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MIMO Wiretap Channel 1

We consider a slow-fading MIMO wiretap channel model as
follows:

Figure: The block diagram of a MIMO wiretap channel.
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MIMO Wiretap Channel 2

The nr × nt real-valued MIMO channel from user A to user B
is denoted by H.

We also denote the channel from A to the adversary E by an
n′r × nt matrix G.

The entries of H and G are identically and independently
distributed (i.i.d.) based on a Gaussian distribution N1. This
model can be written as:{

y = Hx + e,
y′ = Gx + e′.
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Dean-Goldsmith Model 1

The entries xi of x ∈ Rnt , for 1 ≤ i ≤ nt, are drawn from a
constellation X = {0, 1, . . . ,m− 1} for an integer m.

The components of the noise vectors e and e′ are i.i.d. based
on Gaussian distributions Nm2α2 and Nm2β2 , respectively. We
assume α = β.

The channel state information (CSI) is available at all the
transmitter and receivers.

Amin Sakzad Massive MIMO Physical Layer Cryptosystem through Inverse Precoding



Background and Problem Statement
Zero-Forcing (ZF) attack and its Advantage Ratio

Inverse Precoding
Conclusions

Dean-Goldsmith Model 1

The entries xi of x ∈ Rnt , for 1 ≤ i ≤ nt, are drawn from a
constellation X = {0, 1, . . . ,m− 1} for an integer m.

The components of the noise vectors e and e′ are i.i.d. based
on Gaussian distributions Nm2α2 and Nm2β2 , respectively. We
assume α = β.

The channel state information (CSI) is available at all the
transmitter and receivers.

Amin Sakzad Massive MIMO Physical Layer Cryptosystem through Inverse Precoding



Background and Problem Statement
Zero-Forcing (ZF) attack and its Advantage Ratio

Inverse Precoding
Conclusions

Dean-Goldsmith Model 1

The entries xi of x ∈ Rnt , for 1 ≤ i ≤ nt, are drawn from a
constellation X = {0, 1, . . . ,m− 1} for an integer m.

The components of the noise vectors e and e′ are i.i.d. based
on Gaussian distributions Nm2α2 and Nm2β2 , respectively. We
assume α = β.

The channel state information (CSI) is available at all the
transmitter and receivers.

Amin Sakzad Massive MIMO Physical Layer Cryptosystem through Inverse Precoding



Background and Problem Statement
Zero-Forcing (ZF) attack and its Advantage Ratio

Inverse Precoding
Conclusions

Dean-Goldsmith Model 2

To send a message x to B, user A performs a singular value
decomposition (SVD) precoding.

Let SVD of H be given as H = UΣVt. The user A transmits
Vx instead of x and B applies a filter matrix Ut to the
received vector y.

With this, the received vectors at B and E are as follows:{
ỹ = Σx + ẽ,
y′ = GVx + e′,

where ẽ = Ute.
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Correctness Condition for Dean-Goldsmith Cryptosystem

Since Σ = diag(σ1(H), . . . , σnt(H)) is diagonal, user B
recovers an estimate x̃i of xi as follows:

x̃i = dỹi/σi(H)c = xi + dẽi/σi(H)c .

The decoding process succeeds if |ẽi| < |σi(H)|/2 for all
1 ≤ i ≤ nt.
Let P [B|H] be the probability that B incorrectly decodes x:

P [B|H] ≤ ntPw←↩Nm2α2
[|w| < |σnt(H)|/2]

= ntPw←↩N1 [|w| < |σnt(H)|/(2mα)]

≤ nt exp
(
(−|σnt(H)|2)/(8m2α2)

)
,

By choosing parameters like m2α2≤|σnt(H)|2/8 log(nt/ε),
one can ensure that B is less than any ε > 0.
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The decoding process succeeds if |ẽi| < |σi(H)|/2 for all
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Security Condition for Dean-Goldsmith Cryptosystem 1

MIMO− Search problem: Recovering x from y′ = Gvx + e′

and Gv, with non-negligible probability, under certain
parameter settings, upon using massive MIMO systems with
large number of transmit antennas nt.

