Sparsifying sums of positive semidefinite
matrices

Cristiane Sato
Joint work with Nick Harvey ! and Marcel Silva 2

Federal University of the ABC Region, Brazil
Center of Mathematics, Computing and Cognition

LUniversity of British Columbia
2University of S3o Paulo

Cut Sparsifiers

Theorem (Karger '94)

> weighted graph G = (V,E,w) where w : E = R,
> ¢ >0 small

There exists a subgraph H= (V,F,y) of G andy : F — R s.t.

|F| = O(ninn/e?)

» The weight of every cut is approximately preserved

Cut Sparsifiers

Theorem (Karger '94)

> weighted graph G = (V,E,w) where w : E = R,
> ¢ >0 small

There exists a subgraph H= (V,F,y) of G andy : F — R s.t.
|F| = O(nlnn/e?)

» The weight of every cut is approximately preserved

> That is,
w(d6(S)) = (1 £e)y(u(S)), VSTV

Cut Sparsifiers

Theorem (Karger '94)

> weighted graph G = (V,E,w) where w : E = R,
> ¢ >0 small

There exists a subgraph H= (V,F,y) of G andy : F — R s.t.

|F| = O(ninn/e?)

» The weight of every cut is approximately preserved

> That is,
w(d6(S)) = (1 £e)y(u(S)), VSTV

» Application: Faster algorithms by preprocessing the graph

Cut Sparsifiers

Theorem (Karger '94)

> weighted graph G = (V,E,w) where w : E = R,
> ¢ >0 small

There exists a subgraph H= (V,F,y) of G andy : F — R s.t.

|F| = O(ninn/e?)

v

The weight of every cut is approximately preserved
That is,

v

w(d6(5)) = (L £e)y(6u(S)), VSCV

v

Application: Faster algorithms by preprocessing the graph

v

How sparse can H be?
Can we build H efficiently?

v

Weighted Laplacians

» G =(V,E,w) a weighted graph, where w : E — R,

> Laplacian of G is the V' x V matrix Lapl; s.t.
Laplg (i, i) = degree of i
Laplg(i,j) = —w;jif j € E

Weighted Laplacians

» G =(V,E,w) a weighted graph, where w : E — R,

> Laplacian of G is the V' x V matrix Lapl; s.t.
Laplg (i, i) = degree of i
Laplg(i,j) = —w;jif j € E

> Lapl; is positive semidefinite
All eigenvalues are > 0
Notation: Lapls; = 0

Spectral sparsifiers

Theorem (Spielman, Teng '04)
» G =(V,E,w) a weighted graph, where w : E — R
> ¢ >0 small
There are new weights y : E — R s.t.
» has npolylog(n)/e? nonzero entries
» H:=(V,E,y) satisfies

Laplg =< Laply < (1 +¢)Laplg

Spectral sparsifiers

Theorem (Spielman, Teng '04)
» G =(V,E,w) a weighted graph, where w : E — R
> ¢ >0 small
There are new weights y : E — R s.t.
» has npolylog(n)/e? nonzero entries
» H:=(V,E,y) satisfies

Laplg =< Laply < (1 +¢)Laplg

Notation: A < B <= B — A is positive semidefinite

» nearly-linear time solvers for symmetric, diagonally-dominant linear
systems (Spielman and Teng + Koutis, Miller, and Peng, 2004)

Spectral sparsifiers

Theorem (Spielman, Teng '04)
» G =(V,E,w) a weighted graph, where w : E — R
> ¢ >0 small
There are new weights y : E — R s.t.
» has npolylog(n)/e? nonzero entries
» H:=(V,E,y) satisfies
Laplg =< Laply < (1 +¢)Laplg
y may be found in O(m) time

Notation: A < B <= B — A is positive semidefinite

» nearly-linear time solvers for symmetric, diagonally-dominant linear
systems (Spielman and Teng + Koutis, Miller, and Peng, 2004)

