} \mathbf{P}^{h} \left(\mathbf{I} + \rho \cdot \mathbf{\Sigma}^{h} \mathbf{\Sigma} \right)^{-1} \mathbf{P} \mathbf{a}_{m}^{h}$$

$$= \rho \cdot \mathbf{a}_{m} \mathbf{P}^{h} \mathbf{L} \mathbf{L}^{h} \mathbf{P} \mathbf{a}_{m}^{h}$$

$$\triangleq \rho \cdot \mathbf{a}_{m} \mathbf{L}_{p} \mathbf{L}_{n}^{h} \mathbf{a}_{m}^{h},$$

Upper Bound on Probability of Error

Theorem

The probability of error for decoding the m-th layer in $\mathbb{Z}[i]$ is upper bounded as

$$P_e(m, \mathbf{\Sigma} \mathbf{P}, \mathbb{Z}[i]) \le \exp\left(-c\epsilon_{2n-m+1}^2(\Lambda_{\mathbf{L}_p^{-1}})\right),$$

where c is some constant independent of ρ .

Since the minimum Euclidean distance of \mathbb{Z} is unity, an error is declared if $\mathbf{e}_m \geq \frac{\sqrt{\rho}}{2}$. The $P_e\left(m, \mathbf{\Sigma}\mathbf{P}, \mathbb{Z}^{2n}\right)$ equals

$$\begin{split} &= & \Pr\left(|\mathbf{e}_m| \geq \frac{\sqrt{\rho}}{2}\right) = 2\Pr\left(\mathbf{e}_m \geq \frac{\sqrt{\rho}}{2}\right) \\ &\leq & 2\min_{t>0} \frac{\mathbb{E}(\exp(t\mathbf{e}_m))}{\exp\left(\frac{\sqrt{\rho}t}{2}\right)} \\ &= & 2\min_{t>0} \frac{\mathbb{E}(\exp\left(t\sqrt{\rho}\cdot\langle\mathbf{b}_m\mathbf{\Sigma}\mathbf{P} - \mathbf{a}_m, \mathbf{x}_m\rangle + t\cdot\langle\mathbf{b}_m, \mathbf{z}_m'\rangle))}{\exp\left(\frac{\sqrt{\rho}t}{2}\right)} \\ &= & \min_{t>0} \frac{\mathbb{E}(\exp(t\sqrt{\rho}\cdot\langle\mathbf{b}_m\mathbf{\Sigma}\mathbf{P} - \mathbf{a}_m, \mathbf{x}_m\rangle))\mathbb{E}(\exp\left(t\cdot\langle\mathbf{b}_m, \mathbf{z}_m'\rangle))}{\frac{1}{2}\exp\left(\frac{\sqrt{\rho}t}{2}\right)}. \end{split}$$

• Since $\mathbf{z}_m' \sim \mathcal{N}(0,1)$, we have

$$\mathbb{E}\left(\exp\left(t\cdot\langle\mathbf{b}_m,\mathbf{z}_m'\rangle\right)\right)\leq \exp\left(\frac{t^2\|\mathbf{b}_m\|^2}{2}\right).$$

• Let $\mathbf{q}_m \triangleq t\sqrt{\rho} \cdot (\mathbf{b}_m \mathbf{\Sigma} \mathbf{P} - \mathbf{a}_m)$.

$$\mathbb{E}\left(\exp(t\sqrt{\rho}\cdot\langle\mathbf{q}_{m},\mathbf{x}_{m}\rangle)\right) = \prod_{j=1}^{2n} \mathbb{E}\left(\exp\left(t\sqrt{\rho}\cdot[\mathbf{q}_{m}]_{j}[\mathbf{x}_{m}]_{j}\right)\right)$$

$$\leq \prod_{j=1}^{2n} \frac{\sinh\left(t\sqrt{\rho}|[\mathbf{q}_{m}]_{j}[\mathbf{x}_{m}]_{j}|\right)}{t\sqrt{\rho}|[\mathbf{q}_{m}]_{j}[\mathbf{x}_{m}]_{j}|}$$

$$\leq \prod_{j=1}^{2n} \exp\left(\frac{t^{2}\rho|[\mathbf{q}_{m}]_{j}|^{2}}{6}\right) \leq \exp\left(\frac{t^{2}\rho||\mathbf{q}_{m}||^{2}}{2}\right)$$

