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Flow Shop Scheduling

I There are m machines and n jobs.

I Each job contains exactly m operations.

I For each operation of each job a processing time is specified.

I No machine can perform more than one operation
simultaneously.

I Operations cannot be interrupted (no preemption).
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Flow Shop Scheduling

I Operations within one job must be performed in the specified
order.

I The first operation gets executed on the first machine, then
(as the first operation is finished) the second operation on the
second machine, and so until the m-th operation.

I Jobs can be executed in any order.

I The problem is to determine an optimal arrangement of
jobs.
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Flow Shop Scheduling – Example

j J1 J2 J3 J4

p1,j 2 4 5 1

p2,j 3 4 2 1

p3,j 4 2 1 1

Time

Machine

Makespan

p14 p11 p12 p13

p21 p22 p23 p24

p31 p32 p33 p34

M1

M2

M3
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Problem Description

I We consider flow shop scheduling problems with (machine)
no-idle, (job) no-wait constraints and makespan as objective.

I Machine no-idle constraint: use of very expensive
equipment with the fee determined by the actual time
consumption.

I Job no-wait constraint: in metal-processing industries (e.g.,
hot rolling) where delays between operations interfere with the
technological process (e.g., cooling down).

I We focus on problem F2| no-idle, no-wait |Cmax.
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Literature

I Problem F2||Cmax (Johnson rule O(nlogn)) ∈ P.

I Problem F2| no-idle |Cmax (trivially packing the jobs on the
second machine to the right from Johnson’s schedule) ∈ P.

I Problem F2| no-wait |Cmax (special case of Gilmore-Gomory
TSP) ∈ P.

I Problem F3||Cmax is NP-hard.
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Literature

I Problem F2| no-wait |G (minimizing the number of
interruptions on the last machine in a 2-machine no-wait flow
shop) is solvable in O(n2) time (Hohn et al. 2012).

I Problem F3| no-wait |G is NP-hard. (Hohn et al. 2012).

I Problems F2||
∑

Cj , F2| no-wait |
∑

Cj , F2| no-idle |
∑

Cj ,
F2| no-idle, no-wait |

∑
Cj are NP-hard (Adiri and Pohoryles

1982).
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F2| no-idle, no-wait |Cmax

I Two Machines M1, M2.

I Flow Shop environment.

I n jobs 1, 2, . . . , n with processing times p1j and p2j .

I No-idle time is allowed (both machines M1,M2 must work
continuously).

I No-wait discipline (no buffer — each job must start on M2

right after its completion on M1).

I Makespan (i.e. total time that elapses from the beginning to
the end) objective.
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F2| no-idle, no-wait |Cmax

I The no-idle, no-wait constraint is a very strong requirement.

Machine

p1[1] p1[2] p1[3] p14

p2[1] p2[2] p2[3] p2[4]

M1

M2

C1[1] C1[2] C1[3]C1[4]

C2[1] C2[2]C2[3] C2[4]

I pi [j] denotes the processing time of the j-th job of a sequence
σ on machine Mi .

I Ci [j] denotes the completion time of the j-th job of a sequence
σ on machine Mi .
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F2| no-idle, no-wait |Cmax

Lemma (1)

(C1) A necessary condition to have a feasible solution for problem
F2|no − idle, no − wait|Cmax is that there always exists an
indexing of the jobs so that p1,2, ...p1,n and p2,1, ..., p2,n−1

constitute different permutations of the same vector of
elements.

j J1 J2 J3 J4 J5

p1,j 5 8 7 6 7

p2,j 8 5 6 7 7
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(C1) A necessary condition to have a feasible solution for problem
F2|no − idle, no − wait|Cmax is that there always exists an
indexing of the jobs so that p1,2, ...p1,n and p2,1, ..., p2,n−1

constitute different permutations of the same vector of
elements.

(C2) When the above condition (C1) holds, then

Case 1 if p1,1 6= p2,n, every feasible sequence must have a job with
processing time p1,1 in first position and a job with processing
time p2,n in last position.

Case 2 if p1,1 = p2,n and there exists a feasible sequence, then there do
exist at least n feasible sequences each starting with a different
job by simply rotating the starting sequence as in a cycle.
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F2| no-idle, no-wait |Cmax

Lemma (2)

The makespan of any feasible sequence σ is given by the processing
time of the last (first) job on the second (first) machine plus the
sum of jobs processing times on the first (second) machine.

