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Int(Z) Int(S, Z)

Definition
A non-empty set R together with two binary operations (+) and
(.) is called a ring if for every a,b, c ∈ R, the following
properties are valid:
(a) a + b ∈ R,
(b) (a + b) + c = a + (b + c),
(c) there exists an element 0 ∈ R such that a + 0 = a = 0 + a,
(d) for every a ∈ R, there exists an element −a ∈ R such that
a + (−a) = 0 = (−a) + a,
(e) a + b = b + a,
(f) a.b ∈ R,
(g) (a.b).c = a.(b.c),
( h ) a.(b + c) = a.b + a.c and (a + b).c = a.c + b.c,
( i ) there exists a element 1 ∈ R such that 1.a = a.1 = a.
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Int(Z) Int(S, Z)

Definition
A polynomial f (x) ∈ Q[x ] is called integer-valued if f (a) ∈ Z for
all a ∈ Z.
The set of all integer-valued polynomials is denoted by Int(Z),
in fact

Int(Z) := {f (x) ∈ Q[x ] | f (Z) ⊆ Z}.

Theorem
The set Int(Z) is a ring. Also, we have

Z[x ] & Int(Z) & Q[x ].

In fact, the ring Int(Z) is an integral domain between Z[x ] and
Q[X ].
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Definition
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The set of all integer-valued polynomials is denoted by Int(Z),
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Definition
A polynomial f (x) ∈ Q[x ] is called integer-valued if f (a) ∈ Z for
all a ∈ Z.
The set of all integer-valued polynomials is denoted by Int(Z),
in fact

Int(Z) := {f (x) ∈ Q[x ] | f (Z) ⊆ Z}.

Theorem
The set Int(Z) is a ring. Also, we have

Z[x ] & Int(Z) & Q[x ].

In fact, the ring Int(Z) is an integral domain between Z[x ] and
Q[X ].
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Int(Z) Int(S, Z)

Example

Let f (x) := x(x−1)
2 , then f (x) ∈ Int(Z) but f (x) is not an element

of Z[x ]. Also, if g(x) := x
2 then g(x) ∈ Q[x ] but g(x) is not an

element of Int(Z).

In general, for each n ∈ N,(
x
n

)
:=

x(x − 1) · · · (x − n + 1)
n!

,

is the polynomial of degree n belong to Int(Z).
Polya in 1915 stablished the following theorem about the
construction of Int(Z).
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Example
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Int(Z) Int(S, Z)

Theorem
A polynomial is integer-valued if and only if it can be written as
a Z-linear combination of the polynomials(

x
n

)
:=

x(x − 1) · · · (x − n + 1)
n!

,

for n = 0,1,2, · · · .

In fact, the polynomials
(

x
n

)
, construct a Z-basis for the

integer-valued polynomials ring Int(Z).
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Theorem
A polynomial is integer-valued if and only if it can be written as
a Z-linear combination of the polynomials(

x
n

)
:=

x(x − 1) · · · (x − n + 1)
n!

,

for n = 0,1,2, · · · .

In fact, the polynomials
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x
n

)
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integer-valued polynomials ring Int(Z).
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Int(Z) Int(S, Z)

The definition of an integer-valued polynomial is generalized on
a subset of Z, as follows:

Definition
Let S be a non-empty subset of Z. Then a polynomial
f (x) ∈ Q[x ] is called integer-valued on S if f (a) ∈ Z for each
a ∈ S.
The set of all integer-valued polynomials on S is denoted by
Int(S,Z), that is;

Int(S,Z) := {f (x) ∈ Q[x ] | f (S) ⊆ Z}.

For each non-empty subset S of Z, we can easily see that

Z[x ] & Int(Z) ⊆ Int(S,Z) & Q[x ].

Also, we have Int(Z,Z) = Int(Z).
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The definition of an integer-valued polynomial is generalized on
a subset of Z, as follows:

Definition
Let S be a non-empty subset of Z. Then a polynomial
f (x) ∈ Q[x ] is called integer-valued on S if f (a) ∈ Z for each
a ∈ S.
The set of all integer-valued polynomials on S is denoted by
Int(S,Z), that is;

Int(S,Z) := {f (x) ∈ Q[x ] | f (S) ⊆ Z}.

For each non-empty subset S of Z, we can easily see that

Z[x ] & Int(Z) ⊆ Int(S,Z) & Q[x ].

Also, we have Int(Z,Z) = Int(Z).
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Int(Z) Int(S, Z)

If S be a finite subset of Z, then we have the following theorem.