Spectral sparsifiers are cut sparsifiers

» h the incidence vector of S C V/,

h,=1ifves
0, otherwise

Spectral sparsifiers are cut sparsifiers

» h the incidence vector of S C V/,
h,=1ifves
0, otherwise

> hTLaplgh = xj(hi — hj)?
jEE

Spectral sparsifiers are cut sparsifiers

» h the incidence vector of S C V/,

h,=1ifves
0, otherwise
> hTLaplgh = xj(hi — hj)?
jeE
» hT Laplg h is the w-weight of the cut 6(S), i.e., w(5(S))

Spectral sparsifiers are cut sparsifiers

v

h the incidence vector of S C V/,

h,=1ifves
0, otherwise
hT Laplg h =Y xj(hi — h;)?
jEE
hT Lapl h is the w-weight of the cut §(S), i.e., w(d(S))
h" Laply, h is the y-weight of the cut §(S), i.e., y(5(S))

v

v

v

Spectral sparsifiers are cut sparsifiers

v

h the incidence vector of S C V/,
h,=1ifves
0, otherwise
hT Laplg h =Y xj(hi — h;)?
jEE
hT Lapl h is the w-weight of the cut §(S), i.e., w(d(S))
h" Laply, h is the y-weight of the cut §(S), i.e., y(5(S))
Laply = Laplg implies

v

v

v

v

hT(Laply — Laplg)h >0

That is,
hT Laply, h > h" Laplg h

Spectral sparsifiers are cut sparsifiers

v

h the incidence vector of S C V/,

h,=1ifves
0, otherwise

hT Laplg h =Y xj(hi — h;)?
jEE

hT Lapl h is the w-weight of the cut §(S), i.e., w(d(S))
h" Laply, h is the y-weight of the cut §(S), i.e., y(5(S))
Laply = Laplg implies

hT(Laply — Laplg)h >0

That is,
h" Laply, h > h" Laplg h

Laply < (1 +¢) Laplg implies hT Laply h < (1 +¢)hT Laplg h

Laplacian matrix as a sum of matrices

» G =(V,E,w) a weighted graph, where w : E — R,

» The Laplacian of G is the V x V matrix

i
Laplg == Z Wi

ii€E J -1 1

Laplacian matrix as a sum of matrices

» G =(V,E,w) a weighted graph, where w : E — R,

» The Laplacian of G is the V x V matrix

i ,
Laplg = Z Wi (1 -1

jee j| —1

Laplacian matrix as a sum of matrices

» G =(V,E,w) a weighted graph, where w : E — R,

» The Laplacian of G is the V x V matrix

il 1 P
Laplg Z:ZW,'J'. (1 -1)

jee j| —1

> Lapl¢ is a sum of rank-one positive semidefinite matrices

Sparsifiers of Sums of Rank-One PSD Matrices

Theorem (Batson, Spielman, Srivastava '09)

> By,...,By, p.s.d. nx n matrices of rank one
» B=> B
> >0 small
There are new weights y € R s.t.
» y has O(n/e?) nonzero entries
» B> ,yviBi=z(1+¢)B

y may be found in O(mn®/<?) time

Sparsifiers of Sums of Rank-One PSD Matrices

Theorem (Batson, Spielman, Srivastava '09)

> By,...,Bn, p.s.d. nx n matrices of rank one
» B=> B
> ¢ >0 small
There are new weights y € R s.t.
» y has O(n/e?) nonzero entries
» B> ,¥viBi=(1+¢)B
y may be found in O(mn®/<?) time

> (Lee-Sun’15) Almost-linear time method

Sparsifiers of Sums of Rank-One PSD Matrices

Theorem (Batson, Spielman, Srivastava '09)

> By,...,Bn, p.s.d. nx n matrices of rank one
» B=> B
> >0 small
There are new weights y € R s.t.
» y has O(n/e?) nonzero entries
» B> ,yviBi=z(1+¢)B

y may be found in O(mn®/<?) time

Sparsifiers of Sums of PSD Matrices

Theorem (de Carli Silva, Harvey, S., '11)

