Brownian Motion Area with Generatingfunctionology

Uwe Schwerdtfeger

RMIT University/University of Melbourne Alexander von Humboldt Foundation

Monash University
3 August, 2011

Some continuous time processes...

A Brownian Motion of duration 1 is a stochastic process $\mathcal{B}(t),$ $t \in [0,1]$ such that

- ▶ $t \mapsto \mathcal{B}(t)$ is a.s. continuous, $\mathcal{B}(0) = 0$,
- lacksquare for $s < t, \, \mathcal{B}(t) \mathcal{B}(s) \sim \mathcal{N}(0, t-s)$ and
- increments are independent.

A Brownian Meander $\mathcal{M}(t),\ t\in[0,1]$ is a BM $\mathcal{B}(t)$ conditioned on $\mathcal{B}(s)\geq 0,\ s\in]0,1].$

A Brownian Excursion $\mathcal{E}(t)$, $t \in [0,1]$ is $\mathcal{M}(t)$ conditioned on $\mathcal{M}(1) = 0$ (quick and dirty def.).

... and their discrete counterparts

The Bernoulli Random Walk $\mathcal{B}_n(k)$ on $\mathbb{Z}, k \in \{0, 1, ..., n\}$, with

- ▶ $\mathcal{B}_n(0) = 0$,
- ▶ $\mathcal{B}_n(k+1) \mathcal{B}_n(k) \in \{-1,1\}$, each with prob. 1/2.

The Bernoulli Meander $\mathcal{M}_n(k)$, $k \in \{0, ..., n\}$ on $\mathbb{Z}_{\geq 0}$ is $\mathcal{B}_n(k)$ conditioned to stay non-negative.

The Bernoulli Excursion $\mathcal{E}_{2n}(k)$, $k \in \{0, \dots, 2n\}$ on $\mathbb{Z}_{\geq 0}$ is $\mathcal{M}_{2n}(k)$ conditioned on $\mathcal{M}_{2n}(2n) = 0$.

Scaling limits

For $n \longrightarrow \infty$ we have the weak limits

$$\blacktriangleright \left\{ \frac{1}{\sqrt{n}} \mathcal{B}_n(\lfloor nt \rfloor), \ t \in [0,1] \right\} \longrightarrow \left\{ \mathcal{B}(t), \ t \in [0,1] \right\},$$

$$\blacktriangleright \left\{ \frac{1}{\sqrt{n}} \mathcal{M}_n(\lfloor nt \rfloor), \ t \in [0,1] \right\} \longrightarrow \left\{ \mathcal{M}(t), \ t \in [0,1] \right\},$$

$$\blacktriangleright \left\{ \frac{1}{\sqrt{2n}} \mathcal{E}_{2n}(\lfloor 2nt \rfloor), \ t \in [0,1] \right\} \longrightarrow \left\{ \mathcal{E}(t), \ t \in [0,1] \right\}.$$

Drmota (2003): Weak limits imply moment convergence for certain functionals. E.g. for area (i.e. integrals)

$$\mathbb{E}\left[\left(\int_0^1 \frac{1}{\sqrt{2n}} \mathcal{E}_{2n}(\lfloor 2nt \rfloor) dt\right)^r\right] \longrightarrow \mathbb{E}\left[\mathcal{E}\mathcal{A}^r\right],$$

$$\mathbb{E}\left[\left(\int_0^1 \frac{1}{\sqrt{n}} \mathcal{M}_n(\lfloor nt \rfloor) dt\right)^r\right] \longrightarrow \mathbb{E}\left[\mathcal{M}\mathcal{A}^r\right],$$

for $n \longrightarrow \infty$, where

$$\mathcal{E}\mathcal{A}:=\int_0^1\mathcal{E}(t)dt,\quad \mathcal{M}\mathcal{A}:=\int_0^1\mathcal{M}(t)dt.$$

So studying functionals on $\mathcal E$ or $\mathcal M$ amounts to studying the discrete models!

Particularly $\mathcal{E}\mathcal{A}$ appears in a number of discrete contexts, e.g.

- Construction costs of hash tables,
- cost of breadth first search traversal of a random tree,
- path lengths in random trees,
- area of polyominoes,
- enumeration of connected graphs.

Many of the discrete results rely on recursions for the moments of $\mathcal{E}\mathcal{A}$ and $\mathcal{M}\mathcal{A}$ found by Takács (1991,1995) studying \mathcal{E}_{2n} and \mathcal{M}_n .

