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Sphere Decoder Algorithm
[ eJelele]

Rotated Signal Constellations

Channel Model

@ We consider n-dimensional signal constellation A carved from
the lattice A with generator matrix G, for example 4-QAM.
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[ eJelele]

Rotated Signal Constellations

Channel Model

@ We consider n-dimensional signal constellation A carved from
the lattice A with generator matrix G, for example 4-QAM.

@ Hence, x = uG represent a transmitted signal.

@ The received vector y = ¢ - x + z, where «;, are independent
real Rayleigh random variables with unit second moment and
z; are real Gaussian distributed with zero mean and variance
o/2.
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Sphere Decoder Algorithm
[ eJelele]

Rotated Signal Constellations

Channel Model

@ We consider n-dimensional signal constellation A carved from
the lattice A with generator matrix G, for example 4-QAM.

@ Hence, x = uG represent a transmitted signal.

@ The received vector y = ¢ - x + z, where «;, are independent

real Rayleigh random variables with unit second moment and
z; are real Gaussian distributed with zero mean and variance
o/2.

e With perfect Channel State Information (CSI) at the receiver,
the ML decoder requires to solve the following optimization
problem

n
minz lys — a2
i=1
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Sphere Decoder Algorithm
(o] lelele]

Rotated Signal Constellations

Pairwise error probability

Using standard Chernoff bound technique one can estimate
pairwise error probability under ML decoder as

N1 4o (40)*
<= —
Pr(x — x') < 5 H (i~ 24" (x.x)

, !
T FT min,p

27
where the /-product distance is

Aoty (0, X) 2 T i = 2.
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Rotated Signal Constellations

Goal

Definition

The parameter L = min(¢) is called modulation diversity.
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Rotated Signal Constellations

Goal

Definition

The parameter L = min(¢) is called modulation diversity.

Definition

We define the product distance as din,p = min d(L)

min,p*
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Sphere Decoder Algorithm ctio gorithms Integer-Forcing Linear
(e]e] [

Rotated Signal Constellations

Goal

Definition
The parameter L = min(¢) is called modulation diversity.

Definition
(L)

min,p*

We define the product distance as dyin,p = mind

To minimize the error probability, one should increase both L and

dmin,p
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Sphere Decoder Algorithm
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Rotated Signal Constellations

Rotated Z"-lattice constellations
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Sphere Decoder Algorithm
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Rotated Signal Constellations

Rotated Z"-lattice constellations

@ “Algebraic Number Theory” has been used as a strong tool to
construct good lattices for signal constellations.
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construct good lattices for signal constellations.

@ For these lattices, the minimum product distance will be
related to the volume of the lattice and the “discriminant” of
the underlying number field.
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@ “Algebraic Number Theory” has been used as a strong tool to
construct good lattices for signal constellations.

@ For these lattices, the minimum product distance will be
related to the volume of the lattice and the “discriminant” of
the underlying number field.

@ The “signature” of a number field determines the modulation
diversity.
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Sphere Decoder Algorithm
0000e

Rotated Signal Constellations

Rotated Z"-lattice constellations

@ “Algebraic Number Theory” has been used as a strong tool to
construct good lattices for signal constellations.

@ For these lattices, the minimum product distance will be
related to the volume of the lattice and the “discriminant” of
the underlying number field.

@ The “signature” of a number field determines the modulation
diversity.

@ List of good algebraic rotations are available online. See
Emanuele’'s webpage.
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Sphere Decoder Algorithm

@00

Sphere Decoding Algorithm

Optimization Problem

The problem is to solve the following:

. _ 2 _ . 2
min [y — x|| Wrenylr_lAHWH-
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Sphere Decoder Algorithm

oeo

Sphere Decoding Algorithm

Algorithm[Viterbo'99]

@ Set x =u@, y = pG, and w = (G for u € Z" and
p,C ER™
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Sphere Decoding Algorithm

Algorithm[Viterbo'99]

@ Set x =u@, y = pG, and w = (G for u € Z" and
p,C ER™

o Let the Gram matrix M = GG has the following Cholesky
decomposition M = RR”, where R is an upper triangular
matrix.
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Sphere Decoding Algorithm

Algorithm[Viterbo'99]

@ Set x =u@, y = pG, and w = (G for u € Z" and
p,C ER™

o Let the Gram matrix M = GG has the following Cholesky
decomposition M = RR”, where R is an upper triangular
matrix.