We say that the MIMO− Search problem is hard (secure) if
any attack algorithm against MIMO− Search with run-time

poly(nt) has negligible success probability n
−ω(1)
t .
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Security Condition for Dean-Goldsmith Cryptosystem 2

A polynomial-time complexity reduction is claimed from
worst-case instances of the GapSVPnt/α in lattices of
dimension nt, to the MIMO− Search problem with nt
transmit antennas, noise parameter α and constellation size
m, assuming the following minimum noise level holds:

mα >
√
nt. (1)

The above cryptosystem is called the Massive MIMO Physical
Layer Cryptosystem (MM− PLC).
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Our Contributions

We show that the eavesdropper can decrypt the information
data under the same condition as the legitimate receiver.

We study the signal-to-noise advantage ratio for a more
generalized scheme with an arbitrary precoder and show that
if n′r � nt, then there is no such an advantage.

On the positive side, for the case n′r = nt, we give an O
(
n2
)

upper bound on the advantage and show that this bound can
be approached using an inverse precoder.

We give a lower bound on the decoding advantage ratio of the
legitimate user over an eavesdropper who is equipped with a
non-linear successive interference cancelation (SIC) stronger
than linear receivers.
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Zero-Forcing (ZF) attack

The eavesdropper E receives y′ = Gvx + e′. Replacing the
SVD, we get y′ = U′Σ′(V′)tx + e′, where

Σ′ = diag (σ1(Gv), . . . , σnt(Gv)) = diag (σ1(G), . . . , σnt(G)) .

S(he) computes

ỹ′ = (Gv)
−1y′ = x + ẽ′, (2)

where ẽ′ = V′(Σ′)−1(U′)te′. User E is now able to recover
an estimate x̃′i of xi by rounding:
x̃′i = dỹ′ic = dxi + ẽ′ic = xi + dẽ′ic.
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Analysis of ZF attack

Lemma

The components of ẽ′ in (2) are distributed as Nσ2
E

with

σ2E ≤
m2α2

σ2nt(G)
.
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The union bound

The above explained ZF attack succeeds if |ẽ′i| < 1/2 for all
1 ≤ i ≤ nt.

Let PZF [E|G] denotes the decoding error probability that E
incorrectly recovers x using ZF attack. Based on Lemma 1,
we have

PZF [E|G] ≤ ntPw←↩N
σ2
E

[
|w| < 1

2

]
≤ ntPw←↩N1

[
|w| < |σnt(G)|

2mα

]
. (3)
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Distribution of the singular values

Theorem (Edelman89)

Let M be an s× t matrix with i.i.d. entries distributed as N1. If
s and t tend to infinity in such a way that s/t tends to a limit
y ∈ [1,∞], then

σ2t (M)

s
→
(

1− 1
√
y

)2

(4)

and
σ21(M)

s
→
(

1 +
1
√
y

)2

, (5)

almost surely.

Amin Sakzad Massive MIMO Physical Layer Cryptosystem through Inverse Precoding



Background and Problem Statement
Zero-Forcing (ZF) attack and its Advantage Ratio

Inverse Precoding
Conclusions

Asymptotic probability of error

Theorem

Fix any real ε, ε′ > 0, and y′ ∈ [1,∞], and suppose that
n′r/nt → y′ as nt →∞. Then, for all sufficiently large nt, the
probability PZF[E] that E incorrectly decodes the message x using
a ZF decoder is upper bounded by ε, if

m2α2 ≤
n′r

((
1− 1√

y′

)2
− ε′

)
8 log

(
2nt
ε

) . (6)
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Advantage ratio

To analytically investigate the advantage of decoding at B over E,
we define the following advantage ratio.

