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1. Matroids

Whitney [9] defined a matroid M on a set E:

M = (E, I)
E is a finite set
I is a collection of subsets of E such that

I1 ∅ ∈ I;

I2 If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I
I3 If I1 and I2 are members of I and |I1| < |I2|,

then there exists an element e in I2 − I1 such that
I1 + e is a member of I.
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Bases

Because of condition [I2], all of the maximal independent sets
have the same cardinality. These maximal independent sets are
called the bases of the matroid. The bases may be described
directly: Let E be a finite set, a nonempty collection B of
subsets of E is called a basis system for M if

B1 B 6= ∅
B2 For all B1, B2 ∈ B, |B1| = |B2|
B3 For all B1, B2 ∈ B and e1 ∈ B1 − B2, there exists e2 ∈

B2 −B1 such that B1 − e1 + e2 ∈ B.
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Condition [B3] is sometimes called the exchange axiom. It also
has a slightly different but equivalent formulation:

B3′ For all B1, B2 ∈ B and e2 ∈ B2 − B1, there exists e1 ∈
B1 −B2 such that B1 − e1 + e2 ∈ B.

Complements of bases also satisfy [B3], these complements are
bases of the dual matroid.

Every matroid M has a dual M ∗.
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Rank

Let M be a matroid on E with independent sets I and define
r(I), a function from the power set of E into the nonnegative
integers by r(I)(S) = max{|I| : I ∈ I, I ⊆ S}. The function
r = rI is called the rank function of M .
In general, let E be a finite set and r a function from the power
set of E into the nonnegative integers so that

R1 r(∅) = 0;

R2 r(S) ≤ |S|;
R3 if S ⊆ T then r(S) ≤ r(T );

R4 r(S ∪ T ) + r(S ∩ T ) ≤ r(S) + r(T );

then r is called a rank function on E. If r is a rank function
on E we define I(r) = {I ⊆ E | r(I) = |I|}
Condition [R4] is called the submodular inequality.
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Cycles

Given a finite set E, we call a collection C a cycle system [6]
for E, if the following three conditions are satisfied:

Z1 If C ∈ C then C 6= ∅
Z2 If C1 and C2 are members of C then C1 6⊆ C2

Z3 If C1 and C2 are members of C and if e is an element of
C1 ∩ C2 then there is an element C ∈ C, such that C ⊆
(C1 ∩ C2 − e).
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2. Graphs

A matroid is graphic if it is isomorphic to the cycle matroid on
the edge set E of a graph G = (V,E). Non-isomorphic graphs
may have the same cycle matroid, but 3-connected graphs are
uniquely determined by their matroids.



Matroids

Graphs

Rigidity

Matroids on Kn

Geometry

Home Page

Title Page

JJ II

J I

Page 8 of 35

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

M is co-graphic if M ∗ is graphic.
M is graphic as well as co-graphic if and only if G is planar.
Map duality (geometric duality) agrees with matroid duality.
The facial cycles generate the cycle space.
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Euler’s formula

If G(V,E) is planar and connected, its cycle matroid has rank
|V | − 1, its co-cycle matroid has rank |F | − 1, so |V | − 1 +
|F | − 1 = |E|, i.e.

|V | − |E| + |F | = 2
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3. Rigidity

framework (in m-space)

a triple (V,E,−→p ),

(V,E) is a graph

−→p : V −→ Rm

rigid framework

if all solutions to the corresponding system of quadratic equa-
tions of length constraints for the edges in some neighborhood
of the original solution (as a point in mn-space) come from
congruent frameworks.

1

2



Matroids

Graphs

Rigidity

Matroids on Kn

Geometry

Home Page

Title Page

JJ II

J I

Page 11 of 35

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Rigidity Matrix

Jacobian of the system

2

1

6

3 4 5



p1=(0,1) p2=(−2,0) p3=(−1,0) p4=(1,0) p5=(2,0) p6=(0,−1)

(1,2) (−2,−1) ( 2, 1)
(1,3) (−1,−1) ( 1, 1)
(1,4) ( 1,−1) (−1, 1)
(1,5) ( 2,−1) (−2, 1)
(2,6) (−2, 1) (−2, 1) ( 2,−1)
(3,6) (−1, 1) ( 1,−1)
(4,6) ( 1, 1) (−1,−1)
(5,6) ( 2, 1) (−2,−1)
(2,3) (−1, 0) ( 1, 0) ( 2, 1)
(4,5) (−1, 0) ( 1, 0)


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2

1

6

3 4 5



p1,x p2,x p3,x p4,x p5,x p6,x p1,y p2,y p3,y p4,y p5,y p6,y

(1,2) −2 2 −1 1
(1,3) −1 1 −1 1
(1,4) 1 −1 −1 1
(1,5) 2 −2 −1 1
(2,6) −2 −2 2 1 1 −1
(3,6) −1 1 1 −1
(4,6) 1 −1 1 −1
(5,6) 2 −2 1 −1
(2,3) −1 1 2 0 0 1
(4,5) −1 1 0 0


