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Goals and plan of the talk

Goals:
@ An introduction to the computational aspects of lattices

@ An example of how floating-point arithmetic can be used to
accelerate an algebraic computation
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Plan of the talk:
© Euclidean lattices
@ Applications of lattices
© The LLL algorithm
© Speeding up LLL
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Euclidean lattices

Euclidean lattices

Lattice = discrete subgroup of R” o o
= {Zignxibi X € Z}

If the b;'s are linearly independent,  {
they are called a basis. ° \\ °
\

Bases are not unique, but they can ?

be obtained from each other by integer & II

transforms of determinant +1: \ y »
\
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Euclidean lattices

Lattice invariants

Minimum:
A(L) = min(||b]| : b € L\ 0) o ’
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Euclidean lattices

Lattice invariants

Minimum:
A(L) = min(||b]| : b € L\ 0) o ’

Determinant:
det L = | det(b;);|, for any basis * °
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Euclidean lattices

Lattice invariants
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Euclidean lattices

Lattice invariants

Minimum: Te
A(L) = min(||b]| : b€ L\ 0) /*
7
/ L
Determinant: * [ *
det L = | det(b;);|, for any basis L }
/
1/
Minkowski theorem: ( II /<
A(L) < +/n- (det L)Y/ N\ e
\¢' AT
=~ L 2
Algorithmic approach: lattice reduction
, : e o
Start from a basis, and progressively
improve its norm/orthogonality i
\
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Euclidean lattices

Why do we care about lattices?

*]
]
]
]
]

Computer algebra: factorisation of rational polynomials.
Cryptanalysis of variants of RSA.

Lattice-based cryptography.

Communications theory: MIMO, GPS.

Combinatorial optimisation, algorithmic group theory,
algorithmic number theory, computer arithmetic, etc.
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Euclidean lattices

Why do we care about lattices?

Computer algebra: factorisation of rational polynomials.
Cryptanalysis of variants of RSA.

Lattice-based cryptography.

Communications theory: MIMO, GPS.

Combinatorial optimisation, algorithmic group theory,
algorithmic number theory, computer arithmetic, etc.

e © ¢ ¢ ¢

Lattices tend to pop out when one wants to use linear algebra but
is restricted to discrete transformations.
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Euclidean lattices

Main computational problem: SVP

@ SVP.: Given a basis of L, find b € L with

0 < |[bl| <~ - A(L)-
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Euclidean lattices

Main computational problem: SVP

@ SVP.: Given a basis of L, find b € L with
0 <lbl[ <~ -A(L).
@ Dec-SVP,: Given a basis of L and t > 0, reply:

YESif A(L)<t and NOif A(L)>~-t.
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Euclidean lattices

Main computational problem: SVP

@ SVP.: Given a basis of L, find b € L with
0 <lbl[ <~ -A(L).
@ Dec-SVP,: Given a basis of L and t > 0, reply:

YESif A(L)<t and NOif A(L)>~-t.

Dec-SVP,, on the hardness scale

@ NP-hard for any v < O(1), under randomized reductions
@ In NPNcoNP for v > +/n

nloglog n

@ In P for v > 2 Toen
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Euclidean lattices

SVP is easy in small dimensions!
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Euclidean lattices

SVP is easy in small dimensions!
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Euclidean lattices

SVP is easy in small dimensions!
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Euclidean lattices

SVP is easy in small dimensions!

3
(0] bg) (@) (o] (o] o [0}

@ That's almost Euclid's algorithm!
@ Returns a vector reaching A(L)

@ Runs in polynomial time
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Applications of lattices

Plan of the talk

Plan of the talk:
© Euclidean lattices
@ Applications of euclidean lattices
© The LLL algorithm
© Speeding up LLL
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Applications of lattices

Plan of the talk

Plan of the talk:
© Euclidean lattices
@ Applications of euclidean lattices
© The LLL algorithm
© Speeding up LLL

@ Integer relation detection
@ Polynomial factorisation

o Cryptanalysis
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Applications of lattices

Finding small integer relations between real numbers

1/ 4 2 1 1
BBP formula: 7= - _ _ _
ormula: =3, 75 <8i+1 8i+4 8i+5 8i+6>

i>0
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Applications of lattices

Finding small integer relations between real numbers

1/ 4 2 1 1
BBP formula: 7= - _ _ _
ermuia: ;16’ <8i+1 8i+4 8i+5 8i+6>

~~ To compute a base-16 digit of 7 at any given position.

