No-Idle, No-Wait:
 When Shop Scheduling Meets Dominoes, Eulerian and Hamiltonian Paths

J.C. Billaut ${ }^{1}$, F.Della Croce ${ }^{2}$, Fabio Salassa ${ }^{2}$, V. T'kindt ${ }^{1}$

1. Université Francois-Rabelais, CNRS, Tours, France
2. Politecnico di Torino, Torino, Italy

Monash University

Melbourne, February 19th, 2018

Flow Shop Scheduling

Flow Shop Scheduling

- There are m machines and n jobs.

Flow Shop Scheduling

- There are m machines and n jobs.
- Each job contains exactly m operations.

Flow Shop Scheduling

- There are m machines and n jobs.
- Each job contains exactly m operations.
- For each operation of each job a processing time is specified.

Flow Shop Scheduling

- There are m machines and n jobs.
- Each job contains exactly m operations.
- For each operation of each job a processing time is specified.
- No machine can perform more than one operation simultaneously.

Flow Shop Scheduling

- There are m machines and n jobs.
- Each job contains exactly m operations.
- For each operation of each job a processing time is specified.
- No machine can perform more than one operation simultaneously.
- Operations cannot be interrupted (no preemption).

Flow Shop Scheduling

- Operations within one job must be performed in the specified order.

Flow Shop Scheduling

- Operations within one job must be performed in the specified order.
- The first operation gets executed on the first machine, then (as the first operation is finished) the second operation on the second machine, and so until the m-th operation.

Flow Shop Scheduling

- Operations within one job must be performed in the specified order.
- The first operation gets executed on the first machine, then (as the first operation is finished) the second operation on the second machine, and so until the m-th operation.
- Jobs can be executed in any order.

Flow Shop Scheduling

- Operations within one job must be performed in the specified order.
- The first operation gets executed on the first machine, then (as the first operation is finished) the second operation on the second machine, and so until the m-th operation.
- Jobs can be executed in any order.
- The problem is to determine an optimal arrangement of jobs.

Flow Shop Scheduling - Example

j	J_{1}	J_{2}	J_{3}	J_{4}
$p_{1, j}$	2	4	5	1
$p_{2, j}$	3	4	2	1
$p_{3, j}$	4	2	1	1

Problem Description

Problem Description

- We consider flow shop scheduling problems with (machine) no-idle, (job) no-wait constraints and makespan as objective.

Problem Description

- We consider flow shop scheduling problems with (machine) no-idle, (job) no-wait constraints and makespan as objective.
- Machine no-idle constraint: use of very expensive equipment with the fee determined by the actual time consumption.

Problem Description

- We consider flow shop scheduling problems with (machine) no-idle, (job) no-wait constraints and makespan as objective.
- Machine no-idle constraint: use of very expensive equipment with the fee determined by the actual time consumption.
- Job no-wait constraint: in metal-processing industries (e.g., hot rolling) where delays between operations interfere with the technological process (e.g., cooling down).

Problem Description

- We consider flow shop scheduling problems with (machine) no-idle, (job) no-wait constraints and makespan as objective.
- Machine no-idle constraint: use of very expensive equipment with the fee determined by the actual time consumption.
- Job no-wait constraint: in metal-processing industries (e.g., hot rolling) where delays between operations interfere with the technological process (e.g., cooling down).
- We focus on problem F2| no-idle, no-wait $\mid C_{\text {max }}$.

Literature

- Problem $F 2 \| C_{\max }($ Johnson rule $O(n \operatorname{logn})) \in P$.

Literature

- Problem $F 2 \| C_{\max }($ Johnson rule $O(n \operatorname{logn})) \in P$.
- Problem $F 2 \mid$ no-idle $\mid C_{\text {max }}$ (trivially packing the jobs on the second machine to the right from Johnson's schedule) $\in P$.