> By,...,Bn p.s.d. nx n matrices of any rank
» B:=>,B;
> ¢ >0 small
There are new weights y € R s.t.
» y has O(n/e?) nonzero entries
» B> ,¥viBi=<(1+¢)B

y may be found in O(mn®/e?) time

Applications

> spectral sparsifiers of graphs with extra properties
» cut sparsifiers of uniform hypergraphs (specially 3-uniform)

> sparse solutions to semidefinite programs

Sparsifiers with Costs

Theorem

» G =(V,E,w) a weighted graph, where w : E — R,

» ¢ >0 small

There are new weights y : E — R s.t.
» y has O(n/e?) nonzero entries
> the reweighted graph H .= (V, E,y) satisfies

Laplg =< Laply < (14 ¢)Laplg

y may be found in O(mn®/e?) time

Sparsifiers with Costs

Theorem

» G =(V,E,w) a weighted graph, where w : E — R,
> ¢ >0 small
> ‘“costs” c: E — R,
There are new weights y : E — R s.t.
» y has O(n/e?) nonzero entries
> the reweighted graph H .= (V, E,y) satisfies
Laplg =< Laply = (1 +¢) Laplg
» cTw<cly<(1+¢e)c'w

y may be found in O(mn®/e?) time

Add extra info to Laplacian

jeE J

Add extra info to Laplacian

Add extra info to Laplacian

1 W,'j
Z] —w,
iji€E J Y
0

wij

Cij

Cut Sparsifiers of 3-Uniform Hypergraphs

Theorem
» G =(V,E, w) a weighted 3-uniform hypergraph, where w : £ — R,

> je, EC (\3/)
> ¢ >0 small
There are new weights y : £ — R, s.t.
» y has O(n/e?) nonzero entries
> the reweighted hypergraph H = (V,&,y) satisfies

w(9g(5)) <y(0u(S)) < (1 +e)w(6g(S)) vVSCV

y may be found in O(mn®/e?) time

Hypergraph Laplacians

Z Wijk J -1

ijke&

Semidefinite Programs

Theorem

» Bi,...,Bn, p.s.d. nx n matrices
B sym n x n matrix

ceRY
Semidefinite program (SDP)

v

v

T

c z
ZZ,‘B,‘ t B
i

z e RY

min

feasible solution z*

e€(0,1)
There exists a feasible solution Z with at most O(n/s?) nonzero
entries and ¢'2 < (1 +¢)c'z*.

v

v

Future directions

» Find more applications of the arbitrary-rank sparsification result

> Improve running times

Future directions

» Find more applications of the arbitrary-rank sparsification result

> Improve running times
» Positive Semidefiniteness Assumption
For each n > 0,
there exist By, ..., B, with m = Q(n?)
and B := 3. B; p.d. such that
for every e € (0,1) and y € R with (1 -¢)B =) . yiBi,

every entry of y is nonzero

Pseudoinverse

We may assume that

by applying Moore-Penrose pseudoinverse

O(nlog n/e?) versions

» Ahlswede—Winter Theorem

» Can be de-randomized using pessimistic estimators

The approach

1. Start with A=0
2. In each iteration choose a matrix B; and compute a weight a.
Set A=A+ aB;

The approach

1. Start with A=0
2. In each iteration choose a matrix B; and compute a weight a.
Set A=A+ aB;

T

Batson, Spielman, Srivastava: B; = vv' is a rank-one matrix.

Use Sherman-Morrison formula

avTM—2y

T\—1 _ -1
TI’(M—O[VV) —TI’(M)+m

The approach

1. Start with A=0
2. In each iteration choose a matrix B; and compute a weight a.
Set A=A+ aB;

T

Batson, Spielman, Srivastava: B; = vv' is a rank-one matrix.