@ We have

[wl? = ¢(RRT¢T =" qul} < C,

=1

where U;, g;; are based on r;; and ¢;, for 1 <4,5 < n.
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Sphere Decoder Algorithm

oeo

Sphere Decoding Algorithm

Algorithm[Viterbo'99]

@ Set x =u@, y = pG, and w = (G for u € Z" and
p,C ER™

o Let the Gram matrix M = GG has the following Cholesky
decomposition M = RR”, where R is an upper triangular
matrix.

@ We have
Iw[* = ¢RRT¢T =~ iU < C,
i=1

where U;, g;; are based on r;; and ¢;, for 1 <4,5 < n.

@ Starting from U,, and working backward, one can find bounds
on Uj;, these will be transformed to bounds on ;.
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Sphere Decoder Algorithm
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Sphere Decoding Algorithm

Comments

@ The sphere decoding algorithm can be adapted to work on
fading channels as well.
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Sphere Decoding Algorithm

Comments

@ The sphere decoding algorithm can be adapted to work on
fading channels as well.

@ Choosing the radius C is a crucial part of the algorithm.
Covering radius is an excellent choice.
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Sphere Decoder Algorithm

ooe

Sphere Decoding Algorithm

Comments

@ The sphere decoding algorithm can be adapted to work on
fading channels as well.

@ Choosing the radius C is a crucial part of the algorithm.
Covering radius is an excellent choice.

@ The complexity is reasonable for low dimensions, n = 64.
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Lattice Reduction Algorithms

Lattice Reduction Algorithms; Key to
Application

Lattice Coding Ill: Applications Amin Sakzad



Lattice Reduction Algorithms
000000

Definitions

Given a basis set, a lattice reduction technique is a process to
obtain a new basis set of the lattice with shorter vectors.
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Lattice Reduction Algorithms
000000

Definitions

Given a basis set, a lattice reduction technique is a process to
obtain a new basis set of the lattice with shorter vectors.

Figure: Geometrical view of Lattice Reduction.
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Lattice Reduction Algorithms
(o] lelelele)

Definitions

Gram-Schmidt Orthogonalization

The orthogonal vectors generated by the Gram-Schmidt
orthogonalization procedure are denoted by {GS(g1),...,GS(gn)}
which spans the same space of {g1,...,8,}.
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oder Algorithm Lattice Reduction Algorithms

O@0000

Definitions

Gram-Schmidt Orthogonalization

The orthogonal vectors generated by the Gram-Schmidt
orthogonalization procedure are denoted by {GS(g1),...,GS(gn)}
which spans the same space of {g1,...,8,}.

Definition
We define

o o {(G5(En). GS(Ey))
A TP

where 1 < m,j < n.
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Definitions

Gram-Schmidt Orthogonalization

The orthogonal vectors generated by the Gram-Schmidt
orthogonalization procedure are denoted by {GS(g1),...,GS(gn)}
which spans the same space of {g1,...,8,}.

Definition
We define

o o {(G5(En). GS(Ey))
A TP

where 1 < m,j < n.

Definition

The m—th successive minima of a lattice, denoted by \,, is the
radius of the smallest possible closed ball around origin containing
m or more linearly independent lattice points forming a basis.
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Lattice Reduction Algorithms

[e]e] le]ele]

Definitions

CLLL Reduction

A generator matrix G’ for a lattice A is called LLL-reduced if it
satisfies

Q |pm,j| <1/2forall1 <j<m<mn,and

@ 51GS (g),_1) 2 < [1GS (g),) + H2,.0_1GS (g),_y) I for all
1 <m <n,

where 0 € (1/4,1] is a factor selected to achieve a good
quality-complexity tradeoff.
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Lattice Reduction Algorithms
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Definitions

Mikowski Lattice Reduction

A lattice generator matrix G’ is called Minkowski-reduced if for
1 <m < n, the vectors g/, are as short as possible.
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Lattice Reduction Algorithms
[e]e]e] lele)

Definitions

Mikowski Lattice Reduction

A lattice generator matrix G’ is called Minkowski-reduced if for
1 <m < n, the vectors g/, are as short as possible.

In particular, G’ is Minkowski-reduced if for 1 < m < n, the row
vector g/, has minimum possible energy amongst all the other
lattice points such that {g],...,g/,} can be extended to another
basis of A.
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Lattice Reduction Algorithms
[e]e]e]e] o)

Definitions

HKZ Lattice Reduction

A generator matrix G’ for a lattice A is called HKZ-reduced if it
satisfies

Q@ R, ;| < %|Rmm\ forall1 <m < j <mn, and
@ R;; be the length of the shortest vector of a lattice generated
by the columns of the sub matrix
R([j,j+1,....n],[j, 5+ 1,...,n]).
Note that G’ = QR is the QR decomposition of G'.
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Lattice Reduction Algorithms
00000e

Definitions

Properties

The m-th row vector in G’ is upper bounded by a scaled version of
the m-th successive minima of A.