Overall we get $P_e(m, \Sigma P, \mathbb{Z})$ less than or equal to

$$\leq 2 \min_{t>0} \frac{\exp\left(\frac{t^2 \rho \|\mathbf{b}_m \mathbf{\Sigma} \mathbf{P} - \mathbf{a}_m\|^2}{2}\right) \exp\left(\frac{t^2 \|\mathbf{b}_m\|^2}{2}\right)}{\exp\left(\frac{\sqrt{\rho}t}{2}\right)}$$

$$= 2 \min_{t>0} \frac{\exp\left(\frac{t^2 G(\mathbf{a}_m, \mathbf{b}_m)}{2}\right)}{\exp\left(\frac{\sqrt{\rho}t}{2}\right)}$$

$$= 2 \exp\left(\frac{-\rho}{4G(\mathbf{a}_m, \mathbf{b}_m)}\right).$$

By appropriately choosing \mathbf{a}_m and \mathbf{b}_m , we get

$$\frac{G(\mathbf{a}_m, \mathbf{b}_m)}{\rho} = \epsilon_m^2(\Lambda_{\mathbf{L}_p^h}),$$

and

$$\epsilon_m^2(\Lambda_{\mathbf{L}_p^h}) \le \frac{(2n)^3 + (3n)^2}{\epsilon_{2n-m+1}^2(\Lambda_{\mathbf{L}_p^h}^*)} = \frac{(2n)^3 + (3n)^2}{\epsilon_{2n-m+1}^2(\Lambda_{\mathbf{L}_p^{-1}})}.$$

Therefore, we have

$$\frac{\rho}{G(\mathbf{a}_m, \mathbf{b}_m)} \ge \frac{\epsilon_{2n-m+1}^2(\Lambda_{\mathbf{L}_p^{-1}})}{c_0}.$$

and

$$P_e\left(m, \mathbf{\Sigma}\mathbf{P}, \mathbb{Z}^{2n}\right) \leq \exp\left(-c\epsilon_{2n-m+1}^2(\Lambda_{\mathbf{L}_p^{-1}})\right).$$

Diversity Analysis

Overall for the worst layer

$$P_e(2n, \Sigma \mathbf{P}, \mathbb{Z}) \le \exp\left(-c\epsilon_1^2(\Lambda_{\mathbf{L}_p^{-1}})\right).$$

Diversity Analysis

Overall for the worst layer

$$P_e(2n, \Sigma \mathbf{P}, \mathbb{Z}) \le \exp\left(-c\epsilon_1^2(\Lambda_{\mathbf{L}_p^{-1}})\right).$$

Definition

Let the average probability

$$P_e = \mathbb{E}_{\mathbf{H}} \left(P_e(\mathbf{\Sigma}\mathbf{P}, \mathbb{Z}) \right),$$

where the expectation is taken over all channel matrices ${\bf H}$. In an $2n\times 2n$ MIMO system and at a high SNR, if P_e is approximated by $(c.{\rm SNR})^{-\delta}$, then δ is called the diversity gain (or diversity order). For a MIMO system with precoding, if $\delta=(2n)^2$, then, we say that the precoder achieves full-diversity order.

Main Theorem 1

Theorem

Let the precoding matrix \mathbf{P} be such that $[\mathbf{P}\mathbf{v}]_1 \neq 0$, where $\mathbf{v} \in \mathbb{Z}^{2n}$ is the vector satisfying $\epsilon_1^2(\Lambda_{\mathbf{L}_p^{-1}}) = \|\mathbf{L}_p^{-1}\mathbf{v}\|^2$, then the unitary precoded integer-forcing achieves full-diversity $(2n)^2$.

Main Theorem 2

Theorem

Let the precoding matrix \mathbf{P} be such that $d_{p,\min}(\Lambda_{\mathbf{P}}) \neq 0$, then the achievable diversity of the unitary precoded integer-forcing is $(2n)^2$.

