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Rotated Signal Constellations

Channel Model

We consider n-dimensional signal constellation A carved from
the lattice Λ with generator matrix G, for example 4-QAM.

Hence, x = uG represent a transmitted signal.

The received vector y = α · x + z, where αi, are independent
real Rayleigh random variables with unit second moment and
zi are real Gaussian distributed with zero mean and variance
σ/2.

With perfect Channel State Information (CSI) at the receiver,
the ML decoder requires to solve the following optimization
problem

min

n∑
i=1

|yi − αixi|2.
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Rotated Signal Constellations

Pairwise error probability

Using standard Chernoff bound technique one can estimate
pairwise error probability under ML decoder as

Pr(x→ x′) ≤ 1

2

∏
xi 6=x′

i

4σ

(xi − x′i)2
=

(4σ)`

2d
(`)
min,p(x,x

′)2
,

where the `-product distance is

d
(`)
min,p(x,x

′) ,
∏

xi 6=x′
i

|xi − x′i|.
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Rotated Signal Constellations

Goal

Definition

The parameter L = min(`) is called modulation diversity.

Definition

We define the product distance as dmin,p = min d
(L)
min,p.

To minimize the error probability, one should increase both L and
dmin,p
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Rotated Signal Constellations

Rotated Zn-lattice constellations
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Rotated Signal Constellations

Rotated Zn-lattice constellations

“Algebraic Number Theory” has been used as a strong tool to
construct good lattices for signal constellations.

For these lattices, the minimum product distance will be
related to the volume of the lattice and the “discriminant” of
the underlying number field.

The “signature” of a number field determines the modulation
diversity.

List of good algebraic rotations are available online. See
Emanuele’s webpage.
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Sphere Decoding Algorithm

Optimization Problem

The problem is to solve the following:

min
x∈Λ
‖y − x‖2 = min

w∈y−Λ
‖w‖2.
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Sphere Decoding Algorithm

Algorithm[Viterbo’99]

Set x = uG, y = ρG, and w = ζG for u ∈ Zn and
ρ, ζ ∈ Rn.

Let the Gram matrix M = GGT has the following Cholesky
decomposition M = RRT , where R is an upper triangular
matrix.

We have

‖w‖2 = ζRRT ζT =

n∑
i=1

qiiU
2
i ≤ C,

where Ui, qii are based on rij and ζi, for 1 ≤ i, j ≤ n.

Starting from Un and working backward, one can find bounds
on Ui, these will be transformed to bounds on ui.

Lattice Coding III: Applications Amin Sakzad



Sphere Decoder Algorithm Lattice Reduction Algorithms Integer-Forcing Linear Receiver Lattice-based Cryptography

Sphere Decoding Algorithm

Algorithm[Viterbo’99]

Set x = uG, y = ρG, and w = ζG for u ∈ Zn and
ρ, ζ ∈ Rn.

Let the Gram matrix M = GGT has the following Cholesky
decomposition M = RRT , where R is an upper triangular
matrix.

We have

‖w‖2 = ζRRT ζT =

n∑
i=1

qiiU
2
i ≤ C,

where Ui, qii are based on rij and ζi, for 1 ≤ i, j ≤ n.

Starting from Un and working backward, one can find bounds
on Ui, these will be transformed to bounds on ui.

Lattice Coding III: Applications Amin Sakzad



Sphere Decoder Algorithm Lattice Reduction Algorithms Integer-Forcing Linear Receiver Lattice-based Cryptography

Sphere Decoding Algorithm

Algorithm[Viterbo’99]

Set x = uG, y = ρG, and w = ζG for u ∈ Zn and
ρ, ζ ∈ Rn.

Let the Gram matrix M = GGT has the following Cholesky
decomposition M = RRT , where R is an upper triangular
matrix.

We have

‖w‖2 = ζRRT ζT =

n∑
i=1

qiiU
2
i ≤ C,

where Ui, qii are based on rij and ζi, for 1 ≤ i, j ≤ n.

Starting from Un and working backward, one can find bounds
on Ui, these will be transformed to bounds on ui.