@ For CLLL reduction, we have
BTN < llgh > < BTN, for 1< m <,

where B = (§ —1/4)7L.
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Lattice Reduction Algorithms
00000e

Definitions

Properties

The m-th row vector in G’ is upper bounded by a scaled version of
the m-th successive minima of A.

@ For CLLL reduction, we have
B, < gl < 877N, for 1 <m <,
where B = (§ —1/4)7L.

@ For the Minkowski reduction, we have

5 n—4
\o< Hg;n\zﬁmax{l’ <4> })\,Zn, for 1 <m <n.
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Lattice Reduction Algorithms
00000e

Definitions

Properties

The m-th row vector in G’ is upper bounded by a scaled version of
the m-th successive minima of A.

@ For CLLL reduction, we have
BTN < llgh > < BTN, for 1< m <,

where 8= (§ —1/4)7!
@ For the Minkowski reduction, we have

5 n—4
\o< Hg;n\zﬁmax{l’ <4> })\,Zn, for 1 <m <n.

@ For the HKZ reduction, we have

2
i o< g < W;’)Am for1<m<n.
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Integer-Forcing Linear Receiver

One Example of Using Lattice Reduction
Algorithms
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Integer-Forcing Linear Receiver
@00

Multiple-input Multiple-output Channel

MIMO Channel Model

@ We consider a flat-fading MIMO channel with n transmit
antennas and n receive antennas.
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Multiple-input Multiple-output Channel

MIMO Channel Model

@ We consider a flat-fading MIMO channel with n transmit
antennas and n receive antennas.

@ The channel matrix is denoted by G € C"*", where the
entries of G are i.i.d. as CA(0,1).
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Integer-Forcing Linear Receiver
@00

Multiple-input Multiple-output Channel

MIMO Channel Model

@ We consider a flat-fading MIMO channel with n transmit
antennas and n receive antennas.

@ The channel matrix is denoted by G € C"*", where the
entries of G are i.i.d. as CA(0,1).

e For 1 < m < n, the m-th layer is equipped with an encoder
E : R* — C" which maps a message m € R¥ over the ring
R into a lattice codeword x,, € A € CV in the complex
space.
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Integer-Forcing Linear Receiver
o] T}

Multiple-input Multiple-output Channel

o If X denotes the matrix of transmitted vectors, the received
signal Y is given by

Yan = \/f)GanXnXN + Zn><Na

where P = SNTR and SNR denotes the average signal-to-noise
ratio at each receive antenna.
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Integer-Forcing Linear Receiver
o] T}

Multiple-input Multiple-output Channel

o If X denotes the matrix of transmitted vectors, the received
signal Y is given by

Yan = \/f)GanXnXN + Zn><Na

where P = SNTR and SNR denotes the average signal-to-noise
ratio at each receive antenna.

o We assume that the entries of Z are i.i.d. as CA/(0,1).
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Integer-Forcing Linear Receiver
[e]e] ]

Multiple-input Multiple-output Channel

@ This model will be used in this section.

Lattice Coding Ill: Applications in Sakzad




Integer-Forcing Linear Receiver
[e]e] ]

Multiple-input Multiple-output Channel

@ This model will be used in this section.

@ Lattice reductions can improve the performance of MIMO
channels if employed at either transmitters or receivers.
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Integer-Forcing Linear Receiver
[e]e] ]

Multiple-input Multiple-output Channel

@ This model will be used in this section.

@ Lattice reductions can improve the performance of MIMO
channels if employed at either transmitters or receivers.

@ Lattice-reduction-aided MIMO detectors, Lattice reduction
precoders, etc.
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Integer-Forcing Linear Receiver

[ 1o}

Problem statement

@ In order to uniquely recover the information symbols, the
matrix A must be invertible over the ring R. Thus, we have

Y’ =BY = vVPBGX + BZ.
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Problem statement

@ In order to uniquely recover the information symbols, the
matrix A must be invertible over the ring R. Thus, we have

Y’ =BY = vVPBGX + BZ.

