Lattices from Codes or Codes from Lattices

Amin Sakzad
Dept of Electrical and Computer Systems Engineering
Monash University
amin.sakzad@monash.edu

Oct. 2013

- Recall
 - Bounds
- 2 Cycle-Free Codes and Lattices
 - Tanner Graph
- 3 Lattices from Codes
 - Constructions
 - Well-known high-dimensional lattices
- Codes from Lattices
 - Definitions
 - Bounds

Union Bound Estimate

An estimate upper bound for the probability of error for a maximum-likelihood decoder of an n-dimensional lattice Λ over an unconstrained AWGN channel with noise variance σ^2 with coding gain $\gamma(\Lambda)$ and volume-to-noise ratio $\alpha^2(\Lambda,\sigma^2)$:

Union Bound Estimate

An estimate upper bound for the probability of error for a maximum-likelihood decoder of an n-dimensional lattice Λ over an unconstrained AWGN channel with noise variance σ^2 with coding gain $\gamma(\Lambda)$ and volume-to-noise ratio $\alpha^2(\Lambda,\sigma^2)$:

$$P_e(\Lambda,\sigma^2) \lesssim \frac{\tau(\Lambda)}{2} \mathrm{erfc}\left(\sqrt{\frac{\pi e}{4} \gamma(\Lambda) \alpha^2(\Lambda,\sigma^2)}\right),$$

where

$$\operatorname{erfc}(\mathsf{t}) = \frac{2}{\sqrt{\pi}} \int_t^\infty \exp(-t^2) dt.$$

Lower Bound on Probability of Error

Theorem (Tarokh'99)

If points of an n-dimensional lattice are transmitted over unconstrained AWGN channel with noise variance σ^2 , the probability of symbol error under maximum-likelihood decoding is lower-bounded as follows:

$$P_e(\Lambda, \sigma^2) \ge e^{-z} \left(1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots + \frac{z^{\frac{n}{2}-1}}{\left(\frac{n}{2}-1\right)} \right),$$

where

$$z = \alpha^2(\Lambda, \sigma^2)\Gamma\left(\frac{n}{2} + 1\right)^{n/2}$$
.

Upper Bound on Coding Gain

Theorem (Tarokh'99)

Let $\zeta(k; P_e)$ denote the unique solution of equation

$$(1 - erfc(x))^{2k} = 1 - P_e,$$

and let n = 2k, then:

$$\gamma(\Lambda) \le \frac{\zeta(k; P_e)^2}{\xi(k; P_e)} \cdot \frac{4(k!)^{\frac{1}{k}}}{\pi},$$

where $\xi(k; P_e)$ is the unique solution of

$$G_k(x) \triangleq e^{-x} \left(1 + \frac{x}{1!} + \dots + \frac{x^{k-1}}{(k-1)!} \right) = P_e.$$

Backgrounds

• Linear code $\mathcal{C}[n,k,d_{\min}]$ and its generator matrix \mathbf{G} .

- ullet Linear code $\mathcal{C}[n,k,d_{\min}]$ and its generator matrix ${f G}.$
- Parity check matrix H.

- ullet Linear code $\mathcal{C}[n,k,d_{\min}]$ and its generator matrix ${f G}.$
- Parity check matrix H.
- Set r = n k and rate is $\mathfrak{r} = \frac{k}{n}$.

- Linear code $C[n, k, d_{\min}]$ and its generator matrix G.
- Parity check matrix H.
- Set r = n k and rate is $\mathfrak{r} = \frac{k}{n}$.
- Message-Passing algorithms for decoding.

таппет бтарп

- Linear code $C[n, k, d_{\min}]$ and its generator matrix G.
- Parity check matrix H.
- Set r = n k and rate is $\mathfrak{r} = \frac{k}{n}$.
- Message-Passing algorithms for decoding.
- Polynomial-time decoding algorithm if the corresponding "Tanner graph" has no cycle.

- Linear code $\mathcal{C}[n,k,d_{\min}]$ and its generator matrix \mathbf{G} .
- Parity check matrix H.
- Set r = n k and rate is $\mathfrak{r} = \frac{k}{n}$.
- Message-Passing algorithms for decoding.
- Polynomial-time decoding algorithm if the corresponding "Tanner graph" has no cycle.
- Low-density Parity check (LDPC) code.

