Massive MIMO Physical Layer Cryptosystem through Inverse Precoding

Amin Sakzad Clayton School of IT Monash University amin.sakzad@monash.edu

> Joint work with Ron Steinfeld

October 2015

- 1 Background and Problem Statement
- 2 Zero-Forcing (ZF) attack and its Advantage Ratio
- Inverse Precoding
- 4 Conclusions

 We consider a slow-fading MIMO wiretap channel model as follows:

Figure: The block diagram of a MIMO wiretap channel.

• The $n_r \times n_t$ real-valued MIMO channel from user A to user B is denoted by **H**.

- The $n_r \times n_t$ real-valued MIMO channel from user A to user B is denoted by **H**.
- We also denote the channel from A to the adversary E by an $n'_r \times n_t$ matrix ${\bf G}$.

- The $n_r \times n_t$ real-valued MIMO channel from user A to user B is denoted by **H**.
- We also denote the channel from A to the adversary E by an $n'_r \times n_t$ matrix **G**.
- The entries of \mathbf{H} and \mathbf{G} are identically and independently distributed (i.i.d.) based on a Gaussian distribution \mathcal{N}_1 . This model can be written as:

$$\left\{ \begin{array}{l} \mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{e}, \\ \mathbf{y}' = \mathbf{G}\mathbf{x} + \mathbf{e}'. \end{array} \right.$$

• The entries x_i of $\mathbf{x} \in \mathbb{R}^{n_t}$, for $1 \le i \le n_t$, are drawn from a constellation $\mathcal{X} = \{0, 1, \dots, m-1\}$ for an integer m.

- The entries x_i of $\mathbf{x} \in \mathbb{R}^{n_t}$, for $1 \le i \le n_t$, are drawn from a constellation $\mathcal{X} = \{0, 1, \dots, m-1\}$ for an integer m.
- The components of the noise vectors ${\bf e}$ and ${\bf e}'$ are i.i.d. based on Gaussian distributions ${\cal N}_{m^2\alpha^2}$ and ${\cal N}_{m^2\beta^2}$, respectively. We assume $\alpha=\beta$.

- The entries x_i of $\mathbf{x} \in \mathbb{R}^{n_t}$, for $1 \le i \le n_t$, are drawn from a constellation $\mathcal{X} = \{0, 1, \dots, m-1\}$ for an integer m.
- The components of the noise vectors ${\bf e}$ and ${\bf e}'$ are i.i.d. based on Gaussian distributions ${\cal N}_{m^2\alpha^2}$ and ${\cal N}_{m^2\beta^2}$, respectively. We assume $\alpha=\beta$.
- The channel state information (CSI) is available at all the transmitter and receivers.

ullet To send a message ${\bf x}$ to ${\bf B}$, user ${\bf A}$ performs a singular value decomposition (SVD) precoding.

- ullet To send a message ${\bf x}$ to ${\bf B}$, user ${\bf A}$ performs a singular value decomposition (SVD) precoding.
- Let SVD of \mathbf{H} be given as $\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^t$. The user \mathbf{A} transmits $\mathbf{V} \mathbf{x}$ instead of \mathbf{x} and \mathbf{B} applies a filter matrix \mathbf{U}^t to the received vector \mathbf{y} .

- ullet To send a message ${\bf x}$ to ${\bf B}$, user ${\bf A}$ performs a singular value decomposition (SVD) precoding.
- Let SVD of \mathbf{H} be given as $\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^t$. The user A transmits $\mathbf{V} \mathbf{x}$ instead of \mathbf{x} and B applies a filter matrix \mathbf{U}^t to the received vector \mathbf{y} .
- ullet With this, the received vectors at B and E are as follows:

$$\left\{ \begin{array}{l} \tilde{\mathbf{y}} = \mathbf{\Sigma}\mathbf{x} + \tilde{\mathbf{e}}, \\ \mathbf{y}' = \mathbf{G}\mathbf{V}\mathbf{x} + \mathbf{e}', \end{array} \right.$$

where $\tilde{\mathbf{e}} = \mathbf{U}^t \mathbf{e}$.

