Applications of Lattices in Telecommunications

Amin Sakzad
Dept of Electrical and Computer Systems Engineering
Monash University
amin.sakzad@monash.edu

Oct. 2013

- Sphere Decoder Algorithm
 - Rotated Signal Constellations
 - Sphere Decoding Algorithm
- 2 Lattice Reduction Algorithms
 - Definitions
- 3 Integer-Forcing Linear Receiver
 - Multiple-input Multiple-output Channel
 - Problem statement
 - Integer-Forcing
- 4 Lattice-based Cryptography
 - GGH public-key cryptosystem

•0000

Channel Model

• We consider n-dimensional signal constellation \mathcal{A} carved from the lattice Λ with generator matrix \mathbf{G} , for example 4-QAM.

Channel Model

- We consider n-dimensional signal constellation \mathcal{A} carved from the lattice Λ with generator matrix \mathbf{G} , for example 4-QAM.
- \bullet Hence, $\mathbf{x}=\mathbf{u}\mathbf{G}$ represent a transmitted signal.

Channel Model

- We consider n-dimensional signal constellation \mathcal{A} carved from the lattice Λ with generator matrix \mathbf{G} , for example 4-QAM.
- ullet Hence, $\mathbf{x} = \mathbf{u}\mathbf{G}$ represent a transmitted signal.
- The received vector $\mathbf{y} = \boldsymbol{\alpha} \cdot \mathbf{x} + \mathbf{z}$, where α_i , are independent real Rayleigh random variables with unit second moment and z_i are real Gaussian distributed with zero mean and variance $\sigma/2$.

Channel Model

- We consider n-dimensional signal constellation \mathcal{A} carved from the lattice Λ with generator matrix \mathbf{G} , for example 4-QAM.
- ullet Hence, $\mathbf{x} = \mathbf{u}\mathbf{G}$ represent a transmitted signal.
- The received vector $\mathbf{y} = \boldsymbol{\alpha} \cdot \mathbf{x} + \mathbf{z}$, where α_i , are independent real Rayleigh random variables with unit second moment and z_i are real Gaussian distributed with zero mean and variance $\sigma/2$.
- With perfect Channel State Information (CSI) at the receiver, the ML decoder requires to solve the following optimization problem

$$\min \sum_{i=1}^{n} |y_i - \alpha_i x_i|^2.$$

Pairwise error probability

Using standard Chernoff bound technique one can estimate pairwise error probability under ML decoder as

$$\mathsf{Pr}(\mathbf{x} \to \mathbf{x}') \leq \frac{1}{2} \prod_{x_i \neq x_i'} \frac{4\sigma}{(x_i - x_i')^2} = \frac{(4\sigma)^\ell}{2d_{\min,p}^{(\ell)}(\mathbf{x}, \mathbf{x}')^2},$$

where the ℓ -product distance is

$$d_{\min,p}^{(\ell)}(\mathbf{x},\mathbf{x}') \triangleq \prod_{x_i \neq x_i'} |x_i - x_i'|.$$

Sphere Decoder Algorithm

Goal

00000

Definition

The parameter $L = \min(\ell)$ is called modulation diversity.

Goal

Definition

The parameter $L = \min(\ell)$ is called modulation diversity.

Definition

We define the product distance as $d_{\min,p} = \min d_{\min,p}^{(L)}$.

Goal

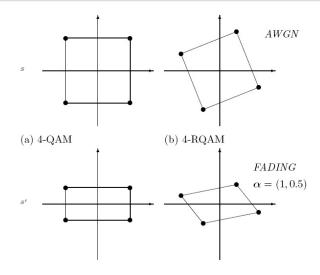
Definition

The parameter $L = \min(\ell)$ is called modulation diversity.

Definition

We define the product distance as $d_{\min,p} = \min d_{\min,p}^{(L)}$.

To minimize the error probability, one should increase both L and $d_{\min,p}$



Rotated \mathbb{Z}^n -lattice constellations

 "Algebraic Number Theory" has been used as a strong tool to construct good lattices for signal constellations.

- "Algebraic Number Theory" has been used as a strong tool to construct good lattices for signal constellations.
- For these lattices, the minimum product distance will be related to the volume of the lattice and the "discriminant" of the underlying number field.