Tanner graph constructions for codes

Let $\mathbf{H} = (h_{ij})_{r \times n}$ be a parity check matrix for linear code \mathcal{C} then we define Tanner graph of \mathcal{C} as:

Tanner graph constructions for codes

Let $\mathbf{H} = (h_{ij})_{r \times n}$ be a parity check matrix for linear code \mathcal{C} then we define Tanner graph of \mathcal{C} as:

Cycle free Tanner graphs

Theorem (Etzion'99)

Let $C[n, k, d_{\min}]$ be a cycle free linear code of rate $\mathfrak{r} \geq 0.5$, then $d_{\min} < 2$. If $\mathfrak{r} > 0.5$, then

$$d_{\min} \le \left| \frac{n}{k+1} \right| + \left| \frac{n+1}{k+1} \right| < \frac{2}{\mathfrak{r}}.$$

Tanner graph for lattices

In the coordinate system $\mathcal{S} = \{\mathbf{W}_i\}_{i=1}^n$, a lattice Λ can be decomposed as

$$\Lambda = \mathbb{Z}^n \mathbf{C}(\Lambda) + \mathcal{L}\mathbf{P}(\Lambda) \tag{1}$$

where $\mathcal{L} \subseteq \mathbb{Z}_{g_1} imes \mathbb{Z}_{g_2} imes \cdots imes \mathbb{Z}_{g_n}$ is the label code of Λ and

$$\mathbf{C}(\Lambda) = \mathsf{diag}(\det(\Lambda_{\mathbf{W}_1}), \dots, \det(\Lambda_{\mathbf{W}_n})),$$

$$\mathbf{P}(\Lambda) = \operatorname{diag}(\det(P_{\mathbf{W}_1}(\Lambda)), \dots, \det(P_{\mathbf{W}_n}(\Lambda))).$$

Tanner graph for lattices

In the coordinate system $\mathcal{S} = \{\mathbf{W}_i\}_{i=1}^n$, a lattice Λ can be decomposed as

$$\Lambda = \mathbb{Z}^n \mathbf{C}(\Lambda) + \mathcal{L}\mathbf{P}(\Lambda) \tag{1}$$

where $\mathcal{L} \subseteq \mathbb{Z}_{g_1} imes \mathbb{Z}_{g_2} imes \cdots imes \mathbb{Z}_{g_n}$ is the label code of Λ and

$$\mathbf{C}(\Lambda) = \mathsf{diag}(\det(\Lambda_{\mathbf{W}_1}), \dots, \det(\Lambda_{\mathbf{W}_n})),$$

$$\mathbf{P}(\Lambda) = \mathsf{diag}(\det(P_{\mathbf{W}_1}(\Lambda)), \dots, \det(P_{\mathbf{W}_n}(\Lambda))).$$

Tanner graph of a lattice Λ is the Tanner graph of its corresponding label code \mathcal{L} .

Cycle-free lattices

Theorem (Sakzad'11)

Let Λ be an n-dimensional cycle-free lattice whose label code has rate greater than 0.5. Then for a large even number n, the coding gain of Λ is $\gamma(\Lambda) \leq \frac{2n}{\pi}$.

Backgrounds

• Construction A: Let $\mathcal{C} \subseteq \mathbb{F}_2^n$ be a linear code. Define Λ as a lattice derived from \mathcal{C} by:

$$\Lambda = 2\mathbb{Z}^n + \mathcal{C}.$$

Backgrounds

• Construction A: Let $\mathcal{C} \subseteq \mathbb{F}_2^n$ be a linear code. Define Λ as a lattice derived from \mathcal{C} by:

$$\Lambda = 2\mathbb{Z}^n + \mathcal{C}.$$

• Construction D: Let $\mathcal{C}_0 \supseteq \mathcal{C}_1 \supseteq \cdots \supseteq \mathcal{C}_a$ be a family of a+1 linear codes where $\mathcal{C}_\ell[n,k_\ell,d_{\min}^\ell]$ for $1 \leq \ell \leq a$ and $\mathcal{C}_0[n,n,1]$ trivial code \mathbb{F}_2^n . Define $\Lambda \subseteq \mathbb{R}^n$ as all vectors of the form

$$\mathbf{z} + \sum_{\ell=1}^{a} \sum_{j=1}^{k_{\ell}} \beta_j^{(\ell)} \frac{\mathbf{c}_j}{2^{\ell-1}},$$

where $\mathbf{z} \in 2\mathbb{Z}^n$ and $\beta_j^{(\ell)} = 0$ or 1.