• Since $\Sigma = \text{diag}(\sigma_1(\mathbf{H}), \dots, \sigma_{n_t}(\mathbf{H}))$ is diagonal, user B recovers an estimate \tilde{x}_i of x_i as follows:

$$\tilde{x}_i = \lceil \tilde{y}_i / \sigma_i(\mathbf{H}) \rfloor = x_i + \lceil \tilde{e}_i / \sigma_i(\mathbf{H}) \rfloor.$$

• Since $\Sigma = \text{diag}(\sigma_1(\mathbf{H}), \dots, \sigma_{n_t}(\mathbf{H}))$ is diagonal, user B recovers an estimate \tilde{x}_i of x_i as follows:

$$\tilde{x}_i = \lceil \tilde{y}_i / \sigma_i(\mathbf{H}) \rfloor = x_i + \lceil \tilde{e}_i / \sigma_i(\mathbf{H}) \rfloor.$$

• The decoding process succeeds if $|\tilde{e}_i| < |\sigma_i(\mathbf{H})|/2$ for all $1 \le i \le n_t$.

• Since $\Sigma = \text{diag}(\sigma_1(\mathbf{H}), \dots, \sigma_{n_t}(\mathbf{H}))$ is diagonal, user B recovers an estimate \tilde{x}_i of x_i as follows:

$$\tilde{x}_i = \lceil \tilde{y}_i / \sigma_i(\mathbf{H}) \rfloor = x_i + \lceil \tilde{e}_i / \sigma_i(\mathbf{H}) \rfloor.$$

- The decoding process succeeds if $|\tilde{e}_i| < |\sigma_i(\mathbf{H})|/2$ for all $1 \le i \le n_t$.
- Let $\mathbb{P}[B|\mathbf{H}]$ be the probability that B incorrectly decodes \mathbf{x} :

$$\mathbb{P}[\mathbf{B}|\mathbf{H}] \leq n_t \mathbb{P}_{w \leftarrow \mathcal{N}_{m^2 \alpha^2}} [|w| < |\sigma_{n_t}(\mathbf{H})|/2]$$

$$= n_t \mathbb{P}_{w \leftarrow \mathcal{N}_1} [|w| < |\sigma_{n_t}(\mathbf{H})|/(2m\alpha)]$$

$$\leq n_t \exp\left((-|\sigma_{n_t}(\mathbf{H})|^2)/(8m^2\alpha^2)\right),$$

• Since $\Sigma = \text{diag}(\sigma_1(\mathbf{H}), \dots, \sigma_{n_t}(\mathbf{H}))$ is diagonal, user B recovers an estimate \tilde{x}_i of x_i as follows:

$$\tilde{x}_i = \lceil \tilde{y}_i / \sigma_i(\mathbf{H}) \rfloor = x_i + \lceil \tilde{e}_i / \sigma_i(\mathbf{H}) \rfloor.$$

- The decoding process succeeds if $|\tilde{e}_i| < |\sigma_i(\mathbf{H})|/2$ for all $1 \le i \le n_t$.
- Let $\mathbb{P}[B|\mathbf{H}]$ be the probability that B incorrectly decodes \mathbf{x} :

$$\mathbb{P}\left[\mathbf{B}|\mathbf{H}\right] \leq n_t \mathbb{P}_{w \leftarrow \mathcal{N}_{m^2 \alpha^2}} \left[|w| < |\sigma_{n_t}(\mathbf{H})|/2\right] \\
= n_t \mathbb{P}_{w \leftarrow \mathcal{N}_1} \left[|w| < |\sigma_{n_t}(\mathbf{H})|/(2m\alpha)\right] \\
\leq n_t \exp\left((-|\sigma_{n_t}(\mathbf{H})|^2)/(8m^2\alpha^2)\right),$$

• By choosing parameters like $m^2\alpha^2 \le |\sigma_{n_t}(\mathbf{H})|^2/8\log(n_t/\varepsilon)$, one can ensure that B is less than any $\varepsilon > 0$.

• MIMO – Search problem: Recovering \mathbf{x} from $\mathbf{y}' = \mathbf{G}_v \mathbf{x} + \mathbf{e}'$ and \mathbf{G}_v , with non-negligible probability, under certain parameter settings, upon using massive MIMO systems with large number of transmit antennas n_t .

