# Tight triangulations: a link between combinatorics and topology

Jonathan Spreer



## Topological manifolds

• (Geometric) Topology is study of manifolds (surfaces) up to continuous deformation



- Complicated deformations make recognition of a manifold difficult (if not impossible)
- Recognition might still be easy for "sufficiently nice" deformations



## Convexity

- ▶ Topological balls / spheres ⇒ CONVEXITY
- Limited use in geometry and topology: many objects are not balls / cannot be convex
- Intuitive notion: many objects look more convex than others



# **Tightness**

- An embedding of a topological space D into some Euclidean space  $\mathbb{E}^d$  is said to be tight, if it is "as convex as possible" given its topological constraints
- D is tight if and only if intersecting D with a half space h does not introduce new topological features (eg. connected components or holes)



► Tightness generalises convexity, and minimises total absolute curvature.¹

<sup>&</sup>lt;sup>1</sup>Developed by Alexandrov, 1938; Milnor, Chern and Lashof, Kuiper, 1950's.

# **Tightness**



# Morse theory



Fig. 5.

# Morse theory



- Given a manifold M, look at a function  $f: M \to \mathbb{R}$
- f has finitely many critical levels  $f^{-1}(\alpha)$
- $f \rightarrow$  "height function",  $f^{-1}(M) \rightarrow$  "contour lines"
- ▶ Defines handle decomposition of  $M \Rightarrow$  "finite" description of M
- ▶ Powerful: used to prove *h*-cobordism theorem

# Morse theory and tightness

- Some height functions are better than others: fewer critical levels means more efficient handle decomposition
- ▶ How good can a Morse function be?

### Theorem (Morse relations)

Let M be a manifold, and let  $f: M \to \mathbb{R}$  be a Morse function. Then

$$\mu(f) \geq \sum_{i=0}^{a} \beta_i(M, \mathbb{Z}_2)$$

where  $\beta_i(M, \mathbb{Z}_2)$  is the i-th Betti number of M with  $\mathbb{Z}_2$ -coefficients.

- ▶ If f attains equality, it is called perfect
- "Direction along which an object appears tight"
- Embedding is tight if and only if all projections are perfect Morse functions.
- Deciding whether such a function exist is NP-complete.<sup>2</sup>
- Is deciding whether "all Morse functions are perfect" coNP-complete?



<sup>&</sup>lt;sup>2</sup>Joswig and Pfetsch 2006.

# Finite description of manifolds

Represent manifolds (surfaces) as simplicial complexes





A PL triangulation of a manifold M is a simplicial complex C such that every vertex link is PL homeomorphic to the standard sphere.





Question: can we link combinatorial properties of C to topological properties of M?

# Finite description of manifolds

Represent manifolds (surfaces) as simplicial complexes







A PL triangulation of a manifold M is a simplicial complex C such that every vertex link is PL homeomorphic to the standard sphere.





- Question: can we link combinatorial properties of C to topological properties of M?
- Euler Characteristic >



# Finite description of manifolds

Represent manifolds (surfaces) as simplicial complexes







 A PL triangulation of a manifold M is a simplicial complex C such that every vertex link is PL homeomorphic to the standard sphere.





- Question: can we link combinatorial properties of C to topological properties of M?
- $\blacktriangleright$  **Euler** Characteristic **X**, first  $\mathbb{Z}_2$ -Betti number(?)



# Abstract discrete version of tightness

Goal: intrinsic interaction between combinatorics and topology.

- C connected abstract simplicial complex with vertex set V(C).
- ▶  $W \subset V(C)$ , C[W] subcomplex of C "induced by W".
- ► C is tight if and only if  $\forall W \subset V(C)$ , C[W] does not introduce any new topological features.<sup>3</sup>





► Tight triangulations are conjectured to be strongly minimal<sup>4</sup>



<sup>&</sup>lt;sup>3</sup>Banchoff 1970, Kühnel 1995

<sup>&</sup>lt;sup>4</sup>Kühnel Lutz

# **Tightness** → **counting topological features**

- New top. features ⇔ non-perfect PL Morse function
- Compute average no. of critical levels per PL Morse function
  - For each subset  $W \subset V(C)$ , think of PL Morse functions  $f: C \to \mathbb{R}$ , s.t. f(a) < f(b) for all pairs  $a \in W$ ,  $b \in V(C) \setminus W$
  - ► Count all such Morse functions
  - ▶ Count topological features of  $lk_C(v) \cap W$ , for all  $v \in V(C)$
  - Morse relation: Weighted sum (average) must equal sum of Betti numbers



# Separation and $\mu$ index

#### Definition

C simplicial complex with n vertices, the  $\mu$  index of C is given by

$$\mu(C) \coloneqq \frac{1}{n} \sum_{v \in V(C)} \sigma(\mathsf{lk}_C(v)),$$

where

$$\sigma(\mathsf{lk}_{C}(v)) \coloneqq \sum_{W \subseteq V(C)} \frac{\#(\mathsf{lk}_{C}(v)[W]) - 1}{\binom{n}{|W|}}$$

is called the separation index of  $lk_C(v)$ .

