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Motivation I: Geometry of Numbers

Initiated by Minkowski and studies convex bodies and integer
points in Rn.

1 Diophantine Approximation,

2 Functional Analysis

Examples Approximating real numbers by rationals, sphere packing
problem, covering problem, factorizing polynomials, etc.
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Motivation II: Telecommunication

1 Channel Coding Problem,

2 Quantization Problem

Examples Signal constellations, space-time coding,
lattice-reduction-aided decoders, relaying protocols, etc.
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Definitions

Definition

A set Λ ⊆ Rn of vectors called discrete if there exist a positive real
number β such that any two vectors of Λ have distance at least β.

Definition

An infinite discrete set Λ ⊆ Rn is called a lattice if Λ is a group
under addition in Rn.
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Definitions

Every lattice is generated by the integer combination of some
linearly independent vectors g1, . . . ,gm ∈ Rn, i.e.,

Λ = {u1g1 + · · ·+ umgm : u1, . . . , um ∈ Z} .

Definition

The m× n matrix G = (g1, . . . ,gm) which has the generator
vectors as its rows is called a generator matrix of Λ. A lattice is
called full rank if m = n.

Note that
Λ = {x = uG : u ∈ Zn} .
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Definitions

Definition

The Gram matrix of Λ is

M = GGT .

Definition

The minimum distance of Λ is defined by

dmin(Λ) = min{‖x‖ : x ∈ Λ \ {0}},

where ‖ · ‖ stands for Euclidean norm.
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Definitions

Definition

The determinate (volume) of an n-dimensional lattice Λ, det(Λ),
is defined as

det[GGT ]
1
2 .
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Definitions

Definition

The coding gain of a lattice Λ is defined as:

γ(Λ) =
d2

min(Λ)

det(Λ)
2
n

.

Geometrically, γ(Λ) measures the increase in the density of Λ over
the lattice Zn.
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Definitions

Definition

The set of all vectors in Rn whose inner product with all elements
of Λ is an integer form the dual lattice Λ∗.

For a lattice Λ, with generator matrix G, the matrix G−T forms a
basis matrix for Λ∗.
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Three examples
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Three examples

Barens-Wall Lattices

Let

G =

(
1 0
1 1

)
.

Let G⊗m denote the m-fold Kronecker (tensor) product of G.

A basis matrix for Barnes-Wall lattice BWn, n = 2m, can be
formed by selecting the rows of matrices G⊗m, . . . , 2b

m
2
cG⊗m

which have a square norm equal to 2m−1 or 2m.

dmin(BWn) =
√

n
2 and det(BWn) = (n2 )

n
4 , which confirms

that γ(BWn) =
√

n
2 .
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Three examples

Dn Lattices

For n ≥ 3, Dn can be represented by the following basis
matrix:

G =


−1 −1 0 · · · 0
1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 0 0 · · · −1

 .

We have det(Dn) = 2 and dmin(Dn) =
√

2, which result in

γ(Dn) = 2
n−2
n .
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Sphere Packing Problem,

Covering Problem,

Quantization,

Channel Coding Problem.
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Sphere Packing Problem

Let us put a sphere of radius ρ = dmin(Λ)/2 at each lattice point
Λ.

Definition

The density of Λ is defined as

∆(Λ) =
ρnVn

det(Λ)
,

where Vn is the volume of an n-dimensional sphere with radius 1.

Note that

Vn =
πn/2

(n/2)!
.
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Sphere Packing Problem

Definition

The kissing number τ(Λ) is the number of spheres that touches
one sphere.

Definition

The center density of Λ is then δ = ∆
Vn

.

Note that 4δ(Λ)2/n = γ(Λ).

Definition

The Hermite’s constant γn is the highest attainable coding gain of
an n-dimensional lattice.
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Sphere Packing Problem

Lattice Sphere Packing Problem

Find the densest lattice packing of equal nonoverlapping, solid
spheres (or balls) in n-dimensional space.
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Sphere Packing Problem

Summary of Well-Known Results

Theorem

For large n’s we have

1

2πe
≤ γn

n
≤ 1.744

2πe
,

The densest lattice packings are known for dimensions 1 to 8
and 12, 16, and 24.
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Covering Problem

Let us supose a set of spheres of radius R covers Rn

Definition

The thickness of Λ is defined as

Θ(Λ) =
RnVn
det(Λ)

Definition

The normalized thickness of Λ is then θ(Λ) = Θ
Vn

.
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Covering Problem

Lattice Covering Problem

Ask for the thinnest lattice covering of equal overlapping, solid
spheres (or balls) in n-dimensional space.
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Covering Problem

Summary of Well-Known Results

Theorem

The thinnest lattice coverings are known for dimensions 1 to
5, (all A∗n).

Davenport’s Construction of thin lattice coverings, (thinner
than A∗n for n ≤ 200).

Lattice Coding I: From Theory To Application Amin Sakzad



Motivation Preliminaries Problems Relation

Quantization Problem

Definition

For any point x in a constellation A the Voroni cell ν(x) is defined
by the set of points that are at least as close to x as to any other
point y ∈ A, i.e.,

ν(x) = {v ∈ Rn : ‖v − x‖ ≤ ‖v − y‖, ∀ y ∈ A}.

We simply denote ν(0) by ν.
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Quantization Problem

Definition

An n-dimensional quantizer is a set of points chosen in Rn. The
input x is an arbitrary point of Rn ; the output is the closest point
to x.