Results

We choose a different combinatorial approach and obtain

- ▶ new formulae for $\mathbb{E}(\mathcal{E}\mathcal{A}^r)$ and $\mathbb{E}(\mathcal{M}\mathcal{A}^r)$,
- ▶ the joint distribution of $(\mathcal{MA}, \mathcal{M}(1))$ in terms of the joint moments $\mathbb{E}(\mathcal{MA}^r\mathcal{M}(1)^s)$,
- \blacktriangleright the joint distribution of (signed) areas and endpoint of $\mathcal{B},$ and as an application of these
 - area of discrete meanders with arbitrary finite step sets,
 - area distribution of column convex polyominoes.

In the discrete world, we can write the joint distribution of the random variables

$$A_n = \sum_{k=0}^n \mathcal{M}_n(k)$$
 and $H_n = \mathcal{M}_n(n)$

as

$$\mathbb{P}(A_n = k, H_n = l) = \frac{p_{n,k,l}}{\sum_{r,s} p_{n,r,s}},$$

where $p_{n,k,l}$ is the number of meanders of length n, area k and final height l.

The generating function of the class of meanders is the formal power series

$$M(z,q,u) = \sum_{n} \left(\sum_{k,l} p_{n,k,l} q^{k} u^{l} \right) z^{n},$$

The above probabilities can be rewritten as

$$\mathbb{P}(A_{n} = k, H_{n} = l) = \frac{p_{n,k,l}}{\sum_{r,s} p_{n,r,s}} = \frac{\left[z^{n} q^{k} u^{l}\right] M(z, q, u)}{\left[z^{n}\right] M(z, 1, 1)}.$$

$$M(z,q,u) = \sum_{n} \left(\sum_{k,l} p_{n,k,l} q^{k} u^{l} \right) z^{n},$$

and

$$\mathbb{P}(A_n = k, H_n = l) = \frac{\left[z^n q^k u^l\right] M(z, q, u)}{\left[z^n\right] M(z, 1, 1)}.$$

With this representation the moments take a particularly nice form:

$$\mathbb{E}(A_n^r H_n^s) = \sum_{k,l} k^r l^s \mathbb{P}(A_n = k, H_n = l)$$

$$= \frac{[z^n] \left(q \frac{\partial}{\partial q}\right)^r \left(u \frac{\partial}{\partial u}\right)^s M(z, 1, 1)}{[z^n] M(z, 1, 1)}.$$

So: large n behaviour of the moments by coefficient asymptotics of the above series.

Singularity analysis (Flajolet, Odlyzko 1990)

Transfer Theorem: Let $F(z) = \sum f_n z^n$ be analytic in an indented disk and

$$F(z) \sim (1 - \mu z)^{-\alpha} \quad (z \longrightarrow 1/\mu).$$

Then

$$f_n \sim [z^n] (1 - \mu z)^{-\alpha} \sim \frac{1}{\Gamma(\alpha)} \times n^{\alpha - 1} \times \mu^n \quad (n \longrightarrow \infty).$$

For example, it turns out, that

$$\left(\frac{\partial}{\partial q}\right)^r \left(\frac{\partial}{\partial u}\right)^s M(z,1,1) \sim \frac{b_{r,s}}{(1-2z)^{3r/2+s/2+1/2}} \quad (z \longrightarrow 1/2),$$

Functional equation for M(z, q, u).

The recursive description of the set of meanders

translates into

$$M(z,q,u) = 1 + M(z,q,uq) \left(zuq + \frac{z}{uq}\right) - E(z,q)\frac{z}{uq},$$

E(z,q) is the generating function of excursions.

Solution to the equation for q = 1 by the *kernel method:*

$$-z(u-u_1(z))(u-v_1(z))M(z,1,u)=u-zE(z,1).$$

where
$$u_1(z) = \frac{1-\sqrt{1-4z^2}}{2z}$$
 and $v_1(z) = \frac{1+\sqrt{1-4z^2}}{2z}$.

Substitution of $u = u_1(z)$ yields

$$E(z,1) = \frac{u_1(z)}{z} = \frac{1 - \sqrt{1 - 4z^2}}{2z^2},$$

and finally

$$M(z,1,u) = \frac{1}{-z(u-v_1(z))}.$$

The partial derivatives $\left(\frac{\partial}{\partial q}\right)^r \left(\frac{\partial}{\partial u}\right)^s M(z,1,u)$ can in principle be obtained inductively by taking derivatives of the functional equation (and setting q=1).