Type I UPIF: Definition

Based on the first main Theorem, the optimal Type I UPIF is as follows:

$$\mathbf{P}_{\scriptscriptstyle{1,\mathsf{opt}}} = \arg\max_{\mathbf{P} \in \mathcal{O}_{2n}} \min_{\mathbf{v} \in \mathbb{Z}^{2n} \setminus \{\mathbf{0}\} \atop |\mathbf{P}\mathbf{v}|_1 \neq 0} \|\mathbf{L}^{-1}\mathbf{P}\mathbf{v}\|^2$$

Type I UPIF:Definition

Based on the first main Theorem, the optimal Type I UPIF is as follows:

$$\mathbf{P}_{1,\mathsf{opt}} = \arg\max_{\mathbf{P} \in \mathcal{O}_{2n}} \min_{\substack{\mathbf{v} \in \mathbb{Z}^{2n} \setminus \{\mathbf{0}\}\\ |\mathbf{P}\mathbf{v}|_1 \neq 0}} \|\mathbf{L}^{-1}\mathbf{P}\mathbf{v}\|^2$$

In other words, we should design a precoder matrix ${\bf P}$ such that the minimum distance of the lattice $\Lambda_{{\bf L}_p^{-1}}$ with generator matrix ${\bf L}^{-1}{\bf P}$ is maximized.

Type II UPIF: 2×2 Case

We numerically search for

$$\mathbf{P}_{\scriptscriptstyle{1,\mathsf{opt}}}^{(\mathbb{R})} = \arg\max_{\mathbf{P}(\theta) \in \mathcal{O}_2} \min_{[\mathbf{P}(\theta)\mathbf{v}]_1 \neq 0} \|\mathbf{L}^{-1}\mathbf{P}(\theta)\mathbf{v}\|^2,$$

for

$$\mathbf{P}(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \qquad \theta \in [0:0.0001:\pi/4]$$

It follows that

$$\mathbf{L}^{-1}\mathbf{P}(\theta) = \xi \begin{pmatrix} \cos \eta & 0 \\ 0 & \sin \eta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix},$$

with

$$\xi = \sqrt{2 + \rho(\sigma_1^2 + \sigma_2^2)}, \qquad \eta = \tan^{-1}\left(\frac{\sqrt{1 + \rho\sigma_2^2}}{\sqrt{1 + \rho\sigma_1^2}}\right).$$

Figure: The variation of $\tan\theta$ based on the variation of $\tan\eta$ in a 2×2 complex MIMO Channel using real Type I UPIF.

Coding Gain

The coding gain formula is:

$$\gamma(\Lambda_{\mathbf{L}_p^{-1}}) = \frac{\epsilon_1^2(\Lambda_{\mathbf{L}_p^{-1}})}{\det\left(\mathbf{L}_p^{-1}\right)^{\frac{2}{2n}}}.$$

Coding Gain

The coding gain formula is:

$$\gamma(\Lambda_{\mathbf{L}_p^{-1}}) = \frac{\epsilon_1^2(\Lambda_{\mathbf{L}_p^{-1}})}{\det\left(\mathbf{L}_p^{-1}\right)^{\frac{2}{2n}}}.$$

The coding gain measures the increase in density of $\Lambda_{\mathbf{L}_p^{-1}}$ over the integer lattice \mathbb{Z}^{2n} with $\gamma\left(\mathbb{Z}^{2n}\right)=1$.

Figure: The variation of $\gamma(\Lambda_{\mathbf{L}_p^{-1}})$ based on the variation of $\tan\eta$ in a 2×2 complex MIMO Channel using real Type I UPIF.

Figure: The histogram of $\gamma(\Lambda_{\mathbf{L}_p^{-1}})$ in a 2×2 complex MIMO Channel using real Type I UPIF.

Type II UPIF: Definition

Based on Theorem 4, the optimal Type II UPIF is as follows:

$$\mathbf{P}_{\text{2,opt}} = \arg\max_{\mathbf{P} \in \mathcal{O}_{2n}} d_{p \min}^{\frac{1}{n}} \left(\Lambda_{\mathbf{P}} \right).$$

Type II UPIF: Definition

Based on Theorem 4, the optimal Type II UPIF is as follows:

$$\mathbf{P}_{ ext{2,opt}} = rg\max_{\mathbf{P} \in \mathcal{O}_{2n}} d_{p \min}^{rac{1}{n}} \left(\Lambda_{\mathbf{P}}
ight).$$

The solution for the above maximization is provided by OV04 as well as GBB97 using algebraic number theoretic lattices. A list of full-diversity algebraic rotations is available in Emanuele's Website.