- MIMO Search problem: Recovering \mathbf{x} from $\mathbf{y}' = \mathbf{G}_v \mathbf{x} + \mathbf{e}'$ and \mathbf{G}_v , with non-negligible probability, under certain parameter settings, upon using massive MIMO systems with large number of transmit antennas n_t .
- We say that the MIMO Search problem is *hard* (secure) if any attack algorithm against MIMO Search with run-time $\operatorname{poly}(n_t)$ has negligible success probability $n_t^{-\omega(1)}$.

• A polynomial-time complexity reduction is claimed from worst-case instances of the $\mathsf{GapSVP}_{n_t/\alpha}$ in lattices of dimension n_t , to the MIMO — Search problem with n_t transmit antennas, noise parameter α and constellation size m, assuming the following minimum noise level holds:

$$m\alpha > \sqrt{n_t}$$
. (1)

• A polynomial-time complexity reduction is claimed from worst-case instances of the $\mathsf{GapSVP}_{n_t/\alpha}$ in lattices of dimension n_t , to the MIMO — Search problem with n_t transmit antennas, noise parameter α and constellation size m, assuming the following minimum noise level holds:

$$m\alpha > \sqrt{n_t}$$
. (1)

 The above cryptosystem is called the Massive MIMO Physical Layer Cryptosystem (MM – PLC).

 We show that the eavesdropper can decrypt the information data under the same condition as the legitimate receiver.

- We show that the eavesdropper can decrypt the information data under the same condition as the legitimate receiver.
- We study the signal-to-noise advantage ratio for a more generalized scheme with an arbitrary precoder and show that if $n'_r \gg n_t$, then there is no such an advantage.

- We show that the eavesdropper can decrypt the information data under the same condition as the legitimate receiver.
- We study the signal-to-noise advantage ratio for a more generalized scheme with an arbitrary precoder and show that if $n'_r \gg n_t$, then there is no such an advantage.
- On the positive side, for the case $n'_r = n_t$, we give an $\mathcal{O}\left(n^2\right)$ upper bound on the advantage and show that this bound can be approached using an inverse precoder.

- We show that the eavesdropper can decrypt the information data under the same condition as the legitimate receiver.
- We study the signal-to-noise advantage ratio for a more generalized scheme with an arbitrary precoder and show that if $n_r' \gg n_t$, then there is no such an advantage.
- On the positive side, for the case $n'_r = n_t$, we give an $\mathcal{O}\left(n^2\right)$ upper bound on the advantage and show that this bound can be approached using an inverse precoder.
- We give a lower bound on the decoding advantage ratio of the legitimate user over an eavesdropper who is equipped with a non-linear successive interference cancelation (SIC) stronger than linear receivers.

Zero-Forcing (ZF) attack

• The eavesdropper E receives $\mathbf{y}' = \mathbf{G}_v \mathbf{x} + \mathbf{e}'$. Replacing the SVD, we get $\mathbf{y}' = \mathbf{U}' \mathbf{\Sigma}' (\mathbf{V}')^t \mathbf{x} + \mathbf{e}'$, where

$$\boldsymbol{\Sigma}' = \mathsf{diag}\left(\sigma_1(\mathbf{G}_v), \dots, \sigma_{n_t}(\mathbf{G}_v)\right) = \mathsf{diag}\left(\sigma_1(\mathbf{G}), \dots, \sigma_{n_t}(\mathbf{G})\right).$$

Zero-Forcing (ZF) attack

• The eavesdropper E receives $\mathbf{y}' = \mathbf{G}_v \mathbf{x} + \mathbf{e}'$. Replacing the SVD, we get $\mathbf{y}' = \mathbf{U}' \mathbf{\Sigma}' (\mathbf{V}')^t \mathbf{x} + \mathbf{e}'$, where

$$\Sigma' = \operatorname{diag}\left(\sigma_1(\mathbf{G}_v), \dots, \sigma_{n_t}(\mathbf{G}_v)\right) = \operatorname{diag}\left(\sigma_1(\mathbf{G}), \dots, \sigma_{n_t}(\mathbf{G})\right).$$

S(he) computes

$$\tilde{\mathbf{y}}' = (\mathbf{G}_v)^{-1} \mathbf{y}' = \mathbf{x} + \tilde{\mathbf{e}}', \tag{2}$$

where $\tilde{\mathbf{e}}' = \mathbf{V}'(\mathbf{\Sigma}')^{-1}(\mathbf{U}')^t \mathbf{e}'$. User E is now able to recover an estimate \tilde{x}_i' of x_i by rounding:

$$\tilde{x}_i' = \lceil \tilde{y}_i' \rfloor = \lceil x_i + \tilde{e}_i' \rfloor = x_i + \lceil \tilde{e}_i' \rfloor.$$