- "Algebraic Number Theory" has been used as a strong tool to construct good lattices for signal constellations.
- For these lattices, the minimum product distance will be related to the volume of the lattice and the "discriminant" of the underlying number field.
- The "signature" of a number field determines the modulation diversity.

- "Algebraic Number Theory" has been used as a strong tool to construct good lattices for signal constellations.
- For these lattices, the minimum product distance will be related to the volume of the lattice and the "discriminant" of the underlying number field.
- The "signature" of a number field determines the modulation diversity.
- List of good algebraic rotations are available online. See Emanuele's webpage.

000

The problem is to solve the following:

$$\min_{\mathbf{x} \in \Lambda} \|\mathbf{y} - \mathbf{x}\|^2 = \min_{\mathbf{w} \in \mathbf{y} - \Lambda} \|\mathbf{w}\|^2.$$

000

Algorithm[Viterbo'99]

• Set $\mathbf{x} = \mathbf{uG}$, $\mathbf{y} = \rho \mathbf{G}$, and $\mathbf{w} = \zeta \mathbf{G}$ for $\mathbf{u} \in \mathbb{Z}^n$ and $\rho, \zeta \in \mathbb{R}^n$.

Algorithm[Viterbo'99]

- Set $\mathbf{x}=\mathbf{uG}$, $\mathbf{y}=
 ho\mathbf{G}$, and $\mathbf{w}=\zeta\mathbf{G}$ for $\mathbf{u}\in\mathbb{Z}^n$ and $ho,\zeta\in\mathbb{R}^n$.
- Let the Gram matrix $\mathbf{M} = \mathbf{G}\mathbf{G}^T$ has the following Cholesky decomposition $\mathbf{M} = \mathbf{R}\mathbf{R}^T$, where \mathbf{R} is an upper triangular matrix.

Algorithm[Viterbo'99]

- Set $\mathbf{x}=\mathbf{uG},\ \mathbf{y}=oldsymbol{
 ho}\mathbf{G}$, and $\mathbf{w}=oldsymbol{\zeta}\mathbf{G}$ for $\mathbf{u}\in\mathbb{Z}^n$ and $oldsymbol{
 ho},oldsymbol{\zeta}\in\mathbb{R}^n.$
- Let the Gram matrix $\mathbf{M} = \mathbf{G}\mathbf{G}^T$ has the following Cholesky decomposition $\mathbf{M} = \mathbf{R}\mathbf{R}^T$, where \mathbf{R} is an upper triangular matrix.
- We have

$$\|\mathbf{w}\|^2 = \zeta \mathbf{R} \mathbf{R}^T \zeta^T = \sum_{i=1}^n q_{ii} U_i^2 \le C,$$

where U_i , q_{ii} are based on r_{ij} and ζ_i , for $1 \leq i, j \leq n$.

Algorithm[Viterbo'99]

- Set $\mathbf{x}=\mathbf{uG},\ \mathbf{y}=oldsymbol{
 ho}\mathbf{G}$, and $\mathbf{w}=oldsymbol{\zeta}\mathbf{G}$ for $\mathbf{u}\in\mathbb{Z}^n$ and $oldsymbol{
 ho},oldsymbol{\zeta}\in\mathbb{R}^n.$
- Let the Gram matrix $\mathbf{M} = \mathbf{G}\mathbf{G}^T$ has the following Cholesky decomposition $\mathbf{M} = \mathbf{R}\mathbf{R}^T$, where \mathbf{R} is an upper triangular matrix.
- We have

$$\|\mathbf{w}\|^2 = \zeta \mathbf{R} \mathbf{R}^T \zeta^T = \sum_{i=1}^n q_{ii} U_i^2 \le C,$$

where U_i , q_{ii} are based on r_{ij} and ζ_i , for $1 \leq i, j \leq n$.

• Starting from U_n and working backward, one can find bounds on U_i , these will be transformed to bounds on u_i .

000

Comments

• The sphere decoding algorithm can be adapted to work on fading channels as well.

000

Comments

- The sphere decoding algorithm can be adapted to work on fading channels as well.
- ullet Choosing the radius C is a crucial part of the algorithm. Covering radius is an excellent choice.

000

Comments

- The sphere decoding algorithm can be adapted to work on fading channels as well.
- Choosing the radius C is a crucial part of the algorithm. Covering radius is an excellent choice.
- The complexity is reasonable for low dimensions, n = 64.