Literature

- Problem $F 2 \| C_{\max }($ Johnson rule $O($ nlogn $)) \in P$.
- Problem $F 2 \mid$ no-idle $\mid C_{\text {max }}$ (trivially packing the jobs on the second machine to the right from Johnson's schedule) $\in P$.
- Problem $F 2 \mid$ no-wait $\mid C_{\max }$ (special case of Gilmore-Gomory $\mathrm{TSP}) \in P$.

Literature

- Problem $F 2 \| C_{\max }$ (Johnson rule $O($ nlogn $\left.)\right) \in P$.
- Problem $F 2 \mid$ no-idle $\mid C_{\text {max }}$ (trivially packing the jobs on the second machine to the right from Johnson's schedule) $\in P$.
- Problem $F 2 \mid$ no-wait $\mid C_{\max }$ (special case of Gilmore-Gomory $\mathrm{TSP}) \in P$.
- Problem F3\|C $C_{\text {max }}$ is NP-hard.

Literature

- Problem F2| no-wait $\mid \mathcal{G}$ (minimizing the number of interruptions on the last machine in a 2-machine no-wait flow shop) is solvable in $O\left(n^{2}\right)$ time (Hohn et al. 2012).

Literature

- Problem F2| no-wait $\mid \mathcal{G}$ (minimizing the number of interruptions on the last machine in a 2-machine no-wait flow shop) is solvable in $O\left(n^{2}\right)$ time (Hohn et al. 2012).
- Problem F3| no-wait $\mid \mathcal{G}$ is $N P$-hard. (Hohn et al. 2012).

Literature

- Problem F2| no-wait $\mid \mathcal{G}$ (minimizing the number of interruptions on the last machine in a 2-machine no-wait flow shop) is solvable in $O\left(n^{2}\right)$ time (Hohn et al. 2012).
- Problem F3| no-wait $\mid \mathcal{G}$ is NP-hard. (Hohn et al. 2012).
- Problems $F 2\left|\left|\sum C_{j}, F 2\right|\right.$ no-wait $| \sum C_{j}, F 2 \mid$ no-idle $\mid \sum C_{j}$, $F 2 \mid$ no-idle, no-wait $\mid \sum C_{j}$ are $N P$-hard (Adiri and Pohoryles 1982).
$F 2 \mid$ no-idle, no-wait $\mid C_{\max }$
$F 2 \mid$ no-idle, no-wait $\mid C_{\max }$
- Two Machines M_{1}, M_{2}.

F2| no-idle, no-wait $\mid C_{\max }$

- Two Machines M_{1}, M_{2}.
- Flow Shop environment.

F2| no-idle, no-wait $\mid C_{\max }$

- Two Machines M_{1}, M_{2}.
- Flow Shop environment.
- n jobs $1,2, \ldots, n$ with processing times $p_{1 j}$ and $p_{2 j}$.
- Two Machines M_{1}, M_{2}.
- Flow Shop environment.
- n jobs $1,2, \ldots, n$ with processing times $p_{1 j}$ and $p_{2 j}$.
- No-idle time is allowed (both machines M_{1}, M_{2} must work continuously).
- Two Machines M_{1}, M_{2}.
- Flow Shop environment.
- n jobs $1,2, \ldots, n$ with processing times $p_{1 j}$ and $p_{2 j}$.
- No-idle time is allowed (both machines M_{1}, M_{2} must work continuously).
- No-wait discipline (no buffer - each job must start on M_{2} right after its completion on M_{1}).
- Two Machines M_{1}, M_{2}.
- Flow Shop environment.
- n jobs $1,2, \ldots, n$ with processing times $p_{1 j}$ and $p_{2 j}$.
- No-idle time is allowed (both machines M_{1}, M_{2} must work continuously).
- No-wait discipline (no buffer - each job must start on M_{2} right after its completion on M_{1}).
- Makespan (i.e. total time that elapses from the beginning to the end) objective.