Machine

p1[1] p1[2] p1[3] p14

p2[1] p2[2] p2[3] p2[4]

M1

M2

C1[1] C1[2] C1[3]C1[4]

C2[1] C2[2]C2[3] C2[4]
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F2| no-idle, no-wait |Cmax: an example

A 9-job instance of problem F2|no − idle, no − wait|Cmax.

j J1 J2 J3 J4 J5 J6 J7 J8 J9

p1,j 5 3 4 6 1 5 3 2 4

p2,j 3 4 6 1 5 3 2 4 5

and the corresponding optimal solution Cmax = 34

p16 p17 p18 p19 p11 p12 p13 p14

p25 p26 p27 p28 p29 p21 p22 p23

M1

M2

4 8 12 16 20 24 28 32 34

p15

p24
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F2| no-idle, no-wait |Cmax

I Due to Lemma 1 and F2|no − idle, no − wait|G problem, the
optimal solution can be calculated in O(n2) time...

...but...

I ...we decided to link the problem to the game of dominoes
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Dominoes

I The Single Player Domino (SPD) problem (where a single
player tries to lay down all dominoes in a chain with the
numbers matching at each adjacency) is polynomially
solvable: it can be seen as a eulerian path problem on an
undirected multigraph.

I Here, we refer to the oriented version of SPD called OSPD
where all dominoes have an orientation (given a tile with
numbers i and j , only the orientation i → j is allowed but not
viceversa).

I Problem OSPD is polynomially solvable (can be seen as a
eulerian path problem on a directed multigraph).
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Problem F2|no − idle, no − wait|Cmax vs OSPD

Proposition

F2|no − idle, no − wait|Cmax ∝ OSPD.

Proof.
By generating for each job Jj a related domino tile {p1,j , p2,j}, any
complete sequence of oriented dominoes in OSPD corresponds to a
feasible sequence for F2|no − idle, no − wait|Cmax. Then, due to
Lemma 1, the jobs processing times either respect case 1 or case 2
of condition C2.
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An example

A 9-job instance of problem F2|no − idle, no − wait|Cmax.

i J1 J2 J3 J4 J5 J6 J7 J8 J9

p1,j 5 3 4 6 1 5 3 2 4

p2,j 3 4 6 1 5 3 2 4 5

and the corresponding dominoes of the related
OSPD problem

J9

J8

J7

J6

J5

J4

J3

J2

J1
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j J1 J2 J3 J4 J5 J6 J7 J8 J9

p1,j 5 3 4 6 1 5 3 2 4

p2,j 3 4 6 1 5 3 2 4 5

and the corresponding OSPD solution

J8 J7 J6

J2 J3 J4

J9

J1

J5
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An example
A 9-job instance of problem F2|no − idle, no − wait|Cmax.

i J1 J2 J3 J4 J5 J6 J7 J8 J9

p1,i 5 3 4 6 1 5 3 2 4

p2,i 3 4 6 1 5 3 2 4 5

and the corresponding oriented multigraph

1

2 3

4

56

J1

J2

J3
J4

J5

J6

J7

J8

J9
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Complexity of F2| no-idle, no-wait |Cmax

Proposition

Problem F2|no − idle, no − wait|Cmax can be solved in O(n) time.

Proof.
[Sketch]: The generation of the oriented multigraph can be done
in linear time and the graph has O(n) arcs. Besides, it is known
(Fleischner 1991) that computing an Eulerian path in an oriented
graph with n arcs can be done in O(n) time.
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F2| no-idle, no-wait |Cmax vs the Hamiltonian Path
problem

I Problem F2|no − idle, no − wait|Cmax is also linked to a
special case of the Hamiltonian Path problem on a connected
digraph.

I Consider a digraph G (V ,A) that has the following property:
∀vi , vj ∈ V , either Si ∩ Sj = ∅, or Si = Sj where we denote by
Si the set of successors of vertex vi .

I In other words, each pair of vertices either has no common
successors or has all successors in common.

I We denote the Hamiltonian path problem in that graph as the
Common/Distinct Successors Hamiltonian Oriented Path
(CDSHOP∗) problem.
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F2| no-idle, no-wait |Cmax vs the Hamiltonian Path
problem

I F2|no − idle, no − wait|Cmax ∝ CDSHOP easily holds.