Lattice Reduction Algorithms; Key to Application

Given a basis set, a lattice reduction technique is a process to obtain a new basis set of the lattice with shorter vectors.

.....

Given a basis set, a lattice reduction technique is a process to obtain a new basis set of the lattice with shorter vectors.

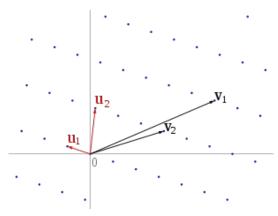


Figure: Geometrical view of Lattice Reduction.

Gram-Schmidt Orthogonalization

The orthogonal vectors generated by the Gram-Schmidt orthogonalization procedure are denoted by $\{GS(\mathbf{g}_1), \ldots, GS(\mathbf{g}_n)\}$ which spans the same space of $\{g_1, \dots, g_n\}$.

Gram-Schmidt Orthogonalization

The orthogonal vectors generated by the Gram-Schmidt orthogonalization procedure are denoted by $\{GS(\mathbf{g}_1), \ldots, GS(\mathbf{g}_n)\}$ which spans the same space of $\{\mathbf{g}_1, \ldots, \mathbf{g}_n\}$.

Definition

We define

$$\mu_{m,j} \triangleq \frac{\langle GS(\mathbf{g}_m), GS(\mathbf{g}_j) \rangle}{\|GS(\mathbf{g}_j)\|^2},$$

where $1 \leq m, j \leq n$.

50.....

Gram-Schmidt Orthogonalization

The orthogonal vectors generated by the Gram-Schmidt orthogonalization procedure are denoted by $\{GS(\mathbf{g}_1), \ldots, GS(\mathbf{g}_n)\}$ which spans the same space of $\{\mathbf{g}_1, \ldots, \mathbf{g}_n\}$.

Definition

We define

$$\mu_{m,j} \triangleq \frac{\langle GS(\mathbf{g}_m), GS(\mathbf{g}_j) \rangle}{\|GS(\mathbf{g}_j)\|^2},$$

where $1 \leq m, j \leq n$.

Definition

The m-th successive minima of a lattice, denoted by λ_m , is the radius of the smallest possible closed ball around origin containing m or more linearly independent lattice points forming a basis.

CLLL Reduction

A generator matrix \mathbf{G}' for a lattice Λ is called *LLL-reduced* if it satisfies

- \bullet $|\mu_{m,j}| \leq 1/2$ for all $1 \leq j < m \leq n$, and
- $\begin{aligned} & \delta \|\mathsf{GS}\left(\mathbf{g}_{m-1}'\right)\|^2 \leq \|\mathsf{GS}\left(\mathbf{g}_m'\right) + \mu_{m,m-1}^2 \mathsf{GS}\left(\mathbf{g}_{m-1}'\right)\|^2 \text{ for all } \\ & 1 < m \leq n, \end{aligned}$

where $\delta \in (1/4, 1]$ is a factor selected to achieve a good quality-complexity tradeoff.

Mikowski Lattice Reduction

A lattice generator matrix \mathbf{G}' is called Minkowski-reduced if for $1 \leq m \leq n$, the vectors \mathbf{g}'_m are as short as possible.

Mikowski Lattice Reduction

A lattice generator matrix \mathbf{G}' is called Minkowski-reduced if for $1 \leq m \leq n$, the vectors \mathbf{g}'_m are as short as possible.

In particular, \mathbf{G}' is Minkowski-reduced if for $1 \leq m \leq n$, the row vector \mathbf{g}'_m has minimum possible energy amongst all the other lattice points such that $\{\mathbf{g}'_1,\ldots,\mathbf{g}'_m\}$ can be extended to another basis of Λ .

HKZ Lattice Reduction

A generator matrix G' for a lattice Λ is called HKZ-reduced if it satisfies

- $|\mathbf{R}_{m,j}| \leq \frac{1}{2} |\mathbf{R}_{m,m}|$ for all $1 \leq m \leq j \leq n$, and
- \mathbf{Q} $\mathbf{R}_{i,j}$ be the length of the shortest vector of a lattice generated by the columns of the sub matrix

$$\mathbf{R}([j, j+1, \dots, n], [j, j+1, \dots, n]).$$

Note that G' = QR is the QR decomposition of G'.

Properties

The m-th row vector in \mathbf{G}' is upper bounded by a scaled version of the m-th successive minima of Λ .