F2| no-idle, no-wait $\mid C_{\max }$

- The no-idle, no-wait constraint is a very strong requirement.

- $p_{i[j]}$ denotes the processing time of the j-th job of a sequence σ on machine M_{i}.
- $C_{i[j]}$ denotes the completion time of the j-th job of a sequence σ on machine M_{i}.

Lemma (1)

(C1) A necessary condition to have a feasible solution for problem $F 2 \mid n o$ - idle, no - wait $\mid C_{\max }$ is that there always exists an indexing of the jobs so that $p_{1,2}, \ldots p_{1, n}$ and $p_{2,1}, \ldots, p_{2, n-1}$ constitute different permutations of the same vector of elements.

Lemma (1)

(C1) A necessary condition to have a feasible solution for problem $F 2 \mid n o$ - idle, no - wait $\mid C_{\text {max }}$ is that there always exists an indexing of the jobs so that $p_{1,2}, \ldots p_{1, n}$ and $p_{2,1}, \ldots, p_{2, n-1}$ constitute different permutations of the same vector of elements.

j	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}
$p_{1, j}$	5	8	7	6	7
$p_{2, j}$	8	5	6	7	7

Lemma (1)

(C1) A necessary condition to have a feasible solution for problem $F 2 \mid n o$ - idle, no - wait $\mid C_{\text {max }}$ is that there always exists an indexing of the jobs so that $p_{1,2}, \ldots p_{1, n}$ and $p_{2,1}, \ldots, p_{2, n-1}$ constitute different permutations of the same vector of elements.

Lemma (1)

(C1) A necessary condition to have a feasible solution for problem $F 2 \mid n o$ - idle, no - wait $\mid C_{\text {max }}$ is that there always exists an indexing of the jobs so that $p_{1,2}, \ldots p_{1, n}$ and $p_{2,1}, \ldots, p_{2, n-1}$ constitute different permutations of the same vector of elements.
(C2) When the above condition (C1) holds, then
Case 1 if $p_{1,1} \neq p_{2, n}$, every feasible sequence must have a job with processing time $p_{1,1}$ in first position and a job with processing time $p_{2, n}$ in last position.
Case 2 if $p_{1,1}=p_{2, n}$ and there exists a feasible sequence, then there do exist at least n feasible sequences each starting with a different job by simply rotating the starting sequence as in a cycle.

F2| no-idle, no-wait $\mid C_{\max }$

Lemma (2)

The makespan of any feasible sequence σ is given by the processing time of the last (first) job on the second (first) machine plus the sum of jobs processing times on the first (second) machine.

F2| no-idle, no-wait $\mid C_{\max }$

Lemma (2)

The makespan of any feasible sequence σ is given by the processing time of the last (first) job on the second (first) machine plus the sum of jobs processing times on the first (second) machine.

F2| no-idle, no-wait $\mid C_{\max }$: an example

A 9-job instance of problem $F 2 \mid$ no - idle, no - wait $\mid C_{\text {max }}$.

j	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}	J_{7}	J_{8}	J_{9}
$p_{1, j}$	5	3	4	6	1	5	3	2	4
$p_{2, j}$	3	4	6	1	5	3	2	4	5

F2| no-idle, no-wait $\mid C_{\text {max }}$: an example

A 9-job instance of problem $F 2 \mid$ no - idle, no - wait $\mid C_{\text {max }}$.

j	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}	J_{7}	J_{8}	J_{9}
$p_{1, j}$	5	3	4	6	1	5	3	2	4
$p_{2, j}$	3	4	6	1	5	3	2	4	5

and the corresponding optimal solution $C_{\max }=34$

F2| no-idle, no-wait $\mid C_{\max }$

- Due to Lemma 1 and $F 2 \mid$ no - idle, no - wait|GG problem, the optimal solution can be calculated in $O\left(n^{2}\right)$ time...

