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Motivation

Motivation |: Geometry of Numbers

Initiated by Minkowski and studies convex bodies and integer
points in R"™.

© Diophantine Approximation,

@ Functional Analysis

Examples Approximating real numbers by rationals, sphere packing
problem, covering problem, factorizing polynomials, etc.
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Motivation

Motivation |l: Telecommunication

@ Channel Coding Problem,
@ Quantization Problem

Examples Signal constellations, space-time coding,
lattice-reduction-aided decoders, relaying protocols, etc.
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Motivation Preliminaries
000

Definitions

Definition
A set A C R" of vectors called discrete if there exist a positive real
number 3 such that any two vectors of A have distance at least 3.
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Preliminaries
000

Definitions

Definition
A set A C R" of vectors called discrete if there exist a positive real
number 3 such that any two vectors of A have distance at least 3.

Definition
An infinite discrete set A C R" js called a lattice if A is a group
under addition in R". )
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Preliminaries
(o] lelele]e]

Definitions

Every lattice is generated by the integer combination of some
linearly independent vectors g4,...,gm € R", i.e,

A={wgi+  +umm:ui,...,um €Z}.
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Motivation Preliminaries
080000

Definitions

Every lattice is generated by the integer combination of some
linearly independent vectors gq,...,gn € R”, ie.,

A={wgi+  +umm:ui,...,um €Z}.

Definition
The m x n matrix G = (g1, ...,8m) which has the generator

vectors as its rows is called a generator matrix of A. A lattice is
called full rank if m = n.
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Motivation Preliminaries
080000

Definitions

Every lattice is generated by the integer combination of some
linearly independent vectors gq,...,gn € R”, ie.,

A={wgi+  +umm:ui,...,um €Z}.

Definition
The m x n matrix G = (g1, ...,8m) which has the generator

vectors as its rows is called a generator matrix of A. A lattice is
called full rank if m = n.

Note that
A={x=uG:uecZ"}.
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Motivation Preliminaries
@000

Definitions

Definition

The Gram matrix of A is

M = GGT.
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Definitions

Definition

The Gram matrix of A is

M = GGT.

Definition

The minimum distance of A is defined by

dmin (A) = min{||x||: x € A\ {0}},

where || - || stands for Euclidean norm.
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Preliminaries
[e]e]e] le]e]

Definitions

Definition
The determinate (volume) of an n-dimensional lattice A, det(A),

is defined as )
det[GGT]2.
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Motivation Preliminaries
000080

Definitions

Definition
The coding gain of a lattice A is defined as:

A) — mln(Az .
det(A)n

Geometrically, v(A) measures the increase in the density of A over
the lattice 7.
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Preliminaries
000008

Definitions

Definition
The set of all vectors in R™ whose inner product with all elements
of A is an integer form the dual lattice A*.

Lattice Coding |: From Theory To Application Amin Sakzad



Motivation Preliminaries
[efe] ]

Definitions

Definition
The set of all vectors in R™ whose inner product with all elements
of A is an integer form the dual lattice A*.

For a lattice A, with generator matrix G, the matrix G~ T forms a
basis matrix for A*.
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Preliminaries

@00

Three examples
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Preliminaries

oeo

Three examples

Barens-Wall Lattices

o Let

—_ =

_ O
~_
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Preliminaries

oeo

Three examples

Barens-Wall Lattices

o Let
10
G_<1 1)'

o Let G®™ denote the m-fold Kronecker (tensor) product of G.
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Preliminaries

oeo

Three examples

Barens-Wall Lattices

o Let
10
G_<1 1)'

o Let G®™ denote the m-fold Kronecker (tensor) product of G.

@ A basis matrix for Barnes-Wall lattice BW,,, n = 2™, can be
formed by selecting the rows of matrices G®™, ... 2l31Ggem
which have a square norm equal to 2™~ 1 or 2™.
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Preliminaries

oeo

Three examples

Barens-Wall Lattices

o Let
10
G_<1 1)'

o Let G®™ denote the m-fold Kronecker (tensor) product of G.

@ A basis matrix for Barnes-Wall lattice BW,,, n = 2™, can be
formed by selecting the rows of matrices G®™, ... 2l31Ggem
which have a square norm equal to 2™~ 1 or 2™.