Analysis of ZF attack

Lemma

The components of $\tilde{\mathbf{e}}'$ in (2) are distributed as $\mathcal{N}_{\sigma_{\mathrm{E}}^2}$ with

$$\sigma_{\rm E}^2 \le \frac{m^2 \alpha^2}{\sigma_{n_*}^2(\mathbf{G})}.$$

The union bound

• The above explained ZF attack succeeds if $|\tilde{e}_i'| < 1/2$ for all $1 \le i \le n_t$.

The union bound

- The above explained ZF attack succeeds if $|\tilde{e}_i'| < 1/2$ for all $1 \le i \le n_t$.
- Let $\mathbb{P}_{\mathsf{ZF}}[E|\mathbf{G}]$ denotes the decoding error probability that E incorrectly recovers \mathbf{x} using ZF attack. Based on Lemma 1, we have

$$\mathbb{P}_{\mathsf{ZF}}\left[\mathbf{E}|\mathbf{G}\right] \leq n_{t}\mathbb{P}_{w \leftrightarrow \mathcal{N}_{\sigma_{\mathbf{E}}^{2}}}\left[\left|w\right| < \frac{1}{2}\right]$$

$$\leq n_{t}\mathbb{P}_{w \leftrightarrow \mathcal{N}_{1}}\left[\left|w\right| < \frac{\left|\sigma_{n_{t}}(\mathbf{G})\right|}{2m\alpha}\right]. \tag{3}$$

Distribution of the singular values

Theorem (Edelman89)

Let M be an $s \times t$ matrix with i.i.d. entries distributed as \mathcal{N}_1 . If s and t tend to infinity in such a way that s/t tends to a limit $y \in [1, \infty]$, then

$$\frac{\sigma_t^2(\mathbf{M})}{s} \to \left(1 - \frac{1}{\sqrt{y}}\right)^2 \tag{4}$$

and

$$\frac{\sigma_1^2(\mathbf{M})}{s} \to \left(1 + \frac{1}{\sqrt{y}}\right)^2,\tag{5}$$

almost surely.

Asymptotic probability of error

Theorem

Fix any real $\varepsilon, \varepsilon' > 0$, and $y' \in [1, \infty]$, and suppose that $n'_r/n_t \to y'$ as $n_t \to \infty$. Then, for all sufficiently large n_t , the probability $\mathbb{P}_{\mathsf{ZF}}[\mathsf{E}]$ that E incorrectly decodes the message \mathbf{x} using a ZF decoder is upper bounded by ε , if

$$m^2 \alpha^2 \le \frac{n_r' \left(\left(1 - \frac{1}{\sqrt{y'}} \right)^2 - \varepsilon' \right)}{8 \log \left(\frac{2n_t}{\varepsilon} \right)}.$$
 (6)

Advantage ratio

To analytically investigate the advantage of decoding at B over E, we define the following advantage ratio.

Definition

For fixed channel matrices H and G, the ratio

$$\mathsf{adv}_{\mathsf{ZF}} \triangleq \frac{\sigma_{n_t}^2(\mathbf{H})}{\sigma_{n_t}^2(\mathbf{G})},\tag{7}$$

is called the advantage of B over E under ZF attack.

Advantage ratio of SVD precoder with ZF attack

Theorem

Let $\mathbf{H}_{n_r \times n_t}$ be the channel between A and B and $\mathbf{G}_{n'_r \times n_t}$ be the channel between A and E, both with i.i.d. elements each with distribution \mathcal{N}_1 . Fix real $y,y' \in [1,\infty]$, and suppose that $n_r/n_t \to y$ and $n'_r/n_t \to y'$ as $n_t \to \infty$. Then, using a SVD precoding technique in MM – PLC, we have

$$adv_{\mathsf{ZF}}
ightarrow rac{\left(\sqrt{y}-1
ight)^2}{\left(\sqrt{y'}-1
ight)^2}$$

almost surely as $n_t \to \infty$.