@ The goal is to project G (by left multiplying it with a receiver
filtering matrix B) onto a non-singular integer matrix A.
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Integer-Forcing Linear Receiver

[ 1o}

Problem statement

@ In order to uniquely recover the information symbols, the
matrix A must be invertible over the ring R. Thus, we have

Y’ =BY = vVPBGX + BZ.

@ The goal is to project G (by left multiplying it with a receiver
filtering matrix B) onto a non-singular integer matrix A.

@ For the IF receiver formulation, a suitable signal model is
Y' = VPAX +VP(BG — A)X + BZ,

where v/PAX is the desired signal component, and the
effective noise is VP(BG — A)X + BZ.
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Integer-Forcing Linear Receiver

oce

Problem statement

Problem Formulation

In particular, the effective noise power along the m-th row of Y’ is
defined as

9(am, bm) £ [bu|* + PbnG — anlf?,

where a,, and b,,, denotes the m-th row of A and B, respectively.
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Integer-Forcing Linear Receiver

oce

Problem statement

Problem Formulation

In particular, the effective noise power along the m-th row of Y’ is
defined as

9(am, bm) £ [bu|* + PbnG — anlf?,

where a,, and b,,, denotes the m-th row of A and B, respectively.

Problem Given G and P, the problem is to find the matrices
B € C"™" and A € Z[i|"*™ such that:

e The maxi<m<n g(am, by,) is minimized, and

@ The corresponding matrix A is invertible over the ring R.
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Integer-Forcing Linear Receiver

@0000

Integer-Forcing

IF Receiver

@ Given a, the optimum value of b,, can be obtained as

b,, = aG"S™L.
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Integer-Forcing Linear Receiver

[ Jelele]e]
Integer-Forcing

IF Receiver

@ Given a, the optimum value of b,, can be obtained as
b, =aG"s™!.
@ Then, after replacing b, in g(a, b,,), we get

a, = arg min aVDV’a",
acZfi]

where V is the matrix composed of the eigenvectors of GG",
and D is a diagonal matrix with m-th entry

Dy = (Pp2, + 1)71, where p,, is the m-th singular value
of G.
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Integer-Forcing Linear Receiver

0@000

Integer-Forcing

IF Receiver; Continued

@ With this, we have to obtain n vectors a,,, 1 < m < n, which
result in the first n smaller values of aVDV"a" along with
the non-singular property on A.

Lattice Coding Ill: Applications Amin Sakzad



Integer-Forcing Linear Receiver

0@000
Integer-Forcing

IF Receiver; Continued

@ With this, we have to obtain n vectors a,,, 1 < m < n, which
result in the first n smaller values of aVDV"a" along with
the non-singular property on A.

@ The minimization problem is the shortest vector problem for a
lattice with Gram matrix M = VDV,
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Integer-Forcing Linear Receiver
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Integer-Forcing

IF Receiver; Continued

@ With this, we have to obtain n vectors a,,, 1 < m < n, which
result in the first n smaller values of aVDV"a" along with
the non-singular property on A.

@ The minimization problem is the shortest vector problem for a
lattice with Gram matrix M = VDV,

@ Since M is a positive definite matrix, we can write M = LL"
for some L € C™*" by using Choelsky decomposition.
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0@000
Integer-Forcing

IF Receiver; Continued

@ With this, we have to obtain n vectors a,,, 1 < m < n, which
result in the first n smaller values of aVDV"a" along with
the non-singular property on A.

@ The minimization problem is the shortest vector problem for a
lattice with Gram matrix M = VDV,

@ Since M is a positive definite matrix, we can write M = LL"
for some L € C™*" by using Choelsky decomposition.

@ With this, the rows of L = VD3 generate a lattice, say A.
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Integer-Forcing Linear Receiver

0@000
Integer-Forcing

IF Receiver; Continued

@ With this, we have to obtain n vectors a,,, 1 < m < n, which
result in the first n smaller values of aVDV"a" along with
the non-singular property on A.

@ The minimization problem is the shortest vector problem for a
lattice with Gram matrix M = VDV,

@ Since M is a positive definite matrix, we can write M = LL"
for some L € C™*" by using Choelsky decomposition.

With this, the rows of L = VD3 generate a lattice, say A.

@ A set of possible choices for {aj,...,a,} is the set of complex
integer vectors, whose corresponding lattice points in A have
lengths at most equal to the n-th successive minima of A.
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Integer-Forcing Linear Receiver

[e]e] le]e}

Integer-Forcing

The two well-known lattice reduction algorithms satisfying the
above property up to constants are HKZ and Minkowski lattice
reduction algorithms.
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Integer-Forcing Linear Receiver

[e]e] le]e}

Integer-Forcing

The two well-known lattice reduction algorithms satisfying the
above property up to constants are HKZ and Minkowski lattice
reduction algorithms.
Input: G € C"*", and P.
Output: A unimodular matrix A.