@ dpin(BW,,) = \/g and det(BW,,) = (%)%, which confirms
that v(BW,) = /5.
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Preliminaries

ooe

Three examples

D,, Lattices

@ For n > 3, D, can be represented by the following basis

matrix:
-1 -1 0 --- 0
1 -1 0 0
G = 0 1 -1 0
0 0 0 -1
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Preliminaries

ooe

Three examples

D,, Lattices

@ For n > 3, D, can be represented by the following basis

matrix:
-1 -1 0 --- 0
1 -1 0 .-+ 0
G = 0 1 -1 --- 0
0 0 o --- -1

o We have det(D,,) = 2 and duin(Dy,) = V2, which result in
n—=2
V(Dn) =277
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Problems

Sphere Packing Problem,
Covering Problem,
Quantization,

Channel Coding Problem.
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Problems
[ leJele]

Sphere Packing Problem

Let us put a sphere of radius p = dmin(A)/2 at each lattice point
A.
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Motivation Problems

Sphere Packing Problem

Let us put a sphere of radius p = dpin(A)/2 at each lattice point
A.

Definition

The density of A is defined as

P Vn

AlA) = det(A)’

where V,, is the volume of an n-dimensional sphere with radius 1.

<

Note that
o ™
(n/2)!
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Problems
[e] Tele]

Sphere Packing Problem

Definition
The kissing number 7(A) is the number of spheres that touches
one sphere.

Lattice Coding |: From Theory To Application Amin Sakzad



Motivation

Problems
o]

Sphere Packing Problem

Definition

The kissing number 7(A) is the number of spheres that touches
one sphere.

Definition

The center density of A is then § = V%'

Note that 46(A)%/™ = ~(A).
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Motivation ies Problems
- 00

Sphere Packing Problem

Definition

The kissing number 7(A) is the number of spheres that touches
one sphere.

Definition

The center density of A is then § = V%.

Note that 46(A)%/™ = ~y(A).
Definition

The Hermite's constant -y, is the highest attainable coding gain of
an n-dimensional lattice.
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Problems
[e]e] o]

Sphere Packing Problem

Find the densest lattice packing of equal nonoverlapping, solid
spheres (or balls) in n-dimensional space.
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Problems
L]

Sphere Packing Problem

Summary of Well-Known Results

Theorem

@ For large n's we have

1 SfL”< 1.744

2me — n ~ 2me’
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Motivation Problems

Sphere Packing Problem

Summary of Well-Known Results

Theorem

@ For large n's we have

i<77”<1'744
2re — n ~— 2we

bl

@ The densest lattice packings are known for dimensions 1 to 8
and 12,16, and 24.
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Problems

[ Jole}

Covering Problem

Let us supose a set of spheres of radius R covers R"
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Problems

Covering Problem

Let us supose a set of spheres of radius R covers R"

Definition
The thickness of A is defined as
RV,

O = 3
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Covering Problem

Let us supose a set of spheres of radius R covers R"

Definition
The thickness of A is defined as

Definition

The normalized thickness of A is then O(A) =

icX
Vn*
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Problems

oeo

Covering Problem

Ask for the thinnest lattice covering of equal overlapping, solid
spheres (or balls) in n-dimensional space.
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Motivation ies Problems

Covering Problem

Summary of Well-Known Results

Theorem
@ The thinnest lattice coverings are known for dimensions 1 to
5, (all A2).
@ Davenport’s Construction of thin lattice coverings, (thinner
than A} for n < 200).
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Motivation

Quantization Problem

Definition

For any point x in a constellation A the Voroni cell v(x) is defined
by the set of points that are at least as close to x as to any other
pointy € A, ie.,

v(x) ={veR":|v—x|| <|v-yl,VyecA}
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Motivation

Quantization Problem

Definition

For any point x in a constellation A the Voroni cell v(x) is defined
by the set of points that are at least as close to x as to any other
pointy € A, ie.,

v(x) ={veR":|v—x|| <|v-yl,VyecA}

We simply denote v(0) by v.
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Motivation ies Problems

Quantization Problem

Definition
An n-dimensional quantizer is a set of points chosen in R"™. The

input x is an arbitrary point of R™ ; the output is the closest point
to x.
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Motivation ies Problems

Quantization Problem

Definition

An n-dimensional quantizer is a set of points chosen in R"™. The
input x is an arbitrary point of R™ ; the output is the closest point
to x.

A good quantizer attempts to minimize the mean squared error of
quantization.
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Problems

[e]o] le]

Quantization Problem

finds and n-dimentional lattice A for which

_ L1 x-xdx

) det(v)*n

)

is a minimum.
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Quantization Problem

Summary of Well-Known Results

Theorem

@ The optimum lattice quantizers are only known for dimensions
1 to 3.