General Precoder

ullet One may wonder whether a different precoding method (again, assumed known to E) than used above may provide a better advantage ratio for B over E.

General Precoder

- ullet One may wonder whether a different precoding method (again, assumed known to E) than used above may provide a better advantage ratio for B over E.
- Suppose that instead of sending $\tilde{\mathbf{x}} = \mathbf{V}\mathbf{x}$, user A precodes $\tilde{\mathbf{x}} = \mathbf{P}(\mathbf{H})\mathbf{x}$, where $\mathbf{P} = \mathbf{P}(\mathbf{H})$ is some other precoding matrix that depends on the channel matrix \mathbf{H} .

General Precoder

- ullet One may wonder whether a different precoding method (again, assumed known to E) than used above may provide a better advantage ratio for B over E.
- Suppose that instead of sending $\tilde{\mathbf{x}} = \mathbf{V}\mathbf{x}$, user A precodes $\tilde{\mathbf{x}} = \mathbf{P}(\mathbf{H})\mathbf{x}$, where $\mathbf{P} = \mathbf{P}(\mathbf{H})$ is some other precoding matrix that depends on the channel matrix \mathbf{H} .
- Therefore, in this general case, the advantage ratio of maximum noise power decodable by B to that decodable by E under a ZF attack at a given error probability generalizes from (7) to

$$\mathsf{adv}_{\mathsf{ZF}} \triangleq \frac{\sigma_{n_t}^2(\mathbf{HP})}{\sigma_{n_t}^2(\mathbf{GP})}.$$
 (8)

Advantage ratio of general precoder with ZF attack

Theorem

Let $\mathbf H$ and $\mathbf G$ be as in Theorem 5. Then we have $\mathsf{adv}_{\mathsf{ZF}} \leq \mathsf{advup}_{\mathsf{ZF}}.$ Furthermore, fix real $y,y' \in [1,\infty]$, and suppose that $n_r/n_t \to y$ and $n'_r/n_t \to y'$ as $n_t \to \infty$, so that $n'_r/n_r \to y'/y \triangleq \rho'$. Then, using a general precoding matrix $\mathbf P(\mathbf H)$ in $\mathsf{MM} - \mathsf{PLC}$, we have

$$advup_{\mathsf{ZF}}
ightarrow rac{\left(\sqrt{y}+1
ight)^2}{\left(\sqrt{y'}-1
ight)^2}$$

almost surely as $n_t \to \infty$. Hence, in the case $n'_r = n_r$ and $y' = y \to \infty$, we have advup_{ZF} $\to 1$. Moreover, if advup_{ZF} $\to c$ for some $c \ge 1$, then $\min(y', \rho') \le 9$.

Achievable Upper Bound on Advantage Ratio

Theorem (Edelman89)

Let M be a $t \times t$ matrix with i.i.d. entries distributed as \mathcal{N}_1 . The least singular value of M satisfies

$$\lim_{t \to \infty} \mathbb{P}\left[\sqrt{t}\sigma_t(\mathbf{M}) \ge x\right] = \exp\left(\frac{-x^2}{2} - x\right). \tag{9}$$

The upper bound

Theorem

Let $\varepsilon > 0$ be fixed, ${\bf H}$ and ${\bf G}$ be $n \times n$ matrices as in Proposition 5 with $n = n_t = n_r = n'_r$. Using a general precoder ${\bf P}({\bf H})$ to send the plain text ${\bf x}$, the maximum possible ${\rm adv}_{\sf ZF}$ that ${\bf B}$ can achieve over ${\bf E}$, is of order ${\cal O}\left(n^2\right)$, except with probability $\leq \varepsilon$.

Inverse Precoder Model

We have

$$\begin{cases} \tilde{\mathbf{y}} = \mathbf{I}_n \mathbf{x} + \tilde{\mathbf{e}}, \\ \mathbf{y}' = \mathbf{G} \mathbf{H}^{-1} \mathbf{x} + \mathbf{e}', \end{cases}$$

Inverse Precoder Model

We have

$$\begin{cases} \tilde{\mathbf{y}} = \mathbf{I}_n \mathbf{x} + \tilde{\mathbf{e}}, \\ \mathbf{y}' = \mathbf{G} \mathbf{H}^{-1} \mathbf{x} + \mathbf{e}', \end{cases}$$

• Note that, for the inverse precoder the advantage ratio (7) under ZF decoding algorithm at user E can be written as $1/\sigma_n^2 (\mathbf{G}\mathbf{H}^{-1})$.