Theorem
Let S = {a0,a1, · · · ,an} be a finite subset of Z. Then we have

Int(S,Z) =
n∑

j=0

Z
∏
i ̸=j

x − ai

aj − ai
+ (x − a0)(x − a1) · · · (x − an)Q[x ].

Now, let S be an infinite subset of Z.
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Bhargava

Bhargava who won the fields medal in 2014, has several works
on integer-valued polynomials.
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Int(Z) Int(S, Z)

Generalized Factorial Function

p-ordering

Let S be an infinite subset of Z and p be a prime number in Z.
A P-ordering of S is a sequence {ai}∞i=1 of elements of S that
is formed as follows:

Choose any element a0 ∈ S,
Choose an element a1 ∈ S that minimizes the highest
power of p dividing (a1 − a0),
Choose an element a2 ∈ S that minimizes the highest
power of p dividing (a2 − a0)(a2 − a1),

and in general, at the k th step,
Choose an element ak ∈ S that minimizes the highest
power of p dividing (ak − a0)(ak − a1) · · · (ak − ak−1).
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Int(Z) Int(S, Z)

Generalized Factorial Function

Notice that a p-ordering of S is certainly not unique. In the
following definition, we define another sequence which is
unique on S.

p-sequence

Let {ai}∞i=0 be an arbitrary p-ordering on S. The associated
p-sequence of S corresponding to the p-ordering {ai}∞i=0 is
denoted by {νk (S,p)}∞k=0 and is defined as follows:

ν0(S,p) := 1,
νk (S,p) := wp((ak − a0)(ak − a1) · · · (ak − ak−1)),

(1)

for each k = 1,2, · · · , where wp(a) is the highest power of p
dividing a, for each a. (for example w3(18) = 32 = 9)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Int(Z) Int(S, Z)

Generalized Factorial Function

Theorem
The associated p-sequence of S is independent of the choice
of p-ordering.

Now, we can state the definition of factorial function of S.

factorial function of S.
Let S be a non-empty subset of Z. Then the factorial function
of S, denoted k !S, is defined by

k !S :=
∏

p

νk (S,p).

In particular, we have k !Z = k !.
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Generalized Factorial Function

Theorem
The associated p-sequence of S is independent of the choice
of p-ordering.

Now, we can state the definition of factorial function of S.

factorial function of S.
Let S be a non-empty subset of Z. Then the factorial function
of S, denoted k !S, is defined by

k !S :=
∏

p

νk (S,p).

In particular, we have k !Z = k !.
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Int(Z) Int(S, Z)

Generalized Factorial Function

Proposition
Let S and T be two non-empty subsets of Z and S ⊆ T . Then
we have k !T divides k !S, for each k ≥ 0. In particular, for each
non-empty subset S of Z, k ! | k !S.

Theorem
Let {ai}∞i=1 be a p-ordering of S for all primes p simultaneously.
Then

k !S =| (ak − a0)(ak − a1) · · · (ak − ak−1) | .
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Generalized Factorial Function

Proposition
Let S and T be two non-empty subsets of Z and S ⊆ T . Then
we have k !T divides k !S, for each k ≥ 0. In particular, for each
non-empty subset S of Z, k ! | k !S.

Theorem
Let {ai}∞i=1 be a p-ordering of S for all primes p simultaneously.
Then

k !S =| (ak − a0)(ak − a1) · · · (ak − ak−1) | .
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Int(Z) Int(S, Z)

Generalized Factorial Function

Example
Let S be the set of even integers, that is; S := 2Z. Then by
using induction, we can see that the natural ordering 0,2,4, · · · ,
of 2Z forms a p-ordering for all primes p. Hence, by the
previous theorem, we have

k !2Z = (2k − 0)(2k − 2) · · · (2k − (2k − 2)) = 2kk !.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Int(Z) Int(S, Z)

Generalized Factorial Function

By this factorial function, Bhargava made a basis for the ring
Int(S,Z). He established the following theorem.

Theorem
A polynomial is integer-valued on a subset S of Z if and only if it
can be written as a Z-linear combination of the polynomials

Bk ,S

k !S
:=

(x − a0,k )(x − a1,k ) · · · (x − ak−1,k )

k !S

for each k = 0,1,2, · · · , where {ai,k}∞i=0 is a sequence in Z that,
for each prime p dividing k !S , is term-wise congruent modulo
νk (S,p) to some p-ordering of S.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Int(Z) Int(S, Z)

over matrix rings

Recently, the set of integer-valued polynomials is considered in
some cases for noncommutative rings.
We notice that R[x ] is the polynomial ring in one variable x over
R, where x commutes with the elements of R. If
f (x),g(x) ∈ R[x ], then (fg)(x) denotes the product of f (x) and
g(x) in R[x ]. But, If R is noncommutative and α ∈ R, then
(fg)(α) is not necessarily equal to f (α)g(α). In this case, if
f (x) =