I The CDSHOP problem corresponding to the considered F2|
no-idle, no-wait |Cmax instance.

i p1,i p2,i

J1 5 3

J2 3 4

J3 4 6

J4 6 1

J5 1 5

J6 5 3

J7 3 2

J8 2 4

J9 4 5

5,3

J1

4,5
J9 3,4

J2

2,4J8 4,6 J3

3,2
J7

6,1
J4

5,3

J6

1,5

J5
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Complexity of CDSHOP

Proposition

CDSHOP ∝ F2|no − idle, no − wait|Cmax, hence, CDSHOP ∈ P.

Proof.
[Sketch]:

I For any instance of CDSHOP with n vertices, we generate an
instance of F2|no − idle, no − wait|Cmax with n jobs where, if
there is an arc from vi to vj , then, we have p2,i = p1,j .

I If a feasible sequence of F2|no − idle, no − wait|Cmax exists,
then, for each consecutive jobs Ji , Jj with Ji → Jj , p2,i = p1,j

holds. Hence, there is an arc from vi to vj . Thus, the
corresponding sequence of vertices in CDSHOP constitutes an
hamiltonian directed path.

I Conversely, if a path exists for CDSHOP, the related sequence
of jobs in F2|no − idle, no − wait|Cmax is also feasible.
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Problem F | no-idle, no-wait |Cmax

The no-idle, no-wait constraint on m machines.
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Problem F | no-idle, no-wait |Cmax

Lemma (3)

(C3) A necessary condition to have a feasible solution for problem
F |no − idle, no − wait|Cmax is that there always exists an
indexing of the jobs so that pj+1,1, ..., pj+1,n−1 and
pj ,2, ..., pj ,n, for j = 1, ...m − 1, constitute different
permutations of the same vector of elements.

(C4) When the above condition (C3) holds, then

Case 1 if (p1,1 6= p2,n or p2,1 6= p3,n or ... or pm−1,1 6= pm,n), every
feasible sequence must have a job with processing times
(p1,1, ..., pm−1,1) on machines 1 to (m− 1) in first position and
a job with processing time (p2,n, ..., pm,n) on machines 2 to m
in last position.

Case 2 if (p1,1 = p2,n and p2,1 = p3,n and ... and pm−1,1 = pm,n) and
there exists a feasible sequence, then there do exist at least n
feasible sequences each starting with a different job by simply
rotating the starting sequence as in a cycle.
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Problem F | no-idle, no-wait |Cmax

I We can evince that in an optimal sequence, if job Ji
immediately precedes job Jk , we have that
pj+1,i = pj ,k , ∀j = 1, ...,m − 1 holds.

I Then, for a feasible 3-job subsequence (`, i , k) we must have:

1. [p2,`; ...; pm,`] = [p1,i ; ...; pm−1,i ] and,
2. [p2,i ; ...; pm,i ] = [p1,k ; ...; pm−1,k ].

This can be represented in terms of vectorial dominoes as follows.
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Problem F | no-idle, no-wait |Cmax: an example
As an example, a 3-job instance on 4 machines of problem
F |no − idle, no − wait|Cmax.

i J1 J2 J3

p1,i 5 3 4

p2,i 3 4 9

p3,i 4 9 7

p4,i 9 7 2

induces the following vectorial dominoes

domino 1 →
5 3 4 3 4 9

domino 2 →
3 4 9 4 9 7

domino 3 →
4 9 7 9 7 2
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Problem F | no-idle, no-wait |Cmax

Proposition

Problem F |no − idle, no −wait|Cmax can be solved to optimality in
O(mnlog(n)) time.

Proof.
[Sketch]:
The result can be proved by showing that any instance of the
F |no − idle, no − wait|Cmax problem can be reduced in polynomial
time to a vectorial OSPD that is always solved by computing an
Eulerian path in an oriented graph with n arcs.
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Complexity of problems (J2,O2)| no-idle, no-wait |Cmax

I Job-shop (J) problem: operations of a job totally ordered

I Open-shop (O) problem: no ordering constraints on operations

Proposition

Problems J2|no − idle, no − wait|Cmax and
O2|no − idle, no − wait|Cmax are NP-hard in the strong sense.

Proof.
[Sketch of proof for problem J2|no − idle, no − wait|Cmax]:
We show that NMTS (Numerical Matching with Target Sums)
reduces to J2|no − idle, no − wait|Cmax.
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Thank You.
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