@ Asn — oo, we have

G, - —.
" 2me
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Motivation

Quantization Problem

Summary of Well-Known Results

Theorem

@ The optimum lattice quantizers are only known for dimensions
1 to 3.

@ Asn — oo, we have
G, — 1
" ore’

It is worth remarking that the best n-dimensional quantizers
presently known are always the duals of the best packings known.
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Problems

Channel Coding Problem

Definition
For two points x and y in Fy the Hamming distance is defined as

d(x,y) = [l{i: xi # yi}l -
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Problems

Channel Coding Problem

Definition
For two points x and y in Fy the Hamming distance is defined as

dx,y) = [{i: x; #yi}l-

Definition
A q-ary (n, M, duin) code C is a subset of M points in F?, with
minimum distance

dpin(C) = min d(x,y).
(©) Join, (x,y)
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Problems

Channel Coding Problem

Performance Measures |

@ Suppose that x, which is in a constellation A, is sent,

@ y = X + z is received, where the components of z are i.i.d.
based on N (0,c2),

@ The probability of error is defined as

oy _q__ 1 / —[l|*
P.(A,0%) =1 (Varo) Vexp( 552 dx.
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Problems

Channel Coding Problem

Performance Measures |l

Rate

Definition

The rate v of an

(n, M, dyin) code C is

= 10g2(M)
—
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Problems

Channel Coding Problem

Performance Measures |l

Rate
Definition

The rate v of an
(n, M, dyin) code C is

logy (M)

n

The power of a
transmission has a
close relation with the
rate of the code.
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Motivation

Channel Coding Problem

Performance Measures |l

Rate Normalized

Definition Logarithmic Density

The rate v of an Definition

(n, M, diin) code C is The normalized

logarithmic density
¢ = 08a(M) (NLD) of an
n n-dimensional lattice A

The power of a s

transmission has a 1 1

close relation with the — log ( > .
det(A

rate of the code. " )
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Motivation

Channel Coding Problem

Performance Measures ||

Capacity

Definition
The capacity of an
AWGN channel with

noise variance o2 is

1 P
C’:210g<1+02>,

where U—PQ is called the

signal-to-noise ratio.
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Motivation

Channel Coding Problem

Performance Measures ||

Capacity

R Generalized Capacity
Definition
The capacity of an Definition
AWGN channel with The capacity of an
noise variance o? is “unconstrained”

AWGN channel with
C = llog (1 + P> : noise variance o2 is
2 o . .

where £, is called the Coo = 2 n (2wea2> '
signal-to-noise ratio.
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Motivation

Channel Coding Problem

Approaching Capacity

Capacity-Achieving
Codes

Definition

A (n, M, dp;,) code C
is called
capacity-achieving for
the AWGN channel
with noise variance o
ift = C when
P.(C,0?) ~ 0.

2

’

Sphere-Bound-
Achieving

Lattices

Definition

An n-dimensional
lattice A is called
capacity-achieving for
the unconstrained
AWGN channel with
noise variance o2, if
NLD(A) = Cs when
P.(A,0?) = 0.
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Relation
@000

Probability of Error versus VNR

Definition
The volume-to-noise ratio of a lattice A over an unconstrained
AWGN channel with noise variance o2 is defined as

2
A)n
a2(A,02) = 7det( ) .

2meo?
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Relation
@000

Probability of Error versus VNR

Definition
The volume-to-noise ratio of a lattice A over an unconstrained
AWGN channel with noise variance o2 is defined as

2
A)n
a2(A,02) = 7det( ) .

2meo?

Note that a?(A, 0?) = 1 is equivalent to NLD(A) = Cx.
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Relation
[o] le]e}

Probability of Error versus VNR

Union Bound Estimate

Using the formula of coding gain and a?(A, 02), we obtain an
estimate upper bound for the probability of error for a
maximum-likelihood decoder:

Pa.0?) < "Werfe (\/ Tv(A)a%A,a?)) ,

where

erfc(t) = \37? /too exp(—t?)dt.
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Probability of Error versus VNR
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Relation
[e]ele] ]

Probability of Error versus VNR

Thanks for your attention! Friday 18 Oct. Building 72, Room 132.
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Relation
[e]ele] ]

Probability of Error versus VNR

Thanks for your attention! Friday 18 Oct. Building 72, Room 132.
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