∑
i aix i , then we may express

(fg)(x) :=
∑

i

aig(x)x i . (∗)

In this work, we focus on matrix rings.
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Int(Z) Int(S, Z)

over matrix rings

For any given ring R, let Mn(R) denotes the ring of n × n
matrices with entries from R and Tn(R) denotes the ring of
n × n upper triangular matrices with entries from R. By these
notations, we define

Int(Mn(Z)) := {f ∈ Mn(Q)[x ] | f (Mn(Z)) ⊆ Mn(Z)},

and

Int(Tn(Z)) := {f ∈ Tn(Q)[x ] | f (Tn(Z)) ⊆ Tn(Z)}.
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Int(Z) Int(S, Z)

over matrix rings

In 2012, Werner showed that the set Int(Mn(Z)) with ordinary
addition and multiplication (∗) is a noncommutative ring.

In 2017, Frisch proved that Int(Tn(Z)) is a ring.

We see that if S be a non-empty subset of Z, then Int(S,Z) is a
ring. Therefore, there exist some qouestions here.

Question 1
Let S1 be an arbitrary subset of Mn(Z) and

Int(S1,Mn(Z)) := {f ∈ Mn(Q)[x ] | f (S1) ⊆ Mn(Z)}.

Is Int(S1,Mn(Z)) a ring under ordinary addition and
multiplication (∗)?
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In 2012, Werner showed that the set Int(Mn(Z)) with ordinary
addition and multiplication (∗) is a noncommutative ring.

In 2017, Frisch proved that Int(Tn(Z)) is a ring.

We see that if S be a non-empty subset of Z, then Int(S,Z) is a
ring. Therefore, there exist some qouestions here.

Question 1
Let S1 be an arbitrary subset of Mn(Z) and
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over matrix rings

Question 2
Let S2 be an arbitrary subset of Tn(Z) and

Int(S2,Tn(Z)) := {f ∈ Tn(Q)[x ] | f (S2) ⊆ Tn(Z)}.

Is Int(S2,Tn(Z)) a ring under ordinary addition and
multiplication (∗)?

The following example illustrates that, if S1 is a non-empty
subset of Mn(Z) then the set Int(S1,Mn(Z)) is not necessary a
ring.
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Example

Let S1 =

{[
0 1
0 1

]}
. Then S1 is a subset of M2(Z) and

f (x) :=
[ 1

2
1
2

0 0

]
x ∈ Int(S1,M2(Z)). But, by (∗) we have

f 2(x) =
[ 1

2
1
2

0 0

]([ 1
2

1
2

0 0

]
x
)

x =

[ 1
4

1
4

0 0

]
x2.

Then f 2
([

0 1
0 1

])
=

[
0 1

2
0 0

]
̸∈ M2(Z). This implies that

f 2 ̸∈ Int(S1,M2(Z)) and we conclude that Int(S1,M2(Z)) is not
closed under multiplication. Therefore, Int(S1,M2(Z)) is not a
ring.
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Furthermore, The previous example shows that, if S2 is a
non-empty subset of Tn(Z) then the set Int(S2,Tn(Z)) is not
necessary a ring.
We are going to introduce some subsets S1 of Mn(Z) such that
Int(S1,Mn(Z)) be a ring. We need to recall the definition of an
ideal.

Ideal
Let R be a commutative ring and I be a non-empty subset of R.
The set I is called an ideal of R if the following statements are
valid.

If a and b are elements of I then a − b ∈ I,
If a ∈ I and r ∈ R then ra ∈ I.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Int(Z) Int(S, Z)

over matrix rings

Furthermore, The previous example shows that, if S2 is a
non-empty subset of Tn(Z) then the set Int(S2,Tn(Z)) is not
necessary a ring.
We are going to introduce some subsets S1 of Mn(Z) such that
Int(S1,Mn(Z)) be a ring. We need to recall the definition of an
ideal.

Ideal
Let R be a commutative ring and I be a non-empty subset of R.
The set I is called an ideal of R if the following statements are
valid.

If a and b are elements of I then a − b ∈ I,
If a ∈ I and r ∈ R then ra ∈ I.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Int(Z) Int(S, Z)

over matrix rings

Furthermore, The previous example shows that, if S2 is a
non-empty subset of Tn(Z) then the set Int(S2,Tn(Z)) is not
necessary a ring.
We are going to introduce some subsets S1 of Mn(Z) such that
Int(S1,Mn(Z)) be a ring. We need to recall the definition of an
ideal.