Procedure: Modulo Lattice Decoding

1 Infinite lattice decoding: Each component of $\mathbf{B}\mathbf{y}'$ is decoded to the nearest point in $\mathbb{Z}[i]$ to get $\hat{\mathbf{y}}$. In particular, we use $\hat{\mathbf{y}} = |\mathbf{B}\mathbf{y}'|$.

Procedure: Modulo Lattice Decoding

- **1** Infinite lattice decoding: Each component of $\mathbf{B}\mathbf{y}'$ is decoded to the nearest point in $\mathbb{Z}[i]$ to get $\hat{\mathbf{y}}$. In particular, we use $\hat{\mathbf{y}} = |\mathbf{B}\mathbf{y}'|$.
- **Projecting onto lattice codewords**: Then, "mod 2" operation is performed independently on the components of $\hat{\mathbf{y}}$. With this, we get $\mathbf{r} \equiv \hat{\mathbf{y}} \pmod{2}$.

Procedure: Modulo Lattice Decoding

- **1 Infinite lattice decoding**: Each component of $\mathbf{B}\mathbf{y}'$ is decoded to the nearest point in $\mathbb{Z}[i]$ to get $\hat{\mathbf{y}}$. In particular, we use $\hat{\mathbf{y}} = \lfloor \mathbf{B}\mathbf{y}' \rfloor$.
- **Projecting onto lattice codewords**: Then, "mod 2" operation is performed independently on the components of $\hat{\mathbf{y}}$. With this, we get $\mathbf{r} \equiv \hat{\mathbf{y}} \pmod{2}$.
- **3** Decoupling the lattice codewords: Further, we solve the system of linear equations $\mathbf{r} \equiv \mathbf{A}\mathbf{s} \pmod{2}$ over the ring $\{0,1\}$ to obtain the decoded vector $\hat{\mathbf{s}}$.

Comparison Cases: MIMO X-Codes and Y-Codes

The UPIF scheme and MIMO precoding X-codes and Y-codes share similar properties, which make them suitable for comparison:

- both schemes use SVD decomposition technique to transform the channel matrix into a diagonal one,
- the precoder matrices in both systems must be unitary/orthogonal matrices,
- both the detectors at the receiver side, *i.e.* lattice reduction based IF linear receiver and a combination of two 2-dimensional ML decoders, provide full receive diversity in 2×2 MIMO.

CER 2×2 MIMO Channel

Figure: Type I UPIF in comparison with, X-Precoders decoded with sphere decoding algorithm, and Type II UPML in a 2×2 complex MIMO Channel.

CER for 2×2 MIMO Channel

Figure: Type II UPIF in comparison with X-Codes and Type II UPML in a 2×2 complex MIMO Channel.

CER for 4×4 MIMO Channel

Figure: Type II UPIF in comparison with X-Codes and Type II UPML in a 4×4 complex MIMO Channel.

CER for 2×2 MIMO Channel

Figure: Type I versus Type II UPIF and UPML schemes in a 2×2 complex MIMO Channel.

Conclusions

- A unitary precoding scheme has been introduced to be employed at the transmitter of a flat-fading MIMO channel in the presence of both CSIT and CSIR, where an IF linear receiver is employed.
- The diversity gains of the proposed approach has been analyzed both theoretically and numerically.

Further Research Topics

- Designing full-diversity unitary precoders with IF receiver at the destination without having CSIT is of interest.
- Let the transmitter have access to limited feedback over a delay-free link from the IF receiver. Designing a suitable codebook of unitary precoding matrices which attains higher rates and obtain higher coding gains seems to be a promising research topic.

System Model
Diversity Analysis for Unitary Precoded Integer-Forcing
Optimal Design of Full-Diversity Unitary Precoders
Simulation Results
Conclusions

Thank you!