Theorem (Combinatorial Morse relations)

C triangulation of (conn.) manifold M. Then  $\mu(C) \geq \beta_1(M, \mathbb{Z}_2)$ .



# Known tight triangulations

- ▶  $dim(C) \le 2$ : C tight  $\Leftrightarrow$  every pair of vertices of C spans edge
- Surface types admitting tight triangulations: most orientable and non-orientable surfaces S with Euler characteristic

$$\chi(S) = -\frac{1}{6}k(k-7),$$

 $k \in \mathbb{Z}, \ k > 3.$ 

- Manifolds known to admit tight triangulations in dim > 2: K3 surface,  $\mathbb{C}P^2$ , SU(3)/SO(3), infinitely many sphere bundles
- Focus of this talk is dim(C) = 3: Equality in combinatorial Morse relation if and only if C is tight.

# Known tight triangulations

- ▶  $dim(C) \le 2$ : C tight  $\Leftrightarrow$  every pair of vertices of C spans edge
- Surface types admitting tight triangulations: most orientable and non-orientable surfaces S with Euler characteristic

$$\chi(S) = -\frac{1}{6}k(k-7),$$

 $k \in \mathbb{Z}, \ k > 3.$ 

- Manifolds known to admit tight triangulations in  $\dim > 2$ : K3 surface,  $\mathbb{C}P^2$ , SU(3)/SO(3), infinitely many sphere bundles
- Focus of this talk is dim(C) = 3: Equality in combinatorial Morse relation if and only if C is tight.
- Result: "Tight triangulations of 3-manifolds are strongly minimal, and must have stacked 2-spheres as vertex links"

 $<sup>^{5}</sup>$ which we will show is a purely combinatorial condition  $\bigcirc > + \bigcirc >$ 

A stacked (d + 1)-ball is defined recursively:

- A (d+1)-simplex is a stacked (d+1)-ball.
- A simplicial complex obtained from a stacked (d+1)-ball B by gluing a (d+1)-simplex along a d-boundary face of B is a stacked (d+1)-ball.



Stacked (d-1)-sphere: boundary complex of a stacked d-ball.



A stacked (d + 1)-ball is defined recursively:

- A (d+1)-simplex is a stacked (d+1)-ball.
- A simplicial complex obtained from a stacked (d+1)-ball B by gluing a (d+1)-simplex along a d-boundary face of B is a stacked (d+1)-ball.



Stacked (d-1)-sphere: boundary complex of a stacked d-ball.



- ightharpoonup We know:  $\mu$  is an upper bound for the first Betti number
- Question: given a simplicial complex C with n vertices, how large can  $\mu(C)$  be?
- Maximise connected components of subsets of links (i.e., maximise  $\sigma(\operatorname{lk}_C(v))$
- Intuition: maximum is attained when number of edges is small

#### Theorem (Kalai 1987)

Let S be a triangulated d-sphere,  $d \ge 3$ . Then S has at least as many edges as a stacked d-sphere with equality iff S is stacked.



Vertex links  $lk_C(v)$  are triangulations of the 2-sphere with n vertices, e edges and t triangles.

- ► 2e = 3t (every edge is contained in exactly two triangles) ► n - e + t = 2 (Euler characteristic) ► f(S) = (n, 3n - 6, 2n - 4)
- number of edges is always the same

Vertex links  $lk_C(v)$  are triangulations of the 2-sphere with n vertices, e edges and t triangles.

- ightharpoonup 2e = 3t (every edge is contained in exactly two triangles)
- ► n e + t = 2 (Euler characteristic)
- $\Rightarrow f(S) = (n, 3n 6, 2n 4)$
- number of edges is always the same



Vertex links  $lk_C(v)$  are triangulations of the 2-sphere with n vertices, e edges and t triangles.