Ideal
Let R be a commutative ring and I be a non-empty subset of R.
The set I is called an ideal of R if the following statements are
valid.

If a and b are elements of I then a − b ∈ I,
If a ∈ I and r ∈ R then ra ∈ I.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Int(Z) Int(S, Z)

over matrix rings

Example

The set 2Z := {2k | k ∈ Z} is an ideal of ring Z.
In general, for each a ∈ Z, the set aZ := {ak | k ∈ Z} is an
ideal of ring Z.

Now, we can state a necessary condition on subset S1 of
Mn(Z) such that Int(S1,Mn(Z)) be a ring.

Theorem
Let I be an ideal of Z and
S1 := Mn(I) = {[aij ] ∈ Mn(R) | aij ∈ I ∀1 ≤ i , j ≤ n}. Then
Int(S1,Mn(Z)) is a ring.
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For the upper triangular matrices we use the following notation.

Notation
We write [aij ]j≥i to denote the following upper triangular matrix,

a11 a12 . . . a1n
0 a22 . . . a2n
...

...
...

...
0 0 . . . ann

 .

For the family {B1,B2, . . . ,Bk } of matrices, b(r)
ij denotes the

(i , j)-th entry of the matrix Br , where 1 ≤ r ≤ k .
Also for each matrix A, we write a[r ]

ij for the (i , j)-th entry of Ar ,

that is; (Ar )ij = a[r ]
ij
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In the upper triangular matrix ring, we have the following
lemma.

Lemma

Let E be a subset of Z containing zero, f (x) = Bkxk + · · ·+ B1x
be an element of the set Int(Tn(E),Tn(Z)) and
A = [aij ]j≥i ∈ Tn(E). Then we have

k∑
r=1

b(r)
il a[r ]

sj ∈ Z, (2)

where 1 ≤ i ≤ l ≤ s ≤ j ≤ n.

Now, we are ready to state the main theorem on the upper
triangular matrix ring.
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Theorem
Let E be a subset of Z containing zero and S2 := Tn(E). Then
the set Int(S2,Tn(Z)) is a ring under ordinary addition and
multiplication of (∗).

Sketch of proof

It is obvious that the set Int(S2,Tn(Z)) is non-empty and is
closed under addition. Then it is enough to show that
Int(S2,Tn(Z)) is closed under multiplication. Let
f (x),g(x) ∈ Int(S2,Tn(Z)), A ∈ S2 and
f (x) = Bkxk + Bk−1xk−1 + · · ·+ B1x + B0. Suppose that
g(A) := Γ = [γij ]j≥i ∈ Tn(Z), then we obtain

(fg)(A) = BkΓAk + · · ·+ B1ΓA + B0Γ.

Let Ωr = [ω
(r)
ij ] := BrΓ for 0 ≤ r ≤ k , then we have
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Ωr =

 j∑
l=i

b(r)
il γlj


j≥i

.

We can write

(fg)(A) = ΩkAk + · · ·+Ω1A +Ω0

=

 j∑
s=i

k∑
r=1

ω
(r)
is a[r ]

sj

+ ω
(0)
ij


j≥i

=

 j∑
s=i

k∑
r=1

(
s∑

l=i

b(r)
il γls

)
a[r ]

sj

+ ω
(0)
ij


j≥i

=

 j∑
s=i

s∑
l=i

γls

k∑
r=1

b(r)
il a[r ]

sj

+ ω
(0)
ij


j≥i

,
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where 1 ≤ i ≤ l ≤ s ≤ j ≤ n. By using (2), we have∑k
r=1 b(r)

il a[r ]
sj ∈ Z. Also, γls and ω

(0)
ij are elements of Z, so

(fg)(A) ∈ Tn(Z). Then fg ∈ Int(S2,Tn(Z)) and hence
Int(S2,Tn(Z)) is a ring.

There are many open problems on the subject of integer-valued
polynomials over matrix rings. In the following, we state some
open problems on this subject.
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Open problems

Q1

Is there a necessary and sufficient condition on the subset S1
of Mn(Z) such that Int(S1,Mn(Z)) be a ring?

Q2

Is there a necessary and sufficient condition on the subset S2
of Tn(Z) such that Int(S2,Tn(Z)) be a ring?
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Open problems

Q3

Is there any regular basis for the ring Int(S1,Mn(Z)), where S1
is a non-empty subset of Mn(Z)?

Q4

Is there any regular basis for the ring Int(S2,Tn(Z)), where S2 is
a non-empty subset of Tn(Z)?
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Thank you for your attention


	Int(Z)
	Int(S, Z)
	Generalized Factorial Function
	over matrix rings