F2| no-idle, no-wait $\mid C_{\max }$

- Due to Lemma 1 and $F 2 \mid$ no - idle, no - wait $\mid \mathcal{G}$ problem, the optimal solution can be calculated in $O\left(n^{2}\right)$ time...
...but...

F2| no-idle, no-wait $\mid C_{\max }$

- Due to Lemma 1 and $F 2 \mid n o$ - idle, no - wait $\mid \mathcal{G}$ problem, the optimal solution can be calculated in $O\left(n^{2}\right)$ time...
...but...
- ...we decided to link the problem to the game of dominoes

Dominoes

- The Single Player Domino (SPD) problem (where a single player tries to lay down all dominoes in a chain with the numbers matching at each adjacency) is polynomially solvable: it can be seen as a eulerian path problem on an undirected multigraph.

Dominoes

- The Single Player Domino (SPD) problem (where a single player tries to lay down all dominoes in a chain with the numbers matching at each adjacency) is polynomially solvable: it can be seen as a eulerian path problem on an undirected multigraph.
- Here, we refer to the oriented version of SPD called OSPD where all dominoes have an orientation (given a tile with numbers i and j, only the orientation $i \rightarrow j$ is allowed but not viceversa).

Dominoes

- The Single Player Domino (SPD) problem (where a single player tries to lay down all dominoes in a chain with the numbers matching at each adjacency) is polynomially solvable: it can be seen as a eulerian path problem on an undirected multigraph.
- Here, we refer to the oriented version of SPD called OSPD where all dominoes have an orientation (given a tile with numbers i and j, only the orientation $i \rightarrow j$ is allowed but not viceversa).
- Problem OSPD is polynomially solvable (can be seen as a eulerian path problem on a directed multigraph).

Problem F2|no - idle, no - wait $\mid C_{\max }$ vs OSPD

Proposition
F2|no - idle, no - wait $\mid C_{\max } \propto O S P D$.

Problem F2|no - idle, no - wait| $C_{\max }$ vs OSPD

Proposition

$$
\text { F2|no - idle, no - wait } \mid C_{\max } \propto O S P D .
$$

Proof.

By generating for each job J_{j} a related domino tile $\left\{p_{1, j}, p_{2, j}\right\}$, any complete sequence of oriented dominoes in OSPD corresponds to a feasible sequence for $F 2 \mid$ no - idle, no - wait $\mid C_{\max }$. Then, due to Lemma 1, the jobs processing times either respect case 1 or case 2 of condition C2.

An example

A 9-job instance of problem $F 2 \mid$ no - idle, no - wait $\mid C_{\text {max }}$.

i	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}	J_{7}	J_{8}	J_{9}
$p_{1, j}$	5	3	4	6	1	5	3	2	4
$p_{2, j}$	3	4	6	1	5	3	2	4	5

and the corresponding dominoes of the related OSPD problem

An example

A 9-job instance of problem F2|no - idle, no - wait $\mid C_{\text {max }}$.

j	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}	J_{7}	J_{8}	J_{9}
$p_{1, j}$	5	3	4	6	1	5	3	2	4
$p_{2, j}$	3	4	6	1	5	3	2	4	5

and the corresponding OSPD solution

An example

A 9-job instance of problem $F 2 \mid$ no - idle, no - wait $\mid C_{\text {max }}$.

i	J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}	J_{7}	J_{8}	J_{9}
$p_{1, i}$	5	3	4	6	1	5	3	2	4
$p_{2, i}$	3	4	6	1	5	3	2	4	5

and the corresponding oriented multigraph

Complexity of $F 2 \mid$ no-idle, no-wait $\mid C_{\max }$

Proposition
Problem F2|no - idle, no - wait $\mid C_{\max }$ can be solved in $O(n)$ time.

Complexity of $F 2 \mid$ no-idle, no-wait $\mid C_{\max }$

Proposition

Problem F2|no - idle, no - wait $\mid C_{\max }$ can be solved in $O(n)$ time.

