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Some continuous time processes...

A Brownian Motion of duration 1 is a stochastic process B(t),

t ∈ [0, 1] such that

I t 7→ B(t) is a.s. continuous, B(0) = 0,

I for s < t, B(t)− B(s) ∼ N (0, t − s) and

I increments are independent.

A Brownian Meander M(t), t ∈ [0, 1] is a BM B(t) conditioned

on B(s) ≥ 0, s ∈]0, 1].

A Brownian Excursion E(t), t ∈ [0, 1] is M(t) conditioned on

M(1) = 0 (quick and dirty def.).
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... and their discrete counterparts

The Bernoulli Random Walk Bn(k) on Z, k ∈ {0, 1, . . . , n}, with

I Bn(0) = 0,

I Bn(k + 1)− Bn(k) ∈ {−1, 1}, each with prob. 1/2.

The Bernoulli Meander Mn(k), k ∈ {0, . . . , n} on Z≥0 is Bn(k)

conditioned to stay non-negative.

The Bernoulli Excursion E2n(k), k ∈ {0, . . . , 2n} on Z≥0 is

M2n(k) conditioned on M2n(2n) = 0.
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Scaling limits

For n −→∞ we have the weak limits

I
{

1√
n
Bn(bntc), t ∈ [0, 1]

}
−→{B(t), t ∈ [0, 1]} ,

I
{

1√
n
Mn(bntc), t ∈ [0, 1]

}
−→{M(t), t ∈ [0, 1]} ,

I
{

1√
2n
E2n(b2ntc), t ∈ [0, 1]

}
−→{E(t), t ∈ [0, 1]} .
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Drmota (2003): Weak limits imply moment convergence for

certain functionals. E.g. for area (i.e. integrals)

E

[(∫ 1

0

1√
2n
E2n(b2ntc)dt

)r
]
−→ E [EAr ] ,

E

[(∫ 1

0

1√
n
Mn(bntc)dt

)r
]
−→ E [MAr ] ,

for n −→∞, where

EA :=

∫ 1

0
E(t)dt, MA :=

∫ 1

0
M(t)dt.

So studying functionals on E or M amounts to studying the

discrete models!
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Particularly EA appears in a number of discrete contexts, e.g.

I Construction costs of hash tables,

I cost of breadth first search traversal of a random tree,

I path lengths in random trees,

I area of polyominoes,

I enumeration of connected graphs.

Many of the discrete results rely on recursions for the moments of

EA and MA found by Takács (1991,1995) studying E2n and Mn.
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Results

We choose a different combinatorial approach and obtain

I new formulae for E (EAr ) and E (MAr ) ,

I the joint distribution of (MA,M(1)) in terms of the joint

moments E (MArM(1)s) ,

I the joint distribution of (signed) areas and endpoint of B,

and as an application of these

I area of discrete meanders with arbitrary finite step sets,

I area distribution of column convex polyominoes.
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In the discrete world, we can write the joint distribution of the

random variables

An =
n∑

k=0

Mn(k) and Hn = Mn(n)

as

P(An = k, Hn = l) =
pn,k,l∑
r ,s pn,r ,s

,

where pn,k,l is the number of meanders of length n, area k and

final height l .
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The generating function of the class of meanders is the formal

power series

M(z , q, u) =
∑
n

∑
k,l

pn,k,lq
kul

 zn,

The above probabilities can be rewritten as

P(An = k, Hn = l) =
pn,k,l∑
r ,s pn,r ,s

=

[
znqkul

]
M(z , q, u)

[zn] M(z , 1, 1)
.
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M(z , q, u) =
∑
n

∑
k,l

pn,k,lq
kul

 zn,

and

P(An = k, Hn = l) =

[
znqkul

]
M(z , q, u)

[zn] M(z , 1, 1)
.

With this representation the moments take a particularly nice form:

E (Ar
nH

s
n) =

∑
k,l

k r l sP(An = k, Hn = l)

=
[zn]

(
q ∂

∂q

)r (
u ∂

∂u

)s
M(z , 1, 1)

[zn] M(z , 1, 1)
.

So: large n behaviour of the moments by coefficient asymptotics of

the above series.
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Singularity analysis (Flajolet, Odlyzko 1990)

Transfer Theorem: Let F (z) =
∑

fnz
n be analytic in an indented

disk and

F (z) ∼ (1− µz)−α (z −→ 1/µ).

Then

fn ∼ [zn] (1− µz)−α ∼ 1

Γ(α)
× nα−1 × µn (n −→∞).