Minimum distance and coding gain

Theorem (Barnes)

Let Λ be a lattice constructed based on Construction D. Then we have

$$d_{\min}(\Lambda) = \min_{1 \le \ell \le a} \left\{ 2, \frac{\sqrt{d_{\min}^{\ell}}}{2^{\ell - 1}} \right\}$$

where d_{\min}^{ℓ} is the minimum distance of C_{ℓ} for $1 \leq \ell \leq a$. Its coding gain satisfies

$$\gamma(\Lambda) \ge 4^{\sum_{\ell=1}^a \frac{k_\ell}{n}}.$$

Kissing Number

Theorem (Sakzad'12)

Let Λ be a lattice constructed based on Construction D. Then for the kissing number of Λ we have:

Lattices from Codes

$$\tau(\Lambda) \leq 2n + \sum_{\substack{1 \leq \ell \leq a \\ d_{\min}^{\ell} = 4^{\ell}}} 2^{d_{\min}^{\ell}} A_{d_{\min}^{\ell}}$$

where $A_{d_{\min}^\ell}$ denotes the number of codewords in \mathcal{C}_ℓ with minimum weight d_{\min}^ℓ .

Construction D'

• Let $\mathcal{C}_0 \supseteq \mathcal{C}_1 \supseteq \cdots \supseteq \mathcal{C}_a$ be a set of nested linear block codes, where $\mathcal{C}_\ell \left[n, k_\ell, d_{\min}^\ell \right]$, for $1 \le \ell \le a$.

- Let $C_0 \supseteq C_1 \supseteq \cdots \supseteq C_a$ be a set of nested linear block codes, where C_ℓ $[n, k_\ell, d_{\min}^\ell]$, for $1 \le \ell \le a$.
- Let $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$ be a basis for \mathbb{F}_2^n , where the code \mathcal{C}_ℓ is formed by the $r_\ell = n k_\ell$ parity check vectors $\mathbf{h}_1, \dots, \mathbf{h}_{r_\ell}$.

- Let $C_0 \supseteq C_1 \supseteq \cdots \supseteq C_a$ be a set of nested linear block codes, where C_ℓ $[n, k_\ell, d_{\min}^\ell]$, for $1 \le \ell \le a$.
- Let $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$ be a basis for \mathbb{F}_2^n , where the code \mathcal{C}_ℓ is formed by the $r_\ell = n k_\ell$ parity check vectors $\mathbf{h}_1, \dots, \mathbf{h}_{r_\ell}$.
- Consider vectors \mathbf{h}_i , for $1 \leq i \leq n$, as real vectors with elements 0 or 1 in \mathbb{R}^n .

- Let $C_0 \supseteq C_1 \supseteq \cdots \supseteq C_a$ be a set of nested linear block codes, where C_ℓ $[n, k_\ell, d_{\min}^\ell]$, for $1 \le \ell \le a$.
- Let $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$ be a basis for \mathbb{F}_2^n , where the code \mathcal{C}_ℓ is formed by the $r_\ell = n k_\ell$ parity check vectors $\mathbf{h}_1, \dots, \mathbf{h}_{r_\ell}$.
- Consider vectors \mathbf{h}_i , for $1 \le i \le n$, as real vectors with elements 0 or 1 in \mathbb{R}^n .
- Let

$$\mathbf{H} = [\mathbf{h}_1, \dots, \mathbf{h}_{r_0}, 2\mathbf{h}_{r_0+1}, \dots, 2\mathbf{h}_{r_1}, \dots, 2^a\mathbf{h}_{r_{a-1}+1}, \dots, 2^a\mathbf{h}_{r_a}]$$

Construction D'

- Let $C_0 \supseteq C_1 \supseteq \cdots \supseteq C_a$ be a set of nested linear block codes, where C_ℓ $[n, k_\ell, d_{\min}^\ell]$, for $1 \le \ell \le a$.
- Let $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$ be a basis for \mathbb{F}_2^n , where the code \mathcal{C}_ℓ is formed by the $r_\ell = n k_\ell$ parity check vectors $\mathbf{h}_1, \dots, \mathbf{h}_{r_\ell}$.
- Consider vectors \mathbf{h}_i , for $1 \le i \le n$, as real vectors with elements 0 or 1 in \mathbb{R}^n .
- Let

$$\mathbf{H} = [\mathbf{h}_1, \dots, \mathbf{h}_{r_0}, 2\mathbf{h}_{r_0+1}, \dots, 2\mathbf{h}_{r_1}, \dots, 2^a\mathbf{h}_{r_{a-1}+1}, \dots, 2^a\mathbf{h}_{r_a}]$$

• $\mathbf{x} \in \Lambda \Leftrightarrow \mathbf{H}\mathbf{x}^T \equiv \mathbf{0} \pmod{2^{a+1}}$.