Proof.
[Sketch]: The generation of the oriented multigraph can be done in linear time and the graph has $O(n)$ arcs. Besides, it is known (Fleischner 1991) that computing an Eulerian path in an oriented graph with n arcs can be done in $O(n)$ time.

F2| no-idle, no-wait $\mid C_{\max }$ vs the Hamiltonian Path problem

- Problem F2|no - idle, no - wait $\mid C_{\max }$ is also linked to a special case of the Hamiltonian Path problem on a connected digraph.

F2| no-idle, no-wait $\mid C_{\max }$ vs the Hamiltonian Path problem

- Problem F2|no - idle, no - wait $\mid C_{\max }$ is also linked to a special case of the Hamiltonian Path problem on a connected digraph.
- Consider a digraph $G(V, A)$ that has the following property: $\forall v_{i}, v_{j} \in V$, either $S_{i} \cap S_{j}=\emptyset$, or $S_{i}=S_{j}$ where we denote by S_{i} the set of successors of vertex v_{i}.

F2| no-idle, no-wait $\mid C_{\max }$ vs the Hamiltonian Path problem

- Problem F2|no - idle, no - wait $\mid C_{\max }$ is also linked to a special case of the Hamiltonian Path problem on a connected digraph.
- Consider a digraph $G(V, A)$ that has the following property: $\forall v_{i}, v_{j} \in V$, either $S_{i} \cap S_{j}=\emptyset$, or $S_{i}=S_{j}$ where we denote by S_{i} the set of successors of vertex v_{i}.
- In other words, each pair of vertices either has no common successors or has all successors in common.

F2| no-idle, no-wait $\mid C_{\max }$ vs the Hamiltonian Path problem

- Problem F2|no - idle, no - wait $\mid C_{\max }$ is also linked to a special case of the Hamiltonian Path problem on a connected digraph.
- Consider a digraph $G(V, A)$ that has the following property: $\forall v_{i}, v_{j} \in V$, either $S_{i} \cap S_{j}=\emptyset$, or $S_{i}=S_{j}$ where we denote by S_{i} the set of successors of vertex v_{i}.
- In other words, each pair of vertices either has no common successors or has all successors in common.
- We denote the Hamiltonian path problem in that graph as the Common/Distinct Successors Hamiltonian Oriented Path (CDSHOP*) problem.

F2| no-idle, no-wait $\mid C_{\max }$ vs the Hamiltonian Path problem

- F2|no - idle, no - wait $\mid C_{\max } \propto$ CDSHOP easily holds.
- The CDSHOP problem corresponding to the considered $F 2$ | no-idle, no-wait $\mid C_{\max }$ instance.

i	$p_{1, i}$	$p_{2, i}$
J_{1}	5	3
J_{2}	3	4
J_{3}	4	6
J_{4}	6	1
J_{5}	1	5
J_{6}	5	3
J_{7}	3	2
J_{8}	2	4
J_{9}	4	5

Complexity of CDSHOP

Proposition
$C D S H O P \propto F 2 \mid$ no $-i d l e$, no - wait $\mid C_{\text {max }}$, hence, $C D S H O P \in P$.

Complexity of CDSHOP

Proposition
$C D S H O P \propto F 2 \mid$ no $-i d l e$, no - wait $\mid C_{\max }$, hence, $C D S H O P \in P$.
Proof.
[Sketch]:

- For any instance of CDSHOP with n vertices, we generate an instance of $F 2 \mid$ no - idle, no - wait $\mid C_{\max }$ with n jobs where, if there is an arc from v_{i} to v_{j}, then, we have $p_{2, i}=p_{1, j}$.

Complexity of CDSHOP

Proposition
$C D S H O P \propto F 2 \mid$ no $-i d l e$, no - wait $\mid C_{\max }$, hence, $C D S H O P \in P$.