- ▶ 2e = 3t (every edge is contained in exactly two triangles)
- ► n e + t = 2 (Euler characteristic)
- $\Rightarrow f(S) = (n, 3n 6, 2n 4)$
- number of edges is always the same

|                      |             | _                 |             |
|----------------------|-------------|-------------------|-------------|
| Triangulation $S$    | $\sigma(S)$ | Triangulation $S$ | $\sigma(S)$ |
| c b c                | 0           | c b c             | 1/5         |
| c \$\int_{b}^{a} c\$ | 27/35       | c c               | 5/7         |
| c b                  | 11/9        | c o c             | 71/63       |
| c c                  | 23/21       | c b               | 22/21       |



Theorem (Burton, Datta, Singh, S. 2014)

Let S be an n-vertex triangulated 2-sphere. Then

$$\sigma(S) \leq \frac{(n-8)(n+1)}{20},$$

where equality occurs if and only if S is a stacked sphere.

Bound on  $\sigma$ 

Theorem (Burton, Datta, Singh, S. 2014)

Let S be an n-vertex triangulated 2-sphere. Then

$$\sigma(S) \leq \frac{(n-8)(n+1)}{20},$$

where equality occurs if and only if S is a stacked sphere.

Bound on  $\sigma \rightarrow Bound on \mu$ 

Theorem (Burton, Datta, Singh, S. 2014)

Let S be an n-vertex triangulated 2-sphere. Then

$$\sigma(S) \leq \frac{(n-8)(n+1)}{20},$$

where equality occurs if and only if S is a stacked sphere.

Bound on  $\sigma \to \text{Bound on } \mu \to \text{Bound on } \beta_1(M, \mathbb{Z}_2)$ 

Corollary (See also Lutz, Sulanke, Swartz, 2008)

Let C be a triangulation of a 3-manifold M with n vertices. Then

$$n \geq \frac{1}{2} \left( 9 + \sqrt{1 + 80\beta_1(M, \mathbb{Z}_2)} \right)$$

and C is tight if

equality is attained.

Corollary (See also Lutz, Sulanke, Swartz, 2008)

Let C be a triangulation of a 3-manifold M with n vertices. Then

$$n \geq \frac{1}{2} \left( 9 + \sqrt{1 + 80\beta_1(M, \mathbb{Z}_2)} \right)$$

and C is tight if

equality is attained.

Theorem (Bagchi, Datta, S. 2016)

Let C be a tight triangulation of a 3-manifold with n vertices. Then all of its vertex links are (n-1)-vertex stacked 2-spheres.



Corollary (See also Lutz, Sulanke, Swartz, 2008)

Let C be a triangulation of a 3-manifold M with n vertices. Then

$$n \geq \frac{1}{2} \left( 9 + \sqrt{1 + 80\beta_1(M, \mathbb{Z}_2)} \right)$$

and C is tight if and only if equality is attained.

Theorem (Bagchi, Datta, S. 2016)

Let C be a tight triangulation of a 3-manifold with n vertices. Then all of its vertex links are (n-1)-vertex stacked 2-spheres.



Corollary (See also Lutz, Sulanke, Swartz, 2008)

Let C be a triangulation of a 3-manifold M with n vertices. Then

$$n \geq \frac{1}{2} \left( 9 + \sqrt{1 + 80\beta_1(M, \mathbb{Z}_2)} \right)$$

and C is tight if and only if equality is attained.

Theorem (Bagchi, Datta, S. 2016)

Let C be a tight triangulation of a 3-manifold with n vertices. Then all of its vertex links are (n-1)-vertex stacked 2-spheres.

► Tightness for 3-manifold is purely combinatorial



Corollary (See also Lutz, Sulanke, Swartz, 2008)

Let C be a triangulation of a 3-manifold M with n vertices. Then

$$n \geq \frac{1}{2} \left( 9 + \sqrt{1 + 80\beta_1(M, \mathbb{Z}_2)} \right)$$

and C is tight if and only if equality is attained.

Theorem (Bagchi, Datta, S. 2016)

Let C be a tight triangulation of a 3-manifold with n vertices. Then all of its vertex links are (n-1)-vertex stacked 2-spheres.

- Tightness for 3-manifold is purely combinatorial
- ► Tight triangulations of 3-manifolds are minimal, and their first Betti number is given by their number of vertices



# Thank you



B. Burton, B. Datta, N. Singh, J. Spreer. Separation index of graphs and stacked 2-spheres. *J. Combin. Theory* (A), 136:184-197, 2015.



B. Bagchi, B. Datta, J. Spreer. A characterization of tightly triangulated 3-manifolds, arXiv:1601.00065