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2

1

6

3 4 5



p1,x p2,x p3,x p4,x p5,x p6,x p1,y p2,y p3,y p4,y p5,y p6,y

(1,2) 1 1 −1 −1
(1,3) 1 1 −1 −1
(1,4) 1 1 −1 −1
(1,5) 1 1 −1 −1
(2,6) 1 1 1 −1 −1 −1
(3,6) 1 1 −1 −1
(4,6) 1 1 −1 −1
(5,6) 1 1 −1 −1
(2,3) 1 1 1 −1 −1 −1
(4,5) 1 1 −1 −1


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2

1

6

3 4 5



p1,x p2,x p3,x p4,x p5,x p6,x p1,y p2,y p3,y p4,y p5,y p6,y

(1,2) 1 1 1 1
(1,3) 1 1 1 1
(1,4) 1 1 1 1
(1,5) 1 1 1 1
(2,6) 1 1 1 1 1 1
(3,6) 1 1 1 1
(4,6) 1 1 1 1
(5,6) 1 1 1 1
(2,3) 1 1 1 1 1 1
(4,5) 1 1 1 1


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Kirchhoff’s matrix-tree theorem

Let A be the incidence matrix of a graph G on n vertices.
The determinant of an (n − 1) × (n − 1) minor of ATA (the
Laplacian matrix of G) counts the number of spanning trees in
G.

2

1

6

3 4 5

ATA =


4 1 1 1 1 0
1 3 1 0 0 1
1 1 3 0 0 1
1 0 0 3 1 1
1 0 0 1 3 1
0 1 1 1 1 4

 det


3 1 0 0 1
1 3 0 0 1
0 0 3 1 1
0 0 1 3 1
1 1 1 1 4

 = 192
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Oldest characterization of 2d-rigidity

Hilda Pollaczek-Geiringer [5] (1927)

In a rigidity matrix with 2k− 3 rows and 2k columns no 2k− 3
sub-determinant is identically zero if and only if there is no p-
set of columns (p < 2k − 3) where all elements are zero which
these p columns have in common with more than (2k − 3)− p
rows.

Frobenius [2]

A determinant of order n some of whose elements are zero and
the others independent variables is identically equal to zero if
and only if there exists at least a group of p rows in which more
than n− p columns contain all zeros.
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Frobenius didn’t think highly of graph theory:

Frobenius: Über zerlegbare Determinanten 27 <

negativ, so verschwinden alle Elemente von C , demnach alle Elemente

der /?ten Spalte, und mithin ist s = 0.

Die Theorie der Graphen, mittels deren Hr. König den obigen

Satz abgeleitet hat, ist nach meiner Ansicht ein wenig geeignetes Hilfs-

mittel für die Entwicklung der Determinantentheorie. In diesem Falle

führt sie zu einem ganz speziellen Satze von geringem Werte. Was
von seinem Inhalt Wert hat, ist in dem Satze II ausgesprochen.

Ausgegeben am 19. April.
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From Whitney’s original paper [8]

THEOREM 28. Let H be a hyperplane through the origin in
En, of dimension r, and let H ′ be the orthogonal hyperplane
through the origin, of dimension n− r. Let M and M ′ be the
associated matroids. Then M and M ′ are duals.
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Problem 2 on page 27 of [7]

Given an arbitrary collection D of incomparable subsets of E
does there exist a matroid M which has a circuit set

C(M) ⊇ D?
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Cycle axioms for graphs

C14 C2 is the edge disjoint union of cycles.
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4. Matroids on Kn

Wanted:

The matroid of largest possible rank that contains a specified
set of graphs as dependent sets.

+ =

Theorem 1 The unique maximal matroid on Kn contain-
ing all triangles as cycles is the cycle matroid.
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What do we get if we want the maximal matroid on Kn con-
taining all 4-gons?

+ =
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The set of cycles consists of all even cycles and odd dumbbells.
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What do we get from pentagons?
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OR
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A hexagon is dependent. A path of length 6 is dependent. The
rank is bounded!
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Theorem 2 The unique maximal matroid on Kn contain-
ing all tetrahedra as cycles is the 2d-rigidity matroid.

Conjecture 1 The unique maximal matroid on Kn con-
taining all K5’s as cycles is the 3d-rigidity matroid.
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5. Geometry

Oxley [4] emphasizes matroids coming from geometries.

Oriented matroids [1] come from hyperplanearrangements. In-
teresting new applications are plentiful [3].
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[2] F. G. Frobenius. Über zerlegbare Determinanten. Sitzungsberichte der Berl. Akademie, XVIII,
1917.

[3] A.O. Matveev. Pattern Recognition on Oriented Matroids. De Gruyter, 2017.

[4] James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford
University Press, Oxford, second edition, 2011.
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