Lattice Coding I: From Theory To Application

Amin Sakzad
Dept of Electrical and Computer Systems Engineering
Monash University
amin.sakzad@monash.edu

Oct. 2013

- 2 Preliminaries
 - Definitions
 - Three examples
- Problems
 - Sphere Packing Problem
 - Covering Problem
 - Quantization Problem
 - Channel Coding Problem
- 4 Relation
 - Probability of Error versus VNR

Motivation I: Geometry of Numbers

Initiated by Minkowski and studies convex bodies and integer points in \mathbb{R}^n .

- Diophantine Approximation,
- Functional Analysis

Examples Approximating real numbers by rationals, sphere packing problem, covering problem, factorizing polynomials, etc.

- Channel Coding Problem,
- Quantization Problem

Examples Signal constellations, space-time coding, lattice-reduction-aided decoders, relaying protocols, etc.

Definition

A set $\Lambda \subseteq \mathbb{R}^n$ of vectors called discrete if there exist a positive real number β such that any two vectors of Λ have distance at least β .

Definition

A set $\Lambda \subseteq \mathbb{R}^n$ of vectors called discrete if there exist a positive real number β such that any two vectors of Λ have distance at least β .

Definition

An infinite discrete set $\Lambda \subseteq \mathbb{R}^n$ is called a lattice if Λ is a group under addition in \mathbb{R}^n .

Every lattice is generated by the integer combination of some linearly independent vectors $\mathbf{g}_1, \dots, \mathbf{g}_m \in \mathbb{R}^n$, i.e.,

$$\Lambda = \{u_1 \mathbf{g}_1 + \dots + u_m \mathbf{g}_m : u_1, \dots, u_m \in \mathbb{Z}\}.$$

Every lattice is generated by the integer combination of some linearly independent vectors $\mathbf{g}_1, \dots, \mathbf{g}_m \in \mathbb{R}^n$, i.e.,

$$\Lambda = \{u_1 \mathbf{g}_1 + \dots + u_m \mathbf{g}_m : u_1, \dots, u_m \in \mathbb{Z}\}.$$

Definition

The $m \times n$ matrix $\mathbf{G} = (\mathbf{g}_1, \dots, \mathbf{g}_m)$ which has the generator vectors as its rows is called a generator matrix of Λ . A lattice is called full rank if m = n.

Every lattice is generated by the integer combination of some linearly independent vectors $\mathbf{g}_1, \dots, \mathbf{g}_m \in \mathbb{R}^n$, i.e.,

$$\Lambda = \{u_1 \mathbf{g}_1 + \dots + u_m \mathbf{g}_m : u_1, \dots, u_m \in \mathbb{Z}\}.$$

Definition

The $m \times n$ matrix $\mathbf{G} = (\mathbf{g}_1, \dots, \mathbf{g}_m)$ which has the generator vectors as its rows is called a generator matrix of Λ . A lattice is called full rank if m=n.

Note that

$$\Lambda = \left\{ \mathbf{x} = \mathbf{uG} : \mathbf{u} \in \mathbb{Z}^n \right\}.$$

Definition

The Gram matrix of Λ is

$$\mathbf{M} = \mathbf{G}\mathbf{G}^T.$$

Definition

The Gram matrix of Λ is

$$\mathbf{M} = \mathbf{G}\mathbf{G}^T$$
.

Definition

The minimum distance of Λ is defined by

$$d_{\min}(\Lambda) = \min\{\|\mathbf{x}\| \colon \mathbf{x} \in \Lambda \setminus \{\mathbf{0}\}\},\$$

where $\|\cdot\|$ stands for Euclidean norm.

Definition

The determinate (volume) of an n-dimensional lattice Λ , $\det(\Lambda)$, is defined as

$$\det[\mathbf{G}\mathbf{G}^T]^{\frac{1}{2}}.$$

Definition

The coding gain of a lattice Λ is defined as:

$$\gamma(\Lambda) = \frac{d_{\min}^2(\Lambda)}{\det(\Lambda)^{\frac{2}{n}}}.$$

Geometrically, $\gamma(\Lambda)$ measures the increase in the density of Λ over the lattice \mathbb{Z}^n .

Definition

The set of all vectors in \mathbb{R}^n whose inner product with all elements of Λ is an integer form the dual lattice Λ^* .

Definition

The set of all vectors in \mathbb{R}^n whose inner product with all elements of Λ is an integer form the dual lattice Λ^* .

For a lattice Λ , with generator matrix \mathbf{G} , the matrix \mathbf{G}^{-T} forms a basis matrix for Λ^* .