• For CLLL reduction, we have

$$\beta^{1-m}\lambda_m^2 \leq \|\mathbf{g}_m'\|^2 \leq \beta^{n-1}\lambda_m^2, \text{ for } 1 \leq m \leq n,$$

where
$$\beta = (\delta - 1/4)^{-1}$$
.

Properties

The m-th row vector in \mathbf{G}' is upper bounded by a scaled version of the m-th successive minima of Λ .

• For CLLL reduction, we have

$$\beta^{1-m}\lambda_m^2 \leq \|\mathbf{g}_m'\|^2 \leq \beta^{n-1}\lambda_m^2, \text{ for } 1 \leq m \leq n,$$

where
$$\beta = (\delta - 1/4)^{-1}$$
.

• For the Minkowski reduction, we have

$$\lambda_m^2 \le \|\mathbf{g}_m'\|^2 \le \max\left\{1, \left(\frac{5}{4}\right)^{n-4}\right\} \lambda_m^2, \text{ for } 1 \le m \le n.$$

Properties

The m-th row vector in \mathbf{G}' is upper bounded by a scaled version of the m-th successive minima of Λ .

For CLLL reduction, we have

$$\beta^{1-m}\lambda_m^2 \leq \|\mathbf{g}_m'\|^2 \leq \beta^{n-1}\lambda_m^2, \text{ for } 1 \leq m \leq n,$$

where
$$\beta = (\delta - 1/4)^{-1}$$
.

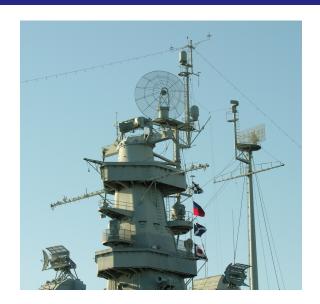
• For the Minkowski reduction, we have

$$\lambda_m^2 \le \|\mathbf{g}_m'\|^2 \le \max\left\{1, \left(\frac{5}{4}\right)^{n-4}\right\} \lambda_m^2, \text{ for } 1 \le m \le n.$$

• For the HKZ reduction, we have

$$\frac{4\lambda_m^2}{m+3} \le \|\mathbf{g}_m'\|^2 \le \frac{(m+3)\lambda_m^2}{4}, \text{ for } 1 \le m \le n.$$

One Example of Using Lattice Reduction Algorithms



Multiple-input Multiple-output Channel

MIMO Channel Model

• We consider a flat-fading MIMO channel with n transmit antennas and n receive antennas.

Multiple-input Multiple-output Channel

MIMO Channel Model

- We consider a flat-fading MIMO channel with n transmit antennas and n receive antennas.
- The channel matrix is denoted by $\mathbf{G} \in \mathbb{C}^{n \times n}$, where the entries of \mathbf{G} are i.i.d. as $\mathcal{CN}(0,1)$.

Multiple-input Multiple-output Channel

MIMO Channel Model

- We consider a flat-fading MIMO channel with n transmit antennas and n receive antennas.
- The channel matrix is denoted by $G \in \mathbb{C}^{n \times n}$, where the entries of G are i.i.d. as $\mathcal{CN}(0,1)$.
- For $1 \leq m \leq n$, the m-th layer is equipped with an encoder $E: \mathcal{R}^k \to \mathbb{C}^N$ which maps a message $\mathbf{m} \in \mathcal{R}^k$ over the ring \mathcal{R} into a lattice codeword $\mathbf{x}_m \in \Lambda \subset \mathbb{C}^N$ in the complex space.

 If X denotes the matrix of transmitted vectors, the received signal Y is given by

$$\mathbf{Y}_{n\times N} = \sqrt{P}\mathbf{G}_{n\times n}\mathbf{X}_{n\times N} + \mathbf{Z}_{n\times N},$$

where $P = \frac{\mathsf{SNR}}{n}$ and SNR denotes the average signal-to-noise ratio at each receive antenna.

ullet If ${f X}$ denotes the matrix of transmitted vectors, the received signal ${f Y}$ is given by

$$\mathbf{Y}_{n\times N} = \sqrt{P}\mathbf{G}_{n\times n}\mathbf{X}_{n\times N} + \mathbf{Z}_{n\times N},$$

where $P = \frac{\mathsf{SNR}}{n}$ and SNR denotes the average signal-to-noise ratio at each receive antenna.