Inverse Precoder Model

We have

$$\begin{cases} \tilde{\mathbf{y}} = \mathbf{I}_n \mathbf{x} + \tilde{\mathbf{e}}, \\ \mathbf{y}' = \mathbf{G} \mathbf{H}^{-1} \mathbf{x} + \mathbf{e}', \end{cases}$$

• Note that, for the inverse precoder the advantage ratio (7) under ZF decoding algorithm at user E can be written as $1/\sigma_n^2 (\mathbf{G}\mathbf{H}^{-1})$.

Distribution of quotient

Theorem

Let $\mathbf{Q} = \mathbf{G}\mathbf{H}^{-1}$, where \mathbf{H} and \mathbf{G} are two $n \times n$ real Gaussian matrices. The distribution of \mathbf{Q} is proportional to

$$\frac{1}{\det\left(\mathbf{I}_n + \mathbf{Q}\mathbf{Q}^t\right)^n}. (10)$$

Inverse Precoder achives maximum adv_{ZF}

Theorem

Let $\varepsilon>0$ be fixed, ${\bf H}$ and ${\bf G}$ be $n\times n$ Gaussian matrices as in Proposition 5 with $n=n_t=n_r=n_r'$. Using an inverse precoder ${\bf P}({\bf H})={\bf H}^{-1}$ to send the plain text ${\bf x}$, the decoding advantage with respect to zero-forcing attack adv_{ZF}, is at least $\frac{1}{4\log(1/\varepsilon)}\cdot \left(n^2+n\right)=\Omega\left(n^2\right)$, except with probability $\leq \varepsilon$, for sufficiently large n.

The exact probability for different orders of n

Figure: The amount of $\mathbb{P}[\mathsf{adv}_{\mathsf{ZF}} < G(n)]$ for different G(n).

adv_{ZF} for 1000 channel.

Figure: The advantage ratio (7) for 1000 square channels of size n=200 using inverse precoder.

$$\mathbb{P}\left[n^2\sigma_n^2 > x\right] \text{ for various } n$$

Figure: The numerical values of $\mathbb{P}\left[n^2\sigma_n^2>x\right]$ for different dimensions $n=10,\ 50,\ \mathrm{and}\ 100\ \mathrm{for}\ 10000\ \mathrm{square}$ channels of size $n=100\ \mathrm{using}$ inverse precoder.

 A lattice reduction algorithm is conducted first, and then a nearest plane algorithm is applied.

- A lattice reduction algorithm is conducted first, and then a nearest plane algorithm is applied.
- Let $\mathbf{G}\mathbf{H}^{-1} = \mathbf{Q} = \mathbf{O}\mathbf{R}$ be the QR decomposition of the equivalent channel. Then the received vector by user E equals $\mathbf{y}' = \mathbf{O}\mathbf{R}\mathbf{x} + \mathbf{e}'$.

- A lattice reduction algorithm is conducted first, and then a nearest plane algorithm is applied.
- Let $\mathbf{G}\mathbf{H}^{-1} = \mathbf{Q} = \mathbf{O}\mathbf{R}$ be the QR decomposition of the equivalent channel. Then the received vector by user E equals $\mathbf{y}' = \mathbf{O}\mathbf{R}\mathbf{x} + \mathbf{e}'$.
- ullet Upon receiving y', this user multiplies it by O^t . Hence, we get

$$\begin{cases} \tilde{\mathbf{y}} = \mathbf{I}_n \mathbf{x} + \tilde{\mathbf{e}}, \\ \mathbf{y}'' = \mathbf{R} \mathbf{x} + \mathbf{O}^t \mathbf{e}' = \mathbf{R} \mathbf{x} + \mathbf{e}'', \end{cases}$$

In SIC decoding framework, the last symbol is decoded first,
 i.e.

$$\tilde{x}'_n = \left\lfloor \frac{y''_n}{r_{nn}} \right\rfloor = x_n + \left\lfloor \frac{e''_n}{r_{nn}} \right\rfloor$$

is an estimate for x_n .