Barens-Wall Lattices

Let

$$\mathbf{G} = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right).$$

Barens-Wall Lattices

Let

$$\mathbf{G} = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right).$$

• Let $\mathbf{G}^{\otimes m}$ denote the m-fold Kronecker (tensor) product of \mathbf{G} .

Barens-Wall Lattices

let

$$\mathbf{G} = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right).$$

- Let $\mathbf{G}^{\otimes m}$ denote the m-fold Kronecker (tensor) product of \mathbf{G} .
- A basis matrix for Barnes-Wall lattice \mathcal{BW}_n , $n=2^m$, can be formed by selecting the rows of matrices $\mathbf{G}^{\otimes m},\ldots,2^{\left\lfloor \frac{m}{2}\right\rfloor}\mathbf{G}^{\otimes m}$ which have a square norm equal to 2^{m-1} or 2^m .

Barens-Wall Lattices

let

$$\mathbf{G} = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right).$$

- Let $\mathbf{G}^{\otimes m}$ denote the *m*-fold Kronecker (tensor) product of \mathbf{G} .
- A basis matrix for Barnes-Wall lattice \mathcal{BW}_n , $n=2^m$, can be formed by selecting the rows of matrices $\mathbf{G}^{\otimes m}, \dots, 2^{\lfloor \frac{m}{2} \rfloor} \mathbf{G}^{\otimes m}$ which have a square norm equal to 2^{m-1} or 2^m .
- $d_{\min}(\mathcal{BW}_n) = \sqrt{\frac{n}{2}}$ and $\det(\mathcal{BW}_n) = (\frac{n}{2})^{\frac{n}{4}}$, which confirms that $\gamma(\mathcal{BW}_n) = \sqrt{\frac{n}{2}}$.

\mathcal{D}_n Lattices

• For n > 3, \mathcal{D}_n can be represented by the following basis matrix:

$$\mathbf{G} = \begin{pmatrix} -1 & -1 & 0 & \cdots & 0 \\ 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 \end{pmatrix}.$$

\mathcal{D}_n Lattices

• For $n \ge 3$, \mathcal{D}_n can be represented by the following basis matrix:

$$\mathbf{G} = \begin{pmatrix} -1 & -1 & 0 & \cdots & 0 \\ 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 \end{pmatrix}.$$

• We have $\det(\mathcal{D}_n)=2$ and $d_{\min}(\mathcal{D}_n)=\sqrt{2}$, which result in $\gamma(\mathcal{D}_n)=2^{\frac{n-2}{n}}$.

- Sphere Packing Problem,
- Covering Problem,
- Quantization,
- Channel Coding Problem.

Let us put a sphere of radius $\rho = d_{\min}(\Lambda)/2$ at each lattice point Λ.

Problems •000

Let us put a sphere of radius $\rho = d_{\min}(\Lambda)/2$ at each lattice point Λ .

Problems

Definition

The density of Λ is defined as

$$\Delta(\Lambda) = \frac{\rho^n V_n}{\det(\Lambda)},$$

where V_n is the volume of an n-dimensional sphere with radius 1.

Note that

$$V_n = \frac{\pi^{n/2}}{(n/2)!}.$$

Sphere Packing Problem

Definition

The kissing number $\tau(\Lambda)$ is the number of spheres that touches one sphere.

Problems

The kissing number $\tau(\Lambda)$ is the number of spheres that touches one sphere.

Problems

Definition

The center density of Λ is then $\delta = \frac{\Delta}{V_n}$.

Note that $4\delta(\Lambda)^{2/n} = \gamma(\Lambda)$.

The kissing number $\tau(\Lambda)$ is the number of spheres that touches one sphere.

Problems

Definition

The center density of Λ is then $\delta = \frac{\Delta}{V_n}$.

Note that $4\delta(\Lambda)^{2/n} = \gamma(\Lambda)$.

Definition

The Hermite's constant γ_n is the highest attainable coding gain of an n-dimensional lattice.

Find the densest lattice packing of equal nonoverlapping, solid spheres (or balls) in n-dimensional space.

Problems 0000

Summary of Well-Known Results

Theorem

 \bullet For large n's we have

$$\frac{1}{2\pi e} \le \frac{\gamma_n}{n} \le \frac{1.744}{2\pi e},$$

Problems

Summary of Well-Known Results

Theorem

ullet For large n's we have

$$\frac{1}{2\pi e} \le \frac{\gamma_n}{n} \le \frac{1.744}{2\pi e},$$

Problems

• The densest lattice packings are known for dimensions 1 to 8 and 12, 16, and 24.