Lattice Coding III: Applications Amin Sakzad



Sphere Decoder Algorithm Lattice Reduction Algorithms Integer-Forcing Linear Receiver Lattice-based Cryptography

Sphere Decoding Algorithm

Algorithm[Viterbo’99]

Set x = uG, y = ρG, and w = ζG for u ∈ Zn and
ρ, ζ ∈ Rn.

Let the Gram matrix M = GGT has the following Cholesky
decomposition M = RRT , where R is an upper triangular
matrix.

We have

‖w‖2 = ζRRT ζT =

n∑
i=1

qiiU
2
i ≤ C,

where Ui, qii are based on rij and ζi, for 1 ≤ i, j ≤ n.

Starting from Un and working backward, one can find bounds
on Ui, these will be transformed to bounds on ui.

Lattice Coding III: Applications Amin Sakzad



Sphere Decoder Algorithm Lattice Reduction Algorithms Integer-Forcing Linear Receiver Lattice-based Cryptography

Sphere Decoding Algorithm

Comments

The sphere decoding algorithm can be adapted to work on
fading channels as well.

Choosing the radius C is a crucial part of the algorithm.
Covering radius is an excellent choice.

The complexity is reasonable for low dimensions, n = 64.
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Lattice Reduction Algorithms; Key to
Application
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Definitions

Given a basis set, a lattice reduction technique is a process to
obtain a new basis set of the lattice with shorter vectors.

Figure: Geometrical view of Lattice Reduction.
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Definitions

Gram-Schmidt Orthogonalization

The orthogonal vectors generated by the Gram-Schmidt
orthogonalization procedure are denoted by {GS(g1), . . . ,GS(gn)}
which spans the same space of {g1, . . . ,gn}.

Definition

We define

µm,j ,
〈GS(gm),GS(gj)〉
‖GS(gj)‖2

,

where 1 ≤ m, j ≤ n.

Definition

The m–th successive minima of a lattice, denoted by λm, is the
radius of the smallest possible closed ball around origin containing
m or more linearly independent lattice points forming a basis.
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Definitions

CLLL Reduction

A generator matrix G′ for a lattice Λ is called LLL-reduced if it
satisfies

1 |µm,j | ≤ 1/2 for all 1 ≤ j < m ≤ n, and

2 δ‖GS
(
g′m−1

)
‖2 ≤ ‖GS (g′m) + µ2

m,m−1GS
(
g′m−1

)
‖2 for all

1 < m ≤ n,

where δ ∈ (1/4, 1] is a factor selected to achieve a good
quality-complexity tradeoff.
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Definitions

Mikowski Lattice Reduction

A lattice generator matrix G′ is called Minkowski-reduced if for
1 ≤ m ≤ n, the vectors g′m are as short as possible.

In particular, G′ is Minkowski-reduced if for 1 ≤ m ≤ n, the row
vector g′m has minimum possible energy amongst all the other
lattice points such that {g′1, . . . ,g′m} can be extended to another
basis of Λ.
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Definitions

HKZ Lattice Reduction

A generator matrix G′ for a lattice Λ is called HKZ-reduced if it
satisfies

1 |Rm,j | ≤ 1
2 |Rm,m| for all 1 ≤ m ≤ j ≤ n, and

2 Rj,j be the length of the shortest vector of a lattice generated
by the columns of the sub matrix
R ([j, j + 1, . . . , n], [j, j + 1, . . . , n]).

Note that G′ = QR is the QR decomposition of G′.
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Definitions

Properties

The m-th row vector in G′ is upper bounded by a scaled version of
the m-th successive minima of Λ.

For CLLL reduction, we have

β1−mλ2
m ≤ ‖g′m‖2 ≤ βn−1λ2

m, for 1 ≤ m ≤ n,

where β = (δ − 1/4)−1.

For the Minkowski reduction, we have

λ2
m ≤ ‖g′m‖2 ≤ max

{
1,

(
5

4

)n−4
}
λ2
m, for 1 ≤ m ≤ n.

For the HKZ reduction, we have

4λ2
m

m+ 3
≤ ‖g′m‖2 ≤

(m+ 3)λ2
m

4
, for 1 ≤ m ≤ n.