• We assume that the entries of **Z** are i.i.d. as $\mathcal{CN}(0,1)$.

• This model will be used in this section.

- This model will be used in this section.
- Lattice reductions can improve the performance of MIMO channels if employed at either transmitters or receivers.

- This model will be used in this section.
- Lattice reductions can improve the performance of MIMO channels if employed at either transmitters or receivers.
- Lattice-reduction-aided MIMO detectors, Lattice reduction precoders, etc.

• In order to uniquely recover the information symbols, the matrix A must be invertible over the ring \mathcal{R} . Thus, we have

$$\mathbf{Y}' = \mathbf{BY} = \sqrt{P}\mathbf{BGX} + \mathbf{BZ}.$$

 In order to uniquely recover the information symbols, the matrix A must be invertible over the ring \mathcal{R} . Thus, we have

$$\mathbf{Y}' = \mathbf{BY} = \sqrt{P}\mathbf{BGX} + \mathbf{BZ}.$$

• The goal is to project G (by left multiplying it with a receiver filtering matrix \mathbf{B}) onto a non-singular integer matrix \mathbf{A} .

• In order to uniquely recover the information symbols, the matrix ${\bf A}$ must be invertible over the ring ${\cal R}.$ Thus, we have

$$\mathbf{Y}' = \mathbf{BY} = \sqrt{P}\mathbf{BGX} + \mathbf{BZ}.$$

- The goal is to project G (by left multiplying it with a receiver filtering matrix B) onto a non-singular integer matrix A.
- For the IF receiver formulation, a suitable signal model is

$$\mathbf{Y}' = \sqrt{P}\mathbf{A}\mathbf{X} + \sqrt{P}(\mathbf{B}\mathbf{G} - \mathbf{A})\mathbf{X} + \mathbf{B}\mathbf{Z},$$

where $\sqrt{P}\mathbf{A}\mathbf{X}$ is the desired signal component, and the effective noise is $\sqrt{P}(\mathbf{B}\mathbf{G} - \mathbf{A})\mathbf{X} + \mathbf{B}\mathbf{Z}$.

Problem Formulation

In particular, the effective noise power along the m-th row of \mathbf{Y}' is defined as

00000

Integer-Forcing Linear Receiver

$$g(\mathbf{a}_m, \mathbf{b}_m) \triangleq \|\mathbf{b}_m\|^2 + P\|\mathbf{b}_m \mathbf{G} - \mathbf{a}_m\|^2,$$

where \mathbf{a}_m and \mathbf{b}_m denotes the m-th row of A and B, respectively.

Problem Formulation

In particular, the effective noise power along the m-th row of \mathbf{Y}' is defined as

$$g(\mathbf{a}_m, \mathbf{b}_m) \triangleq \|\mathbf{b}_m\|^2 + P\|\mathbf{b}_m \mathbf{G} - \mathbf{a}_m\|^2,$$

where \mathbf{a}_m and \mathbf{b}_m denotes the m-th row of A and B, respectively.

Problem Given G and P, the problem is to find the matrices $\mathbf{B} \in \mathbb{C}^{n \times n}$ and $\mathbf{A} \in \mathbb{Z}[i]^{n \times n}$ such that:

- The $\max_{1 \le m \le n} g(\mathbf{a}_m, \mathbf{b}_m)$ is minimized, and
- The corresponding matrix **A** is invertible over the ring \mathcal{R} .

IF Receiver

ullet Given ${f a}$, the optimum value of ${f b}_m$ can be obtained as

$$\mathbf{b}_m = \mathbf{a}\mathbf{G}^h\mathbf{S}^{-1}.$$

000 00 •0000

Integer-Forcing Linear Receiver

IF Receiver

ullet Given ${f a}$, the optimum value of ${f b}_m$ can be obtained as

$$\mathbf{b}_m = \mathbf{a}\mathbf{G}^h\mathbf{S}^{-1}.$$

ullet Then, after replacing ${f b}_m$ in $g({f a},{f b}_m)$, we get

$$\mathbf{a}_m = \arg\min_{\mathbf{a} \in \mathbb{Z}[i]^n} \ \mathbf{aVDV}^h \mathbf{a}^h,$$

where ${\bf V}$ is the matrix composed of the eigenvectors of ${\bf GG}^h$, and ${\bf D}$ is a diagonal matrix with m-th entry ${\bf D}_{m,m} = \left(P\rho_m^2+1\right)^{-1}$, where ρ_m is the m-th singular value of ${\bf G}$.