0000 •00 0000

Covering Problem

Let us supose a set of spheres of radius R covers \mathbb{R}^n

Let us supose a set of spheres of radius R covers \mathbb{R}^n

Definition

The thickness of Λ is defined as

$$\Theta(\Lambda) = \frac{R^n V_n}{\det(\Lambda)}$$

Covering Problem

Let us supose a set of spheres of radius R covers \mathbb{R}^n

Definition

The thickness of Λ is defined as

$$\Theta(\Lambda) = \frac{R^n V_n}{\det(\Lambda)}$$

Definition

The normalized thickness of Λ is then $\theta(\Lambda) = \frac{\Theta}{V_n}$.

0.0

Covering Problem

Ask for the thinnest lattice covering of equal overlapping, solid spheres (or balls) in n-dimensional space.

Summary of Well-Known Results

Theorem

- The thinnest lattice coverings are known for dimensions 1 to 5, (all \mathcal{A}_n^*).
- Davenport's Construction of thin lattice coverings, (thinner than \mathcal{A}_n^* for $n \leq 200$).

Definition

For any point x in a constellation A the Voroni cell $\nu(x)$ is defined by the set of points that are at least as close to x as to any other point $y \in A$, i.e.,

Problems 0000

$$\nu(\mathbf{x}) = \{ \mathbf{v} \in \mathbb{R}^n : ||\mathbf{v} - \mathbf{x}|| \le ||\mathbf{v} - \mathbf{y}||, \forall \ \mathbf{y} \in \mathcal{A} \}.$$

Definition

For any point $\mathbf x$ in a constellation $\mathcal A$ the Voroni cell $\nu(\mathbf x)$ is defined by the set of points that are at least as close to $\mathbf x$ as to any other point $\mathbf y \in \mathcal A$, i.e.,

Problems

$$\nu(\mathbf{x}) = \{ \mathbf{v} \in \mathbb{R}^n : \|\mathbf{v} - \mathbf{x}\| \le \|\mathbf{v} - \mathbf{y}\|, \forall \mathbf{y} \in \mathcal{A} \}.$$

We simply denote $\nu(\mathbf{0})$ by ν .

Problems 0000

Quantization Problem

Definition

An *n*-dimensional quantizer is a set of points chosen in \mathbb{R}^n . The input x is an arbitrary point of \mathbb{R}^n ; the output is the closest point to x.

Quantization Problem

Definition

An n-dimensional quantizer is a set of points chosen in \mathbb{R}^n . The input \mathbf{x} is an arbitrary point of \mathbb{R}^n ; the output is the closest point to \mathbf{x} .

Problems

A good quantizer attempts to minimize the *mean squared error* of quantization.

Problems 0000

Quantization Problem

finds and n-dimentional lattice Λ for which

$$G(\nu) = \frac{\frac{1}{n} \int_{\nu} \mathbf{x} \cdot \mathbf{x} d\mathbf{x}}{\det(\nu)^{1 + \frac{2}{n}}},$$

is a minimum.

Quantization Problem

Summary of Well-Known Results

Theorem

- The optimum lattice quantizers are only known for dimensions 1 to 3.
- As $n \to \infty$, we have

$$G_n \to \frac{1}{2\pi e}$$
.

Quantization Problem

Summary of Well-Known Results

Theorem

- The optimum lattice quantizers are only known for dimensions 1 to 3.
- As $n \to \infty$, we have

$$G_n o rac{1}{2\pi e}$$
.

It is worth remarking that the best n-dimensional quantizers presently known are always the duals of the best packings known. Channel Coding Problem

Definition

For two points ${\bf x}$ and ${\bf y}$ in \mathbb{F}_q^n the Hamming distance is defined as

Problems

00000

$$d(\mathbf{x}, \mathbf{y}) = \|\{i \colon \mathbf{x}_i \neq \mathbf{y}_i\}\|.$$

Definition

For two points ${\bf x}$ and ${\bf y}$ in \mathbb{F}_q^n the Hamming distance is defined as

Problems

$$d(\mathbf{x}, \mathbf{y}) = \|\{i \colon \mathbf{x}_i \neq \mathbf{y}_i\}\|.$$

Definition

A q-ary (n, M, d_{\min}) code $\mathcal C$ is a subset of M points in $\mathbb F_q^n$, with minimum distance

$$d_{\min}(\mathcal{C}) = \min_{\mathbf{x} \neq \mathbf{y} \in \mathcal{C}} d(\mathbf{x}, \mathbf{y}).$$