Definition

For fixed channel matrices H and G, the ratio

advZF ,
σ2nt(H)

σ2nt(G)
, (7)

is called the advantage of B over E under ZF attack.
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Advantage ratio of SVD precoder with ZF attack

Theorem

Let Hnr×nt be the channel between A and B and Gn′
r×nt be the

channel between A and E, both with i.i.d. elements each with
distribution N1. Fix real y, y′ ∈ [1,∞], and suppose that
nr/nt → y and n′r/nt → y′ as nt →∞. Then, using a SVD
precoding technique in MM− PLC, we have

advZF →
(√
y − 1

)2(√
y′ − 1

)2
almost surely as nt →∞.
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General Precoder

One may wonder whether a different precoding method
(again, assumed known to E) than used above may provide a
better advantage ratio for B over E.

Suppose that instead of sending x̃ = Vx, user A precodes
x̃ = P(H)x, where P = P(H) is some other precoding
matrix that depends on the channel matrix H.

Therefore, in this general case, the advantage ratio of
maximum noise power decodable by B to that decodable by E
under a ZF attack at a given error probability generalizes from
(7) to

advZF ,
σ2nt(HP)

σ2nt(GP)
. (8)
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Advantage ratio of general precoder with ZF attack

Theorem

Let H and G be as in Theorem 5. Then we have
advZF ≤ advupZF. Furthermore, fix real y, y′ ∈ [1,∞], and suppose
that nr/nt → y and n′r/nt → y′ as nt →∞, so that
n′r/nr → y′/y , ρ′. Then, using a general precoding matrix P(H)
in MM− PLC, we have

advupZF →
(√
y + 1

)2(√
y′ − 1

)2
almost surely as nt →∞. Hence, in the case n′r = nr and
y′ = y →∞, we have advupZF → 1. Moreover, if advupZF → c for
some c ≥ 1, then min(y′, ρ′) ≤ 9.
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Achievable Upper Bound on Advantage Ratio

Theorem (Edelman89)

Let M be a t× t matrix with i.i.d. entries distributed as N1. The
least singular value of M satisfies

lim
t→∞

P
[√

tσt(M) ≥ x
]

= exp

(
−x2

2
− x
)
. (9)
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The upper bound

Theorem

Let ε > 0 be fixed, H and G be n× n matrices as in
Proposition 5 with n = nt = nr = n′r. Using a general precoder
P(H) to send the plain text x, the maximum possible advZF that B
can achieve over E, is of order O

(
n2
)
, except with probability ≤ ε.
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Inverse Precoder Model

We have {
ỹ = Inx + ẽ,
y′ = GH−1x + e′,

Note that, for the inverse precoder the advantage ratio (7)
under ZF decoding algorithm at user E can be written as
1/σ2n

(
GH−1

)
.
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y′ = GH−1x + e′,

Note that, for the inverse precoder the advantage ratio (7)
under ZF decoding algorithm at user E can be written as
1/σ2n

(
GH−1

)
.

Amin Sakzad Massive MIMO Physical Layer Cryptosystem through Inverse Precoding



Background and Problem Statement
Zero-Forcing (ZF) attack and its Advantage Ratio

Inverse Precoding
Conclusions

Inverse Precoder Model

We have {
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Distribution of quotient

Theorem

Let Q = GH−1, where H and G are two n× n real Gaussian
matrices. The distribution of Q is proportional to

1

det (In + QQt)n
. (10)
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Inverse Precoder achives maximum advZF

Theorem

Let ε > 0 be fixed, H and G be n× n Gaussian matrices as in
Proposition 5 with n = nt = nr = n′r. Using an inverse precoder
P(H) = H−1 to send the plain text x, the decoding advantage
with respect to zero-forcing attack advZF, is at least

1
4 log(1/ε) ·

(
n2 + n

)
= Ω

(
n2
)
, except with probability ≤ ε, for

sufficiently large n.
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The exact probability for different orders of n
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Figure: The amount of P [advZF < G(n)] for different G(n).
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advZF for 1000 channel.
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Figure: The advantage ratio (7) for 1000 square channels of size
n = 200 using inverse precoder.
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P
[
n2σ2

n > x
]

for various n
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Figure: The numerical values of P
[
n2σ2

n > x
]

for different dimensions
n = 10, 50, and 100 for 10000 square channels of size n = 100 using
inverse precoder.
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Successive Interference Cancellation (SIC) 1

A lattice reduction algorithm is conducted first, and then a
nearest plane algorithm is applied.