- Let $\mathcal{C}_0 \supseteq \mathcal{C}_1 \supseteq \cdots \supseteq \mathcal{C}_a$ be a set of nested linear block codes, where \mathcal{C}_ℓ $[n, k_\ell, d_{\min}^\ell]$, for $1 \le \ell \le a$.
- Let $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$ be a basis for \mathbb{F}_2^n , where the code \mathcal{C}_ℓ is formed by the $r_\ell = n k_\ell$ parity check vectors $\mathbf{h}_1, \dots, \mathbf{h}_{r_\ell}$.
- Consider vectors \mathbf{h}_i , for $1 \le i \le n$, as real vectors with elements 0 or 1 in \mathbb{R}^n .
- Let

$$\mathbf{H} = [\mathbf{h}_1, \dots, \mathbf{h}_{r_0}, 2\mathbf{h}_{r_0+1}, \dots, 2\mathbf{h}_{r_1}, \dots, 2^a\mathbf{h}_{r_{a-1}+1}, \dots, 2^a\mathbf{h}_{r_a}]$$

- $\mathbf{x} \in \Lambda \Leftrightarrow \mathbf{H}\mathbf{x}^T \equiv \mathbf{0} \pmod{2^{a+1}}$.
- The number a+1 is called the *level* of the construction.

Properties

It can be shown that the volume of an (a+1)-level lattice Λ constructed using Construction D' is

$$\det(\Lambda) = 2^{\left(\sum_{\ell=0}^{a} r_{\ell}\right)}.$$

Lattices from Codes 00000

Properties

It can be shown that the volume of an (a+1)-level lattice Λ constructed using Construction D' is

$$\det(\Lambda) = 2^{\left(\sum_{\ell=0}^{a} r_{\ell}\right)}.$$

Also the minimum distance of Λ satisfies the following bounds

$$\min_{0 \le \ell \le a} \left\{ 4^{\ell} d_{\min}^{a-\ell} \right\} \le d_{\min}^2(\Lambda) \le 4^{a+1}.$$

LDA lattices [Botrous'13]

• A lattice Λ constructed based on Construction A is called an LDA lattice if the underlying code $\mathcal C$ be a "non-binary" low density parity check code.

LDA lattices [Botrous'13]

- A lattice Λ constructed based on Construction A is called an LDA lattice if the underlying code \mathcal{C} be a "non-binary" low density parity check code.
- If the code is "binary", this will be an LDPC lattice with only one level.

LDPC lattices [Sadeghi'06]

• A lattice Λ constructed based on Construction D' is called an low density parity check lattice (LDPC lattice) if the matrix \mathbf{H} is a sparse matrix.

Well-known high-dimensional lattices

LDPC lattices [Sadeghi'06]

- A lattice Λ constructed based on Construction D' is called an low density parity check lattice (LDPC lattice) if the matrix H is a sparse matrix.
- It is trivial that if the underlying nested codes \mathcal{C}_{ℓ} are LDPC codes then the corresponding lattice is an LDPC lattice and vice versa.

LDPC lattices [Sadeghi'06]

- A lattice Λ constructed based on Construction D' is called an low density parity check lattice (LDPC lattice) if the matrix ${\bf H}$ is a sparse matrix.
- It is trivial that if the underlying nested codes \mathcal{C}_ℓ are LDPC codes then the corresponding lattice is an LDPC lattice and vice versa.
- An Extended Edge-Progressive Graph algorithm is introduced to construct LDPC lattices with high girth efficiently.

LDPC lattices [Sadeghi'06]

- A lattice Λ constructed based on Construction D' is called an low density parity check lattice (LDPC lattice) if the matrix ${\bf H}$ is a sparse matrix.
- It is trivial that if the underlying nested codes \mathcal{C}_ℓ are LDPC codes then the corresponding lattice is an LDPC lattice and vice versa.
- An Extended Edge-Progressive Graph algorithm is introduced to construct LDPC lattices with high girth efficiently.
- A generalized Min-Sum algorithm has been proposed to decode these lattices based on their Tanner graph representation. 'Vectors' are messages.

LDLC lattices [Sommer'08]

• An n-dimensional low density lattice code (LDLC) is generated with a nonsingular lattice generator matrix \mathbf{G} satisfying $\det(\mathbf{G})=1$, for which the parity check matrix $\mathbf{H}=\mathbf{G}^{-1}$ is sparse.

LDLC lattices [Sommer'08]

- An n-dimensional low density lattice code (LDLC) is generated with a nonsingular lattice generator matrix \mathbf{G} satisfying $\det(\mathbf{G})=1$, for which the parity check matrix $\mathbf{H}=\mathbf{G}^{-1}$ is sparse.
- An n-dimensional regular LDLC with degree d is called Latin square LDLC if every row and column of the parity check matrix H has the same d nonzero values, except for a possible change of order and random signs.