Proof.

[Sketch]:

- For any instance of CDSHOP with n vertices, we generate an instance of $F 2 \mid$ no - idle, no - wait| $C_{\max }$ with n jobs where, if there is an arc from v_{i} to v_{j}, then, we have $p_{2, i}=p_{1, j}$.
- If a feasible sequence of $F 2 \mid n o$ - idle, no - wait $\mid C_{\max }$ exists, then, for each consecutive jobs J_{i}, J_{j} with $J_{i} \rightarrow J_{j}, p_{2, i}=p_{1, j}$ holds. Hence, there is an arc from v_{i} to v_{j}. Thus, the corresponding sequence of vertices in CDSHOP constitutes an hamiltonian directed path.

Complexity of CDSHOP

Proposition
$C D S H O P \propto F 2 \mid$ no $-i d l e$, no - wait $\mid C_{\max }$, hence, $C D S H O P \in P$.

Proof.

[Sketch]:

- For any instance of CDSHOP with n vertices, we generate an instance of $F 2 \mid$ no - idle, no - wait $\mid C_{\max }$ with n jobs where, if there is an arc from v_{i} to v_{j}, then, we have $p_{2, i}=p_{1, j}$.
- If a feasible sequence of $F 2 \mid n o$ - idle, no - wait $\mid C_{\max }$ exists, then, for each consecutive jobs J_{i}, J_{j} with $J_{i} \rightarrow J_{j}, p_{2, i}=p_{1, j}$ holds. Hence, there is an arc from v_{i} to v_{j}. Thus, the corresponding sequence of vertices in CDSHOP constitutes an hamiltonian directed path.
- Conversely, if a path exists for CDSHOP, the related sequence of jobs in F2|no - idle, no - wait| $C_{\text {max }}$ is also feasible.

Problem $F \mid$ no-idle, no-wait $\mid C_{\max }$

The no-idle, no-wait constraint on m machines.

Problem $F \mid$ no-idle, no-wait $\mid C_{\max }$

Lemma (3)

(C3) A necessary condition to have a feasible solution for problem $F \mid$ no - idle, no - wait $\mid C_{\text {max }}$ is that there always exists an indexing of the jobs so that $p_{j+1,1}, \ldots, p_{j+1, n-1}$ and $p_{j, 2}, \ldots, p_{j, n}$, for $j=1, \ldots m-1$, constitute different permutations of the same vector of elements.

Problem $F \mid$ no-idle, no-wait $\mid C_{\max }$

Lemma (3)

(C3) A necessary condition to have a feasible solution for problem $F \mid$ no - idle, no - wait $\mid C_{\text {max }}$ is that there always exists an indexing of the jobs so that $p_{j+1,1}, \ldots, p_{j+1, n-1}$ and $p_{j, 2}, \ldots, p_{j, n}$, for $j=1, \ldots m-1$, constitute different permutations of the same vector of elements.
(C4) When the above condition (C3) holds, then Case 1 if $\left(p_{1,1} \neq p_{2, n}\right.$ or $p_{2,1} \neq p_{3, n}$ or \ldots or $\left.p_{m-1,1} \neq p_{m, n}\right)$, every feasible sequence must have a job with processing times ($p_{1,1}, \ldots, p_{m-1,1}$) on machines 1 to ($m-1$) in first position and a job with processing time ($p_{2, n}, \ldots, p_{m, n}$) on machines 2 to m in last position.
Case 2 if ($p_{1,1}=p_{2, n}$ and $p_{2,1}=p_{3, n}$ and \ldots and $\left.p_{m-1,1}=p_{m, n}\right)$ and there exists a feasible sequence, then there do exist at least n feasible sequences each starting with a different job by simply rotating the starting sequence as in a cycle.