For example, it turns out, that(
∂

∂q

)r (
∂

∂u

)s

M(z , 1, 1) ∼ br ,s

(1− 2z)3r/2+s/2+1/2
(z −→ 1/2),
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Functional equation for M(z , q, u).

The recursive description of the set of meanders

{meanders of length n} '

{meanders of length n − 1} × {↗,↘}

\ {excursions of length n − 1} × {↘}

translates into

M(z , q, u) = 1 + M(z , q, uq)

(
zuq +

z

uq

)
− E (z , q)

z

uq
,

E (z , q) is the generating function of excursions.
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Solution to the equation for q = 1 by the kernel method:

−z(u − u1(z))(u − v1(z))M(z , 1, u) = u − zE (z , 1).

where u1(z) = 1−
√

1−4z2

2z and v1(z) = 1+
√

1−4z2

2z .

Substitution of u = u1(z) yields

E (z , 1) =
u1(z)

z
=

1−
√

1− 4z2

2z2
,

and finally

M(z , 1, u) =
1

−z(u − v1(z))
.
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The partial derivatives
(

∂
∂q

)r (
∂
∂u

)s
M(z , 1, u) can in principle be

obtained inductively by taking derivatives of the functional

equation (and setting q = 1).

I Each derivative w.r.t. u produces one new unknown function(
∂
∂q

)r (
∂
∂u

)s+1
M(z , 1, u).

I Each derivative w.r.t. q produces two new unknowns,(
∂
∂q

)r+1
E (z , 1) and

(
∂
∂q

)r+1 (
∂
∂u

)s
M(z , 1, u) and hence

requires another application of the kernel method.
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The exact expressions for
(

∂
∂q

)r (
∂
∂u

)s
M(z , 1, u) and for

E (Ar
nH

s
n) =

[zn]
(
q ∂

∂q

)r (
u ∂

∂u

)s
M(z , 1, 1)

[zn] M(z , 1, 1)
.

are getting intractable.

But we can keep track of the singular behaviour of(
∂
∂q

)r (
∂
∂u

)s
M(z , 1, 1) and

(
∂
∂q

)r (
∂
∂u

)s
M(z , 1, u1(z)) and via

singularity analysis large n asymptotics for the moments.
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One proceeds in two steps: First show by induction(
∂

∂q

)r (
∂

∂u

)s

M(z , 1, u1(z)) ∼ ar ,s

(1− 2z)3r/2+s/2+1/2
(z −→ 1/2),

where

ar ,s = ar ,s−1 + (s + 2)ar−1,s+2,

and then by induction(
∂

∂q

)r (
∂

∂u

)s

M(z , 1, 1) ∼ br ,s

(1− 2z)3r/2+s/2+1/2
(z −→ 1/2),

where

br ,s = br ,s−2 + (s + 1)br−1,s+1, (s ≥ 1),

br ,0 = br−1,1 + ar−1,1.
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Application of the transfer theorem finally yields:

E (Ar
nH

s
n) ∼

br ,s

b0,0

Γ(1/2)

Γ((3r + s)/2)
n(3r+s)/2,

and hence (after rescaling n−3/2An and n−1/2Hn)

I br ,s is essentially E (MArM(1)s) ,

I similarly ar−1,1 is essentially E (EAr ) .
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Discrete meanders and excursions with arbitrary finite step sets:

No result on convergence to M resp. E! But:

I Generating function satisfies a similar functional equation.

I Area moments for meanders and excursions can be computed

in the same fashion,

I and are expressed in terms of the very same br ,s resp. ar−1,1!

Result depends on the sign of the drift = mean of the step set.
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Column convex polyominoes: Area distribution on polyominoes

with fixed perimeter n.

I Similar functional equation as above.

I Similar arguments yield an EA limit law as n −→∞.
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Ouch!

Taking derivatives of the fct. eq. w.r.t. q and u allows recursive

computation of F n,t .

(1− zS(u))F n,0(u)+z
c−1∑
i=0

ri (u)G
(n)
i = zS(u)nF n−1,1(u)

+zS(u)
n∑

t=2

(
n

t

)
F n−t,t(u)

+z
n∑

l=1

n−l∑
t=0

(
n

l

)(
n − l

t

)
ul+tS (l)(u)F n−l−t,t(u)

−z
c−1∑
i=0

n∑
l=1

(
n

l

)
ul r (l)(u)G

(n−l)
i .
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