IF Receiver; Continued

• With this, we have to obtain n vectors \mathbf{a}_m , $1 \le m \le n$, which result in the first n smaller values of $\mathbf{aVDV}^h\mathbf{a}^h$ along with the non-singular property on \mathbf{A} .

IF Receiver; Continued

- With this, we have to obtain n vectors \mathbf{a}_m , $1 \le m \le n$, which result in the first n smaller values of $\mathbf{aVDV}^h\mathbf{a}^h$ along with the non-singular property on \mathbf{A} .
- The minimization problem is the shortest vector problem for a lattice with Gram matrix $\mathbf{M} = \mathbf{V}\mathbf{D}\mathbf{V}^h$.

IF Receiver; Continued

- With this, we have to obtain n vectors \mathbf{a}_m , $1 \le m \le n$, which result in the first n smaller values of $\mathbf{aVDV}^h\mathbf{a}^h$ along with the non-singular property on \mathbf{A} .
- ullet The minimization problem is the shortest vector problem for a lattice with Gram matrix $\mathbf{M} = \mathbf{V}\mathbf{D}\mathbf{V}^h$.
- Since M is a positive definite matrix, we can write $M = LL^h$ for some $L \in \mathbb{C}^{n \times n}$ by using Choelsky decomposition.

IF Receiver: Continued

- With this, we have to obtain n vectors \mathbf{a}_m , $1 \le m \le n$, which result in the first n smaller values of $\mathbf{aVDV}^h\mathbf{a}^h$ along with the non-singular property on \mathbf{A} .
- ullet The minimization problem is the shortest vector problem for a lattice with Gram matrix $\mathbf{M} = \mathbf{V}\mathbf{D}\mathbf{V}^h$.
- Since M is a positive definite matrix, we can write $M = LL^h$ for some $L \in \mathbb{C}^{n \times n}$ by using Choelsky decomposition.
- ullet With this, the rows of ${f L}={f V}{f D}^{rac{1}{2}}$ generate a lattice, say $\Lambda.$

IF Receiver; Continued

- With this, we have to obtain n vectors \mathbf{a}_m , $1 \le m \le n$, which result in the first n smaller values of $\mathbf{aVDV}^h\mathbf{a}^h$ along with the non-singular property on \mathbf{A} .
- The minimization problem is the shortest vector problem for a lattice with Gram matrix $\mathbf{M} = \mathbf{V}\mathbf{D}\mathbf{V}^h$.
- Since \mathbf{M} is a positive definite matrix, we can write $\mathbf{M} = \mathbf{L}\mathbf{L}^h$ for some $\mathbf{L} \in \mathbb{C}^{n \times n}$ by using Choelsky decomposition.
- ullet With this, the rows of ${f L}={f V}{f D}^{1\over 2}$ generate a lattice, say $\Lambda.$
- A set of possible choices for $\{a_1, \ldots, a_n\}$ is the set of complex integer vectors, whose corresponding lattice points in Λ have lengths at most equal to the n-th successive minima of Λ .

The Proposed Algorithm

The two well-known lattice reduction algorithms satisfying the above property up to constants are HKZ and Minkowski lattice reduction algorithms.

The Proposed Algorithm

The two well-known lattice reduction algorithms satisfying the above property up to constants are HKZ and Minkowski lattice reduction algorithms.

Input: $\mathbf{G} \in \mathbb{C}^{n \times n}$, and P.

Output: A unimodular matrix A.

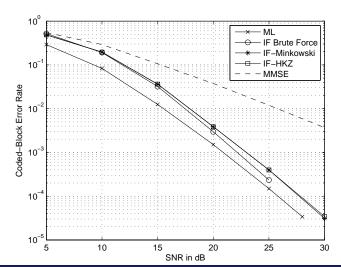
- $\textbf{ 0} \ \ \text{Form the generator matrix } \mathbf{L} = \mathbf{V}\mathbf{D}^{\frac{1}{2}} \ \text{of a lattice } \Lambda.$
- **2** Reduce \mathbf{L} to \mathbf{L}' using either HKZ or Minkowski lattice reduction algorithm.
- **3** The n rows of $\mathbf{L}'\mathbf{L}^{-1}$ provide n rows \mathbf{a}_m of \mathbf{A} for $1 \leq m \leq n$.