In SIC decoding framework, the last symbol is decoded first,
 i.e.

$$\tilde{x}'_n = \left\lfloor \frac{y''_n}{r_{nn}} \right\rceil = x_n + \left\lfloor \frac{e''_n}{r_{nn}} \right\rceil$$

is an estimate for x_n .

• The other symbols are approximated iteratively using

$$\tilde{x}_j' = \left\lfloor \frac{y_j'' - \sum_{k=j+1}^n r_{jk} \tilde{x}_k'}{r_{jj}} \right\rfloor,\,$$

for j from n-1 downward to 1.

In SIC decoding framework, the last symbol is decoded first,
 i.e.

$$\tilde{x}'_n = \left\lfloor \frac{y''_n}{r_{nn}} \right\rfloor = x_n + \left\lfloor \frac{e''_n}{r_{nn}} \right\rfloor$$

is an estimate for x_n .

The other symbols are approximated iteratively using

$$\tilde{x}_j' = \left\lfloor \frac{y_j'' - \sum_{k=j+1}^n r_{jk} \tilde{x}_k'}{r_{jj}} \right\rfloor,\,$$

for j from n-1 downward to 1.

• The above mentioned SIC finds the closest vector if the distance from input vector to the lattice is less than half the length of the shortest r_{jj}^2 , that is $\frac{r_{nn}^2}{2}$.

Advantage ratio under SIC

We define the following advantage ratio:

$$\mathsf{adv}_{\mathsf{SIC}} \triangleq \frac{r_{nn}^2(\mathbf{I})}{r_{nn}^2(\mathbf{Q})},\tag{11}$$

is called the advantage of B over E under SIC attack. Since $r_{nn}^2(\mathbf{I})=1$, the adv_{SIC} = $1/r_{nn}^2(\mathbf{Q})$.

Distribution of diagonal elements 1

Theorem

Let the matrices \mathbf{Q} , \mathbf{O} , and \mathbf{R} be as above. Then r_{jj}^2 are independently distributed as $B^{II}\left(\frac{n-j+1}{2},\frac{j}{2}\right)$, for $1 \leq j \leq n$.

A random variable v is said to have a beta distribution of the second type (beta prime distribution) $B^{II}(a,b)$ if it has the following probability density function

$$\frac{1}{\beta(a,b)}v^{a-1}(1+v)^{-(a+b)}, \quad v > 0,$$

where both a and b are non-negative and $\beta(a,b)$ is the beta function.

Distribution of diagonal elements 2

Figure: The numerical histogram and the theoretical p.d.f. of r_{jj}^2 for j=10 and 10000 square channels of size n=100 using inverse precoder.

Distribution of diagonal elements 3

Figure: The numerical histogram and the theoretical p.d.f. of r_{jj}^2 for j=50 and 10000 square channels of size n=100 using inverse precoder.

Adversary with SIC

Theorem

Let $\mathbf{H}_{n\times n}$ be the channel between A and B and $\mathbf{G}_{n\times n}$ be the channel between A and E, both with i.i.d. elements each with distribution \mathcal{N}_1 . Then, using an inverse precoding technique in $\mathsf{MM}-\mathsf{PLC}$, we have $\mathsf{adv}_{\mathsf{SIC}}=\mathcal{O}\left(n\right)$.

Numerical analysis of $\mathbb{P}\left[nr_{nn}^2(\mathbf{Q}) < x\right]$

Figure: The numerical values of $\mathbb{P}\left[nr_{nn}^2(\mathbf{Q}) < x\right]$ for different dimensions $n=10,\ 50,\$ and 100 for 10000 square channels of size n=100 using inverse precoder.

Conclusions

- A Zero-Forcing (ZF) attack has been presented for the massive multiple-input multiple-output MIMO physical layer cryptosystem (MM – PLC).
- A decoding advantage ratio has been defined and studied for ZF linear receiver.
- It has been shown that this advantage tends to 1 employing a singular value decomposition (SVD) precoding approach at the legitimate transmitter and a ZF linear receiver at the adversary.
- An advantage ratio in the order of n^2 is achievable if the legitimate user applies an inverse precoder.
- If eavesdropper employs a stronger decoder algorithm such as a successive interference cancellation (SIC), then the advantage ratio will be reduced to a constant fraction of n.

Background and Problem Statement Zero-Forcing (ZF) attack and its Advantage Ratio Inverse Precoding Conclusions

Thank you!