Performance Measures I

- Suppose that x, which is in a constellation A, is sent,
- $\mathbf{y} = \mathbf{x} + \mathbf{z}$ is received, where the components of \mathbf{z} are i.i.d. based on $\mathcal{N}(0, \sigma^2)$,
- The probability of error is defined as

$$P_e(\mathcal{A}, \sigma^2) = 1 - \frac{1}{(\sqrt{2\pi}\sigma)^n} \int_{\nu} \exp\left(\frac{-\|\mathbf{x}\|^2}{2\sigma^2}\right) d\mathbf{x}.$$

Problems

00000

Channel Coding Problem

Performance Measures II

Rate

Definition

The rate v of an (n, M, d_{\min}) code \mathcal{C} is

$$\mathfrak{r} = \frac{\log_2(M)}{n}.$$

Problems

00000

Performance Measures II

Rate

Definition

The rate $\mathfrak r$ of an (n,M,d_{\min}) code $\mathcal C$ is

$$\mathfrak{r} = \frac{\log_2(M)}{n}.$$

The power of a transmission has a close relation with the rate of the code.

Performance Measures II

Rate

Definition

The rate r of an (n, M, d_{\min}) code \mathcal{C} is

$$\mathfrak{r} = \frac{\log_2(M)}{n}.$$

The power of a transmission has a close relation with the rate of the code.

Normalized **Logarithmic Density**

Problems

Definition

The normalized logarithmic density (NLD) of an n-dimensional lattice Λ is

$$\frac{1}{n}\log\left(\frac{1}{\det(\Lambda)}\right).$$

Problems

00000

Performance Measures III

Capacity

Definition

The capacity of an AWGN channel with noise variance σ^2 is

$$C = \frac{1}{2} \log \left(1 + \frac{P}{\sigma^2} \right),$$

where $\frac{P}{\sigma^2}$ is called the signal-to-noise ratio.

Performance Measures III

Capacity

Definition

The capacity of an AWGN channel with noise variance σ^2 is

$$C = \frac{1}{2} \log \left(1 + \frac{P}{\sigma^2} \right),$$

where $\frac{P}{\sigma^2}$ is called the signal-to-noise ratio.

Generalized Capacity

Definition

Problems

The capacity of an "unconstrained" AWGN channel with noise variance σ^2 is

$$C_{\infty} = \frac{1}{2} \ln \left(\frac{1}{2\pi e \sigma^2} \right).$$

Approaching Capacity

Capacity-Achieving Codes

Definition

A (n, M, d_{\min}) code \mathcal{C} is called capacity-achieving for the AWGN channel with noise variance σ^2 , if $\mathfrak{r} = C$ when $P_e(\mathcal{C}, \sigma^2) \approx 0$.

Sphere-Bound-Achieving Lattices

Problems

Definition

An n-dimensional lattice Λ is called capacity-achieving for the unconstrained AWGN channel with noise variance σ^2 , if $\mathrm{NLD}(\Lambda) = C_\infty$ when $P_e(\Lambda, \sigma^2) \approx 0$.

Probability of Error versus VNR

Definition

The volume-to-noise ratio of a lattice Λ over an unconstrained AWGN channel with noise variance σ^2 is defined as

$$\alpha^2(\Lambda, \sigma^2) = \frac{\det(\Lambda)^{\frac{2}{n}}}{2\pi e \sigma^2}.$$

Definition

The volume-to-noise ratio of a lattice Λ over an unconstrained AWGN channel with noise variance σ^2 is defined as

$$\alpha^2(\Lambda, \sigma^2) = \frac{\det(\Lambda)^{\frac{2}{n}}}{2\pi e \sigma^2}.$$

Note that $\alpha^2(\Lambda, \sigma^2) = 1$ is equivalent to $NLD(\Lambda) = C_{\infty}$.

Probability of Error versus VNR

Union Bound Estimate

Using the formula of coding gain and $\alpha^2(\Lambda, \sigma^2)$, we obtain an estimate upper bound for the probability of error for a maximum-likelihood decoder:

$$P_e(\Lambda, \sigma^2) \leq \frac{\tau(\Lambda)}{2} \mathrm{erfc}\left(\sqrt{\frac{\pi e}{4} \gamma(\Lambda) \alpha^2(\Lambda, \sigma^2)}\right),$$

where

$$\operatorname{erfc}(\mathsf{t}) = \frac{2}{\sqrt{\pi}} \int_t^\infty \exp(-t^2) dt.$$

Probability of Error versus VNR

Thanks for your attention! Friday 18 Oct. Building 72, Room 132.

Thanks for your attention! Friday 18 Oct. Building 72, Room 132.