Use Sherman-Morrison formula

Tpp—2
TVl _1 av' M™%y
TI’(M—O[VV) —TI’(M)+m

Ours: B; = VVT is an arbitrary-rank matrix.
Sherman-Morrison-Woodbury formula:

Tr(M—aWT) L =Tr (M) +Tr (aM 'V(I—aV M V) TVIMT)

Upper barrier

» u (upper bound for eigenvalues)

» Barrier function

Upper barrier

>

u (upper bound for eigenvalues)

» Barrier function

®U(A) = ; #"(A) =Tr(ul — A)"!

matrices A and B » 0, we want to control the A\pnax(A + aB)
Given 6, > 0,

suppose we want Apax(A+ aB) < u+ 6y = v

What conditions on « guarantee that?

Upper barrier

v

u (upper bound for eigenvalues)

» Barrier function

U(A) = ; #"(A) =Tr(ul —A)!

matrices A and B » 0, we want to control the A\pnax(A + aB)

Given 6, > 0,
suppose we want Apax(A+ aB) < u+ 6y = v
What conditions on « guarantee that?

We have

1/a> Ua(B) implies Y (A+ aB) < ®Y(A).

and A\pax(A+ aB) < v/
where M :=uv'| — A

(M~2,B)

A —evmy TP

UA(B) =

Lower barrier

> ¢ (lower bound for eigenvalues)

» Barrier function

n

1
O (A) = ——— =Tr(A—tN7?
» Given d;, > 0,
suppose we want Amin(A+ aB) > £+, =1,
What conditions on « guarantee that?

» We have

1/a < La(B) implies ®p(A+aB) < &y(A).

and Apin(A+aB) > ¢
where N := A — /']

LA(B) . <N72’B>

_ -1
= oA — o TIVB)

Overview

» A(0) := 0 and y(0) := 0.
Parameters ug, £y, 6;, 0y to be chosen
T :=4n/e2.
Define the barrier functions ®“(A) and &4, (A).

Overview

» A(0) := 0 and y(0) := 0.
Parameters ug, £y, 6;, 0y to be chosen
T :=4n/e2.
Define the barrier functions ®“(A) and &4, (A).
» Fort=1,..., T
> usi=ur_1+0yand by ;=01 + ;.
» Find a matrix B; and a value o > 0 such that

" (A(t — 1)+ aB;) < O"~1(A(t — 1))

®r (At — 1) + aBy) < &, (At — 1))
and so A(t — 1) + aB; € [{s, uy]
» A(t) = A(t—1)+aB;
y(t) = y(t— 1)+ ae;.

End of the algorithm

Amsc(A(T)) _ uo+8uT _ 1+¢
)\min(A(T)) b+ 6T — 1—¢
with T = 4n/e?
5L—1 gL :E fo:z—i
2 gL

Overview

» A(0) := 0 and y(0) := 0.
Parameters ug, £y, 6;, 0y to be chosen
T :=4n/e2.
Define the barrier functions ®“(A) and &4, (A).
» Fort=1,..., T
> usi=ur_1+0yand by ;=01 + ;.
» Find a matrix B; and a value o > 0 such that

" (A(t — 1)+ aB;) < O"~1(A(t — 1))

®r (At — 1) + aBy) < &, (At — 1))
and so A(t — 1) + aB; € [{s, uy]
» A(t) = A(t—1)+aB;
y(t) = y(t— 1)+ ae;.

Satisfying both barriers at the same time

» Averaging argument

ZUA <1/5U+5U<1/5L+5L<ZLA

Satisfying both barriers at the same time

» Averaging argument

ZUA <1/5U+5U<1/5L+5L<ZLA
> Jist. Ua(B;) < La(By)
» We can choose « such that

Ua(B:) < 1/a < La(B:)

as needed for the algorithm

Satisfying both barriers at the same time

v

Averaging argument

ZUA <1/5U+5U<1/5L+5L<ZLA

v

Fist. Ua(B) < La(B))
We can choose « such that

v

Ua(Bi) < 1/a < La(B))
as needed for the algorithm
Compute Ua(B;) and La(B;)

v