A good quantizer attempts to minimize the mean squared error of
quantization.
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Quantization Problem

Lattice Quantizer Problem

finds and n-dimentional lattice Λ for which

G(ν) =
1
n

∫
ν x · xdx

det(ν)1+ 2
n

,

is a minimum.
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Quantization Problem

Summary of Well-Known Results

Theorem

The optimum lattice quantizers are only known for dimensions
1 to 3.

As n→∞, we have

Gn →
1

2πe
.

It is worth remarking that the best n-dimensional quantizers
presently known are always the duals of the best packings known.
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Channel Coding Problem

Definition

For two points x and y in Fnq the Hamming distance is defined as

d(x,y) = ‖{i : xi 6= yi}‖ .

Definition

A q-ary (n,M, dmin) code C is a subset of M points in Fnq , with
minimum distance

dmin(C) = min
x 6=y∈C

d(x,y).
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Channel Coding Problem

Performance Measures I

Suppose that x, which is in a constellation A, is sent,

y = x + z is received, where the components of z are i.i.d.
based on N (0, σ2),

The probability of error is defined as

Pe(A, σ2) = 1− 1

(
√

2πσ)n

∫
ν

exp

(
−‖x‖2

2σ2

)
dx.
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Channel Coding Problem

Performance Measures II

Rate

Definition

The rate r of an
(n,M, dmin) code C is

r =
log2(M)

n
.

The power of a
transmission has a
close relation with the
rate of the code.

Normalized
Logarithmic Density

Definition

The normalized
logarithmic density
(NLD) of an
n-dimensional lattice Λ
is

1

n
log

(
1

det(Λ)

)
.

Lattice Coding I: From Theory To Application Amin Sakzad



Motivation Preliminaries Problems Relation

Channel Coding Problem

Performance Measures II

Rate

Definition

The rate r of an
(n,M, dmin) code C is

r =
log2(M)

n
.

The power of a
transmission has a
close relation with the
rate of the code.

Normalized
Logarithmic Density

Definition

The normalized
logarithmic density
(NLD) of an
n-dimensional lattice Λ
is

1

n
log

(
1

det(Λ)

)
.

Lattice Coding I: From Theory To Application Amin Sakzad



Motivation Preliminaries Problems Relation

Channel Coding Problem

Performance Measures II

Rate

Definition

The rate r of an
(n,M, dmin) code C is

r =
log2(M)

n
.

The power of a
transmission has a
close relation with the
rate of the code.

Normalized
Logarithmic Density

Definition

The normalized
logarithmic density
(NLD) of an
n-dimensional lattice Λ
is

1

n
log

(
1

det(Λ)

)
.

Lattice Coding I: From Theory To Application Amin Sakzad



Motivation Preliminaries Problems Relation

Channel Coding Problem

Performance Measures III

Capacity

Definition

The capacity of an
AWGN channel with
noise variance σ2 is

C =
1

2
log

(
1 +

P

σ2

)
,

where P
σ2 is called the

signal-to-noise ratio.

Generalized Capacity

Definition

The capacity of an
“unconstrained”
AWGN channel with
noise variance σ2 is

C∞ =
1

2
ln

(
1

2πeσ2

)
.

Lattice Coding I: From Theory To Application Amin Sakzad



Motivation Preliminaries Problems Relation

Channel Coding Problem

Performance Measures III

Capacity

Definition

The capacity of an
AWGN channel with
noise variance σ2 is

C =
1

2
log

(
1 +

P

σ2

)
,

where P
σ2 is called the

signal-to-noise ratio.

Generalized Capacity

Definition

The capacity of an
“unconstrained”
AWGN channel with
noise variance σ2 is

C∞ =
1

2
ln

(
1

2πeσ2

)
.

Lattice Coding I: From Theory To Application Amin Sakzad



Motivation Preliminaries Problems Relation

Channel Coding Problem

Approaching Capacity

Capacity-Achieving
Codes

Definition

A (n,M, dmin) code C
is called
capacity-achieving for
the AWGN channel
with noise variance σ2,
if r = C when
Pe(C, σ2) ≈ 0.

Sphere-Bound-
Achieving
Lattices

Definition

An n-dimensional
lattice Λ is called
capacity-achieving for
the unconstrained
AWGN channel with
noise variance σ2, if
NLD(Λ) = C∞ when
Pe(Λ, σ

2) ≈ 0.
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Probability of Error versus VNR

Definition

The volume-to-noise ratio of a lattice Λ over an unconstrained
AWGN channel with noise variance σ2 is defined as

α2(Λ, σ2) =
det(Λ)

2
n

2πeσ2
.

Note that α2(Λ, σ2) = 1 is equivalent to NLD(Λ) = C∞.
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Probability of Error versus VNR

Union Bound Estimate

Using the formula of coding gain and α2(Λ, σ2), we obtain an
estimate upper bound for the probability of error for a
maximum-likelihood decoder:

Pe(Λ, σ
2) ≤ τ(Λ)

2
erfc

(√
πe

4
γ(Λ)α2(Λ, σ2)

)
,

where

erfc(t) =
2√
π

∫ ∞
t

exp(−t2)dt.
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Probability of Error versus VNR
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Probability of Error versus VNR

Thanks for your attention! Friday 18 Oct. Building 72, Room 132.
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