Lattice Coding III: Applications Amin Sakzad



Sphere Decoder Algorithm Lattice Reduction Algorithms Integer-Forcing Linear Receiver Lattice-based Cryptography

Definitions

Properties

The m-th row vector in G′ is upper bounded by a scaled version of
the m-th successive minima of Λ.

For CLLL reduction, we have

β1−mλ2
m ≤ ‖g′m‖2 ≤ βn−1λ2

m, for 1 ≤ m ≤ n,

where β = (δ − 1/4)−1.

For the Minkowski reduction, we have

λ2
m ≤ ‖g′m‖2 ≤ max

{
1,

(
5

4

)n−4
}
λ2
m, for 1 ≤ m ≤ n.

For the HKZ reduction, we have

4λ2
m

m+ 3
≤ ‖g′m‖2 ≤

(m+ 3)λ2
m

4
, for 1 ≤ m ≤ n.

Lattice Coding III: Applications Amin Sakzad



Sphere Decoder Algorithm Lattice Reduction Algorithms Integer-Forcing Linear Receiver Lattice-based Cryptography

Definitions

Properties

The m-th row vector in G′ is upper bounded by a scaled version of
the m-th successive minima of Λ.

For CLLL reduction, we have

β1−mλ2
m ≤ ‖g′m‖2 ≤ βn−1λ2

m, for 1 ≤ m ≤ n,

where β = (δ − 1/4)−1.

For the Minkowski reduction, we have

λ2
m ≤ ‖g′m‖2 ≤ max

{
1,

(
5

4

)n−4
}
λ2
m, for 1 ≤ m ≤ n.

For the HKZ reduction, we have

4λ2
m

m+ 3
≤ ‖g′m‖2 ≤

(m+ 3)λ2
m

4
, for 1 ≤ m ≤ n.

Lattice Coding III: Applications Amin Sakzad



Sphere Decoder Algorithm Lattice Reduction Algorithms Integer-Forcing Linear Receiver Lattice-based Cryptography

One Example of Using Lattice Reduction
Algorithms
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Multiple-input Multiple-output Channel

MIMO Channel Model

We consider a flat-fading MIMO channel with n transmit
antennas and n receive antennas.

The channel matrix is denoted by G ∈ Cn×n, where the
entries of G are i.i.d. as CN (0, 1).

For 1 ≤ m ≤ n, the m-th layer is equipped with an encoder
E : Rk → CN which maps a message m ∈ Rk over the ring
R into a lattice codeword xm ∈ Λ ⊂ CN in the complex
space.
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Multiple-input Multiple-output Channel

If X denotes the matrix of transmitted vectors, the received
signal Y is given by

Yn×N =
√
PGn×nXn×N + Zn×N ,

where P = SNR
n and SNR denotes the average signal-to-noise

ratio at each receive antenna.

We assume that the entries of Z are i.i.d. as CN (0, 1).
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Multiple-input Multiple-output Channel

This model will be used in this section.

Lattice reductions can improve the performance of MIMO
channels if employed at either transmitters or receivers.

Lattice-reduction-aided MIMO detectors, Lattice reduction
precoders, etc.
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Problem statement

In order to uniquely recover the information symbols, the
matrix A must be invertible over the ring R. Thus, we have

Y′ = BY =
√
PBGX + BZ.

The goal is to project G (by left multiplying it with a receiver
filtering matrix B) onto a non-singular integer matrix A.

For the IF receiver formulation, a suitable signal model is

Y′ =
√
PAX +

√
P (BG−A)X + BZ,

where
√
PAX is the desired signal component, and the

effective noise is
√
P (BG−A)X + BZ.
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Problem statement

Problem Formulation

In particular, the effective noise power along the m-th row of Y′ is
defined as

g(am,bm) , ‖bm‖2 + P‖bmG− am‖2,

where am and bm denotes the m-th row of A and B, respectively.

Problem Given G and P , the problem is to find the matrices
B ∈ Cn×n and A ∈ Z[i]n×n such that:

The max1≤m≤n g(am,bm) is minimized, and

The corresponding matrix A is invertible over the ring R.