LDLC lattices [Sommer'08]

- An n-dimensional low density lattice code (LDLC) is generated with a nonsingular lattice generator matrix \mathbf{G} satisfying $\det(\mathbf{G})=1$, for which the parity check matrix $\mathbf{H}=\mathbf{G}^{-1}$ is sparse.
- An n-dimensional regular LDLC with degree d is called Latin square LDLC if every row and column of the parity check matrix H has the same d nonzero values, except for a possible change of order and random signs.
- A generalized Sum-Product algorithm is provided to decode these lattices based on their Tanner graph representation.
 'Probability Density Functions' are messages.

Turbo Lattices [Sakzad'10]

• Using Construction D along with a set of nested turbo codes, we define turbo lattices.

Turbo Lattices [Sakzad'10]

- Using Construction D along with a set of nested turbo codes, we define turbo lattices.
- Nested interleavers and turbo codes were first constructed to be used in these lattices.

Turbo Lattices [Sakzad'10]

- Using Construction D along with a set of nested turbo codes, we define turbo lattices.
- Nested interleavers and turbo codes were first constructed to be used in these lattices.
- An Iterative turbo decoding algorithm is established for decoding purposes.

Numerical experiments

Figure: Comparison graph for various well-known lattices.

Definitions

Definition

Let \mathcal{D} be a convex, measurable, nonempty subset of \mathbb{R}^n . Then *lattice code* $C(\Lambda, \mathcal{D})$ *is defined by*

$$\Lambda \cap \mathcal{D}$$
,

and \mathcal{D} is called the support(shaping) region of the code.

Definition

Let \mathcal{D} be a convex, measurable, nonempty subset of \mathbb{R}^n . Then *lattice code* $C(\Lambda, \mathcal{D})$ *is defined by*

$$\Lambda \cap \mathcal{D}$$
,

and \mathcal{D} is called the support(shaping) region of the code.

Definition

Let $\mathcal{C}(\Lambda, \mathcal{D}) = \{\mathbf{c}_1, \dots, \mathbf{c}_M\}$, then the average power ρ is

$$\rho = \frac{1}{n} \sum_{i=1}^{M} \frac{\|\mathbf{c}_i\|^2}{M}.$$

Two fundamental operations

- Bit labeling: A map that sends bits to signal points. Huge look-up table.
- Shaping Constellation: How much do we gain by using a specific shaping? Sphere/Cubic/Voronoi?

Shaping Gain

Definition

The quantity

$$\gamma_s(\mathcal{D}) = \frac{1}{12G(\mathcal{D})}$$

is known as the shaping gain of the support region \mathcal{D} .

Shaping Gain

Definition

The quantity

$$\gamma_s(\mathcal{D}) = \frac{1}{12G(\mathcal{D})}$$

is known as the shaping gain of the support region \mathcal{D} .

It is well known that the highest possible shaping gain is obtained when $\mathcal D$ is a sphere, in which case:

$$\gamma_s(\mathcal{D}) = \frac{\pi(n+2)}{12\Gamma(\frac{n}{2}+1)^{\frac{2}{n}}}.$$

Different Techniques

- Cubic Shaping,
- Voronoi Shaping.

Lower Bound on Probability of Error

Theorem (Tarokh'99)

If an n-dimensional lattice code $\mathcal{C}(\Lambda, \mathcal{D}) = \{\mathbf{c}_1, \dots, \mathbf{c}_M\}$ with n=2k is used to transmit information over an AWGN channel, then

$$P_e(\Lambda, \sigma^2) \ge G_k(z),$$

where

$$z = \frac{6\Gamma(\frac{n}{2}+1)^{\frac{2}{n}}}{\pi} \gamma_s(\mathcal{D}) SNR_{norm}$$

and

$$\mathit{SNR}_{\mathit{norm}} = rac{
ho}{\left(2^{2\mathfrak{r}}-1
ight)\sigma^2}.$$

Upper Bound on Coding Gain

Theorem

Let $\mathcal{C}(\Lambda, \mathcal{D})$ be a high rate n-dimensional lattice code with a spherical support region \mathcal{D} , and let n=2k. Then the coding gain of $\mathcal{C}(\Lambda, \mathcal{D})$ is upper bounded by:

$$\gamma(\mathcal{C}) \leq \frac{\zeta(k; P_e)^2}{\xi(k; P_e)} \cdot \frac{4\Gamma(k+1)^{\frac{1}{k}}}{\pi}.$$

Bounds

Thanks for your attention! Wed. 23rd Oct., same time, Building 72, Room 132.