Let GH−1 = Q = OR be the QR decomposition of the
equivalent channel. Then the received vector by user E equals
y′ = ORx + e′.

Upon receiving y′, this user multiplies it by Ot. Hence, we get{
ỹ = Inx + ẽ,
y′′ = Rx + Ote′ = Rx + e′′,
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Successive Interference Cancellation (SIC) 2

In SIC decoding framework, the last symbol is decoded first,
i.e.

x̃′n =

⌊
y′′n
rnn

⌉
= xn +

⌊
e′′n
rnn

⌉
is an estimate for xn.

The other symbols are approximated iteratively using

x̃′j =

⌊
y′′j −

∑n
k=j+1 rjkx̃

′
k

rjj

⌉
,

for j from n− 1 downward to 1.

The above mentioned SIC finds the closest vector if the
distance from input vector to the lattice is less than half the

length of the shortest r2jj , that is r2nn
2 .
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Advantage ratio under SIC

We define the following advantage ratio:

advSIC ,
r2nn(I)

r2nn(Q)
, (11)

is called the advantage of B over E under SIC attack. Since
r2nn(I) = 1, the advSIC = 1/r2nn(Q).
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Distribution of diagonal elements 1

Theorem

Let the matrices Q, O, and R be as above. Then r2jj are

independently distributed as BII
(
n−j+1

2 , j2

)
, for 1 ≤ j ≤ n.

A random variable v is said to have a beta distribution of the
second type (beta prime distribution) BII(a, b) if it has the
following probability density function

1

β(a, b)
va−1(1 + v)−(a+b), v > 0,

where both a and b are non-negative and β(a, b) is the beta
function.
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Distribution of diagonal elements 2
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Figure: The numerical histogram and the theoretical p.d.f. of r2jj for
j = 10 and 10000 square channels of size n = 100 using inverse precoder.

Amin Sakzad Massive MIMO Physical Layer Cryptosystem through Inverse Precoding



Background and Problem Statement
Zero-Forcing (ZF) attack and its Advantage Ratio

Inverse Precoding
Conclusions

Distribution of diagonal elements 3
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Figure: The numerical histogram and the theoretical p.d.f. of r2jj for
j = 50 and 10000 square channels of size n = 100 using inverse precoder.
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Adversary with SIC

Theorem

Let Hn×n be the channel between A and B and Gn×n be the
channel between A and E, both with i.i.d. elements each with
distribution N1. Then, using an inverse precoding technique in
MM− PLC, we have advSIC = O (n).
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Numerical analysis of P
[
nr2

nn(Q) < x
]
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Figure: The numerical values of P
[
nr2nn(Q) < x

]
for different

dimensions n = 10, 50, and 100 for 10000 square channels of size
n = 100 using inverse precoder.
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Conclusions

A Zero-Forcing (ZF) attack has been presented for the
massive multiple-input multiple-output MIMO physical layer
cryptosystem (MM− PLC).

A decoding advantage ratio has been defined and studied for
ZF linear receiver.

It has been shown that this advantage tends to 1 employing a
singular value decomposition (SVD) precoding approach at
the legitimate transmitter and a ZF linear receiver at the
adversary.

An advantage ratio in the order of n2 is achievable if the
legitimate user applies an inverse precoder.

If eavesdropper employs a stronger decoder algorithm such as
a successive interference cancellation (SIC), then the
advantage ratio will be reduced to a constant fraction of n.
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Thank you!
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