Lattice Coding III: Applications Amin Sakzad



Sphere Decoder Algorithm Lattice Reduction Algorithms Integer-Forcing Linear Receiver Lattice-based Cryptography

Problem statement

Problem Formulation

In particular, the effective noise power along the m-th row of Y′ is
defined as

g(am,bm) , ‖bm‖2 + P‖bmG− am‖2,

where am and bm denotes the m-th row of A and B, respectively.

Problem Given G and P , the problem is to find the matrices
B ∈ Cn×n and A ∈ Z[i]n×n such that:

The max1≤m≤n g(am,bm) is minimized, and

The corresponding matrix A is invertible over the ring R.

Lattice Coding III: Applications Amin Sakzad



Sphere Decoder Algorithm Lattice Reduction Algorithms Integer-Forcing Linear Receiver Lattice-based Cryptography

Integer-Forcing

IF Receiver

Given a, the optimum value of bm can be obtained as

bm = aGhS−1.

Then, after replacing bm in g(a,bm), we get

am = arg min
a∈Z[i]n

aVDVhah,

where V is the matrix composed of the eigenvectors of GGh,
and D is a diagonal matrix with m-th entry
Dm,m =

(
Pρ2

m + 1
)−1

, where ρm is the m-th singular value
of G.
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IF Receiver
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Integer-Forcing

IF Receiver; Continued

With this, we have to obtain n vectors am, 1 ≤ m ≤ n, which
result in the first n smaller values of aVDVhah along with
the non-singular property on A.

The minimization problem is the shortest vector problem for a
lattice with Gram matrix M = VDVh.

Since M is a positive definite matrix, we can write M = LLh

for some L ∈ Cn×n by using Choelsky decomposition.

With this, the rows of L = VD
1
2 generate a lattice, say Λ.

A set of possible choices for {a1, . . . ,an} is the set of complex
integer vectors, whose corresponding lattice points in Λ have
lengths at most equal to the n-th successive minima of Λ.
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The Proposed Algorithm

The two well-known lattice reduction algorithms satisfying the
above property up to constants are HKZ and Minkowski lattice
reduction algorithms.

Input: G ∈ Cn×n, and P .
Output: A unimodular matrix A.

1 Form the generator matrix L = VD
1
2 of a lattice Λ.

2 Reduce L to L′ using either HKZ or Minkowski lattice
reduction algorithm.

3 The n rows of L′L−1 provide n rows am of A for 1 ≤ m ≤ n.
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Receive Diversity

Theorem (Sakzad’13)

For a MIMO channel with n transmit and n receive antennas over
a Rayleigh fading channel, the integer-forcing linear receiver based
on lattice reduction achieves full receive diversity.
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Performance against exhaustive search

5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR in dB

C
od

ed
−

B
lo

ck
 E

rr
or

 R
at

e

 

 
ML
IF Brute Force
IF−Minkowski
IF−HKZ
MMSE

Lattice Coding III: Applications Amin Sakzad



Sphere Decoder Algorithm Lattice Reduction Algorithms Integer-Forcing Linear Receiver Lattice-based Cryptography

A toy example from Cryptography
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GGH public-key cryptosystem

Public and private keys

1 GGH involves a private key and a public key.

2 The private key of user j is a generator matrix Gj of a lattice
Λ with “nearly orthogonal” basis vectors and a unimodular
matrix Uj , for j ∈ {a, b}.

3 The public key of user j is G′j = UjGj , which is another
generator matrix of the lattice Λ.

4 Security parameters are n and σ.

5 Works based on the hardness of closest vector problem (CVP).
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GGH public-key cryptosystem

Description

1 Alice wants to send a message m to Bob.

2 She uses Bob’s public key G′b and encrypts m to

c = mG′b + e,

where e ∈ {±σ}n.

3 Bob employs U and G to decrypt c as follows. Bob first
computes

cG−1
b = mG′bG

−1
b + eG−1

b = mUb + eG−1
b ,

then
bcG−1

b eU
−1
b = mUbU

−1
b = m.
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GGH public-key cryptosystem

1 Various attacks have been proposed. Almost dead!

2 NTRU is a special instance of GGH using a circulant matrix
for the public key.

3 Increase the dimension of the lattice up to 1000.

4 One very famous attack on these cryptosystems is lattice
reduction algorithms.
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GGH public-key cryptosystem

Thanks for your attention!
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