- ► Each derivative w.r.t. u produces one new unknown function $\left(\frac{\partial}{\partial a}\right)^r \left(\frac{\partial}{\partial u}\right)^{s+1} M(z,1,u)$.
- ▶ Each derivative w.r.t. q produces two new unknowns, $\left(\frac{\partial}{\partial q}\right)^{r+1} E(z,1)$ and $\left(\frac{\partial}{\partial q}\right)^{r+1} \left(\frac{\partial}{\partial u}\right)^s M(z,1,u)$ and hence requires another application of the kernel method.

The exact expressions for $\left(\frac{\partial}{\partial q}\right)^r \left(\frac{\partial}{\partial u}\right)^s M(z,1,u)$ and for

$$\mathbb{E}\left(A_n^r H_n^s\right) = \frac{\left[z^n\right] \left(q \frac{\partial}{\partial q}\right)^r \left(u \frac{\partial}{\partial u}\right)^s M(z,1,1)}{\left[z^n\right] M(z,1,1)}.$$

are getting intractable.

But we can keep track of the *singular behaviour* of $\left(\frac{\partial}{\partial q}\right)^r \left(\frac{\partial}{\partial u}\right)^s M(z,1,1)$ and $\left(\frac{\partial}{\partial q}\right)^r \left(\frac{\partial}{\partial u}\right)^s M(z,1,u_1(z))$ and via *singularity analysis* large n asymptotics for the moments.

One proceeds in two steps: First show by induction

$$\left(\frac{\partial}{\partial q}\right)^r \left(\frac{\partial}{\partial u}\right)^s M(z,1,u_1(z)) \sim \frac{a_{r,s}}{(1-2z)^{3r/2+s/2+1/2}} \quad (z \longrightarrow 1/2),$$

where

$$a_{r,s} = a_{r,s-1} + (s+2)a_{r-1,s+2},$$

and then by induction

$$\left(rac{\partial}{\partial q}
ight)^{r}\left(rac{\partial}{\partial u}
ight)^{s}M(z,1,1)\simrac{b_{r,s}}{(1-2z)^{3r/2+s/2+1/2}}\quad(z\longrightarrow1/2),$$

where

$$b_{r,s} = b_{r,s-2} + (s+1)b_{r-1,s+1}, (s \ge 1),$$

 $b_{r,0} = b_{r-1,1} + a_{r-1,1}.$

Application of the transfer theorem finally yields:

$$\mathbb{E}(A_n^r H_n^s) \sim \frac{b_{r,s}}{b_{0,0}} \frac{\Gamma(1/2)}{\Gamma((3r+s)/2)} n^{(3r+s)/2},$$

and hence (after rescaling $n^{-3/2}A_n$ and $n^{-1/2}H_n$)

- ▶ $b_{r,s}$ is essentially $\mathbb{E}(\mathcal{M}\mathcal{A}^r\mathcal{M}(1)^s)$,
- ightharpoonup similarly $a_{r-1,1}$ is essentially $\mathbb{E}\left(\mathcal{E}\mathcal{A}^{r}\right)$.

Discrete meanders and excursions with arbitrary finite step sets: No result on convergence to \mathcal{M} resp. \mathcal{E} ! But:

- ► Generating function satisfies a similar functional equation.
- Area moments for meanders and excursions can be computed in the same fashion,
- ▶ and are expressed in terms of the very same $b_{r,s}$ resp. $a_{r-1,1}$!

Result depends on the sign of the drift = mean of the step set.

Column convex polyominoes: Area distribution on polyominoes with fixed perimeter n.

- Similar functional equation as above.
- ▶ Similar arguments yield an $\mathcal{E}\mathcal{A}$ limit law as $n \longrightarrow \infty$.

Acknowledgement

Thank you for your attention!

And thanks to

- Alexander von Humboldt Foundation
- RMIT University
- The ARC Centre of Excellence Mathematics and Statistics of Complex Systems (MASCOS)

for financial support.

Ouch!

Taking derivatives of the fct. eq. w.r.t. q and u allows recursive computation of $F^{n,t}$.

$$(1 - zS(u))F^{n,0}(u) + z \sum_{i=0}^{c-1} r_i(u)G_i^{(n)} = zS(u)nF^{n-1,1}(u)$$

$$+zS(u) \sum_{t=2}^{n} \binom{n}{t}F^{n-t,t}(u)$$

$$+z \sum_{l=1}^{n} \sum_{t=0}^{n-l} \binom{n}{l} \binom{n-l}{t} u^{l+t}S^{(l)}(u)F^{n-l-t,t}(u)$$

$$-z \sum_{i=0}^{c-1} \sum_{l=1}^{n} \binom{n}{l} u^l r^{(l)}(u)G_i^{(n-l)}.$$