@ Form the generator matrix L = VD3 of a lattice A.

@ Reduce L to L’ using either HKZ or Minkowski lattice

reduction algorithm.

© The n rows of L'L~! provide n rows a,, of A for 1 < m < n.
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Algorithm ctio gorithms Integer-Forcing Linear Receiver

Integer-Forcing

Receive Diversity

Theorem (Sakzad'13)

For a MIMO channel with n transmit and n receive antennas over
a Rayleigh fading channel, the integer-forcing linear receiver based
on lattice reduction achieves full receive diversity.
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Integer-Forcing Linear Receiver

[e]e]e]e] }

Integer-Forcing

Performance against exhaustive search
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Lattice-based Cryptography

A toy example from Cryptography
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Lattice-based Cryptography
@000

GGH public-key cryptosystem

Public and private keys

@ GGH involves a private key and a public key.
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Lattice-based Cryptography

[ Je]e]e]

GGH public-key cryptosystem

Public and private keys

@ GGH involves a private key and a public key.

@ The private key of user j is a generator matrix G of a lattice
A with “nearly orthogonal” basis vectors and a unimodular
matrix Uj, for j € {a, b}.
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Lattice-based Cryptography
@000

GGH public-key cryptosystem

Public and private keys

@ GGH involves a private key and a public key.

@ The private key of user j is a generator matrix G of a lattice
A with “nearly orthogonal” basis vectors and a unimodular
matrix Uj, for j € {a, b}.

© The public key of user j is G; = U;G;, which is another
generator matrix of the lattice A.
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Lattice-based Cryptography
@000

GGH public-key cryptosystem

Public and private keys

@ GGH involves a private key and a public key.

@ The private key of user j is a generator matrix G of a lattice
A with “nearly orthogonal” basis vectors and a unimodular
matrix Uj, for j € {a, b}.

© The public key of user j is G; = U;G;, which is another
generator matrix of the lattice A.

@ Security parameters are n and o.
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Lattice-based Cryptography
@000

GGH public-key cryptosystem

Public and private keys

@ GGH involves a private key and a public key.

@ The private key of user j is a generator matrix G of a lattice
A with “nearly orthogonal” basis vectors and a unimodular
matrix Uj, for j € {a, b}.

© The public key of user j is G; = U;G;, which is another
generator matrix of the lattice A.

@ Security parameters are n and o.

© Works based on the hardness of closest vector problem (CVP).
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Lattice-based Cryptography
[e] le]e}

GGH public-key cryptosystem

Description

O Alice wants to send a message m to Bob.
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Lattice-based Cryptography
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GGH public-key cryptosystem

Description

O Alice wants to send a message m to Bob.

@ She uses Bob's public key Gj and encrypts m to
c=mGj +e,

where e € {£0}".
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Lattice-based Cryptography
[e] le]e}

GGH public-key cryptosystem

Description

O Alice wants to send a message m to Bob.
@ She uses Bob's public key Gj and encrypts m to

c=mGj +e,

where e € {£0}".

© Bob employs U and G to decrypt c as follows. Bob first
computes

chl = mGgGgl + eG;l =mU, + eG;l7

then
cG, 11U, =mU, U, ' = m.
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Lattice-based Cryptography
[e]e] le}

GGH public-key cryptosystem

© Various attacks have been proposed. Almost dead!
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GGH public-key cryptosystem

© Various attacks have been proposed. Almost dead!

@ NTRU is a special instance of GGH using a circulant matrix
for the public key.
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Lattice-based Cryptography
[e]e] le}

GGH public-key cryptosystem

© Various attacks have been proposed. Almost dead!

@ NTRU is a special instance of GGH using a circulant matrix
for the public key.

© Increase the dimension of the lattice up to 1000.

Lattice Coding Ill: Applications Amin Sakzad



Lattice-based Cryptography
[e]e] le}

GGH public-key cryptosystem

© Various attacks have been proposed. Almost dead!

@ NTRU is a special instance of GGH using a circulant matrix
for the public key.

© Increase the dimension of the lattice up to 1000.

@ One very famous attack on these cryptosystems is lattice
reduction algorithms.
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Lattice-based Cryptography
[e]ele] ]

GGH public-key cryptosystem

Thanks for your attention!
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