Receive Diversity

Theorem (Sakzad'13)

For a MIMO channel with n transmit and n receive antennas over a Rayleigh fading channel, the integer-forcing linear receiver based on lattice reduction achieves full receive diversity.

Performance against exhaustive search



A toy example from Cryptography

Public and private keys

GGH involves a private key and a public key.

- GGH involves a private key and a public key.
- ② The private key of user j is a generator matrix \mathbf{G}_j of a lattice Λ with "nearly orthogonal" basis vectors and a unimodular matrix \mathbf{U}_j , for $j \in \{a,b\}$.

- GGH involves a private key and a public key.
- ② The private key of user j is a generator matrix \mathbf{G}_j of a lattice Λ with "nearly orthogonal" basis vectors and a unimodular matrix \mathbf{U}_j , for $j \in \{a,b\}$.
- **3** The public key of user j is $\mathbf{G}'_j = \mathbf{U}_j \mathbf{G}_j$, which is another generator matrix of the lattice Λ .

- GGH involves a private key and a public key.
- ② The private key of user j is a generator matrix \mathbf{G}_j of a lattice Λ with "nearly orthogonal" basis vectors and a unimodular matrix \mathbf{U}_j , for $j \in \{a,b\}$.
- **3** The public key of user j is $\mathbf{G}'_j = \mathbf{U}_j \mathbf{G}_j$, which is another generator matrix of the lattice Λ .
- **9** Security parameters are n and σ .

- GGH involves a private key and a public key.
- ② The private key of user j is a generator matrix \mathbf{G}_j of a lattice Λ with "nearly orthogonal" basis vectors and a unimodular matrix \mathbf{U}_j , for $j \in \{a,b\}$.
- **3** The public key of user j is $\mathbf{G}'_j = \mathbf{U}_j \mathbf{G}_j$, which is another generator matrix of the lattice Λ .
- **9** Security parameters are n and σ .
- Works based on the hardness of closest vector problem (CVP).

Description

 $oldsymbol{0}$ Alice wants to send a message $oldsymbol{m}$ to Bob.

Description

- f 0 Alice wants to send a message f m to Bob.
- ② She uses Bob's public key \mathbf{G}_b' and encrypts \mathbf{m} to

$$\mathbf{c} = \mathbf{mG}_b' + \mathbf{e},$$

where $\mathbf{e} \in \{\pm \sigma\}^n$.

Description

- Alice wants to send a message m to Bob.
- ② She uses Bob's public key G_b' and encrypts m to

$$\mathbf{c} = \mathbf{m}\mathbf{G}_b' + \mathbf{e},$$

where $\mathbf{e} \in \{\pm \sigma\}^n$.

 $\ensuremath{\mathbf{0}}$ Bob employs \mathbf{U} and \mathbf{G} to decrypt \mathbf{c} as follows. Bob first computes

$$\mathbf{c}\mathbf{G}_b^{-1} = \mathbf{m}\mathbf{G}_b'\mathbf{G}_b^{-1} + \mathbf{e}\mathbf{G}_b^{-1} = \mathbf{m}\mathbf{U}_b + \mathbf{e}\mathbf{G}_b^{-1},$$

then

$$\lfloor \mathbf{c}\mathbf{G}_b^{-1}
ceil \mathbf{U}_b^{-1} = \mathbf{m}\mathbf{U}_b\mathbf{U}_b^{-1} = \mathbf{m}.$$

Various attacks have been proposed. Almost dead!

- Various attacks have been proposed. Almost dead!
- NTRU is a special instance of GGH using a circulant matrix for the public key.

- Various attacks have been proposed. Almost dead!
- NTRU is a special instance of GGH using a circulant matrix for the public key.
- \odot Increase the dimension of the lattice up to 1000.

- Various attacks have been proposed. Almost dead!
- NTRU is a special instance of GGH using a circulant matrix for the public key.
- \odot Increase the dimension of the lattice up to 1000.
- One very famous attack on these cryptosystems is lattice reduction algorithms.

00000 000 Lattice-based Cryptography ○○○●

GGH public-key cryptosystem

Thanks for your attention!