Problem $F \mid$ no-idle, no-wait $\mid C_{\max }$

- We can evince that in an optimal sequence, if job J_{i} immediately precedes job J_{k}, we have that $p_{j+1, i}=p_{j, k}, \forall j=1, \ldots, m-1$ holds.
- Then, for a feasible 3 -job subsequence (ℓ, i, k) we must have:

1. $\left[p_{2, \ell} ; \ldots ; p_{m, \ell}\right]=\left[p_{1, i} ; \ldots ; p_{m-1, i}\right]$ and,
2. $\left[p_{2, i} ; \ldots ; p_{m, i}\right]=\left[p_{1, k} ; \ldots ; p_{m-1, k}\right]$.

This can be represented in terms of vectorial dominoes as follows.

$$
\left.\left.\begin{array}{|c|c|c|c|c|}
\hline\left[p_{1, \ell} ; \ldots ; p_{m-1, \ell}\right] & {\left[p_{2, \ell} ; \ldots ; p_{m, \ell}\right]} & {\left[p_{1, i} ; \ldots ; p_{m-1, i}\right]} & {\left[p_{2, i} ; \ldots ; p_{m, i}\right]} & {\left[p_{1, k} ; \ldots ; p_{m-1, k}\right]}
\end{array}\right]\left[p_{2, k} ; \ldots ; p_{m, k}\right]\right] .
$$

Problem $F \mid$ no-idle, no-wait $\mid C_{\max }$: an example

 As an example, a 3-job instance on 4 machines of problem $F \mid$ no - idle, no - wait $\mid C_{\text {max }}$.| i | J_{1} | J_{2} | J_{3} |
| :---: | :---: | :---: | :---: |
| $p_{1, i}$ | 5 | 3 | 4 |
| $p_{2, i}$ | 3 | 4 | 9 |
| $p_{3, i}$ | 4 | 9 | 7 |
| $p_{4, i}$ | 9 | 7 | 2 |

induces the following vectorial dominoes
domino 1

domino 2

domino 3
$\left|\left\lvert\, \begin{array}{lll||lll||}\hline 4 & 9 & 7 & 9 & 7 & 2 \\ \hline\end{array}\right.\right.$

Problem $F \mid$ no-idle, no-wait $\mid C_{\max }$

Proposition

Problem $F \mid$ no - idle, no - wait $\mid C_{\max }$ can be solved to optimality in $O(m n \log (n))$ time.

Problem $F \mid$ no-idle, no-wait $\mid C_{\max }$

Proposition

Problem F|no - idle, no - wait $\mid C_{\max }$ can be solved to optimality in $O(m n \log (n))$ time.

Proof.

[Sketch]:
The result can be proved by showing that any instance of the $F \mid$ no - idle, no - wait $\mid C_{\text {max }}$ problem can be reduced in polynomial time to a vectorial OSPD that is always solved by computing an Eulerian path in an oriented graph with n arcs.

Complexity of problems $(J 2, O 2) \mid$ no-idle, no-wait $\mid C_{\max }$

- Job-shop (J) problem: operations of a job totally ordered
- Open-shop (O) problem: no ordering constraints on operations

Proposition

Problems J2|no - idle, no - wait $\mid C_{\text {max }}$ and
O2|no - idle, no - wait| $C_{\text {max }}$ are NP-hard in the strong sense.

Complexity of problems $(J 2, O 2) \mid$ no-idle, no-wait $\mid C_{\max }$

- Job-shop (J) problem: operations of a job totally ordered
- Open-shop (O) problem: no ordering constraints on operations

Proposition

Problems J2|no - idle, no - wait $\mid C_{\text {max }}$ and
O2|no - idle, no - wait| $C_{\text {max }}$ are NP-hard in the strong sense.

Proof.
[Sketch of proof for problem J2|no - idle, no - wait| $C_{\text {max }}$]: We show that NMTS (Numerical Matching with Target Sums) reduces to $J 2 \mid$ no - idle, no - wait $\mid C_{\text {max }}$.

Thank You.