Assume we search a small Z-relation between yi,...,yq € R

yi y2 .- Yd
10 ... 0
Take L := L[(b;);], withB=] 0 1 ... 0
o 0 ... 1

A Z-relation > x;y; = 0 leads to a small vector (0, xq,...,xq)"
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Applications of lattices

Finding small integer relations between real numbers

1/ 4 2 1 1
BBP formula: 7= - _ _ _
ermuia: Z1_6'<8i+1 8i+4 8i+5 8i+6>

i>0

~~ To compute a base-16 digit of 7 at any given position.

Assume we search a small Z-relation between yi,...,yq € R

Cy1 Cy2 PN Cyd
1 o ... 0
Take L := L[(b;);], withB=| 0O 1 ... 0
0 o ... 1
A Z-relation > x;y; = 0 leads to a small vector (0, xq,...,xq)"
Using a large C makes it a shortest vector of L\ 0
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Applications of lattices

Factoring integer polynomials

The previous idea may be used to factor polynomials in Z[x]

Factoring polynomials with rational coefficients,
A. K. Lenstra, H. W. Lenstra Jr. and L. Lovasz. Math. Ann., 1982

= Cited > 2500 times!!!
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Applications of lattices

Factoring integer polynomials

The previous idea may be used to factor polynomials in Z[x]

Factoring polynomials with rational coefficients,
A. K. Lenstra, H. W. Lenstra Jr. and L. Lovasz. Math. Ann., 1982

= Cited > 2500 times!!!

Given P € Z[x]:
0- If deg P < 1, then stop
1- Compute a root a € C of P

2- Find the minimal polynomial P,(x) of «, by searching
for Z-combinations between 1, ..., a' for increasing i

3- Divide P by P, and restart
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Applications of lattices

Cryptographic design and cryptanalysis

Lattice-based cryptography:
@ Secret key: very short basis of a lattice
@ Public key: long basis of the same lattice

@ Relies on the assumed hardness of SVP
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Cryptographic design and cryptanalysis

Lattice-based cryptography:
@ Secret key: very short basis of a lattice
@ Public key: long basis of the same lattice

@ Relies on the assumed hardness of SVP

Very popular research topic:
@ More secure: post-quantum
@ More efficient: no modular exponentiation

@ More versatile: fully homomorphic encryption
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Applications of lattices

Cryptographic design and cryptanalysis

Lattice-based cryptography:
@ Secret key: very short basis of a lattice
@ Public key: long basis of the same lattice

@ Relies on the assumed hardness of SVP

Very popular research topic:
@ More secure: post-quantum
@ More efficient: no modular exponentiation

@ More versatile: fully homomorphic encryption

Lattice reduction algorithms are the best known attack.
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The LLL algorithm

Plan of the talk

Plan of the talk:
© Euclidean lattices
@ Applications of euclidean lattices
© The LLL algorithm
© Speeding up LLL
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The LLL algorithm

Gram-Schmidt orthogonalization (GSO)

(b;); linearly independent

by

2
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The LLL algorithm

Gram-Schmidt orthogonalization (GSO)

(b;); linearly independent
The GSO (b}); is defined by:

2

by

Vi: bf = b;—) b
Jj<i
. . (bnb*)
MR
J
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The LLL algorithm

Gram-Schmidt orthogonalization (GSO)

(b;); linearly independent

by

The GSO (b?); is defined by: &
Vi: bf = b;—) b
j<i )
b;, b’ :
RS (HL*||J2) )
j b, =0 b,

Triangularisation of B = (bj);
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The LLL algorithm

Gram-Schmidt orthogonalization (GSO)

(b;); linearly independent
by
The GSO (b?); is defined by: &
Vi: bf = b;—) b
J<i °
b, b: :
Vi>j: pj = (Hll)*||J2) "
j b, =0 b,
Triangularisation of B = (bj);
For any basis (b;); of L, we have A(L) > min; ||b?|| )
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The LLL algorithm

The Lenstra-Lenstra-Lovasz reduction

Let 0 € (1/4,1). A basis B = (b;)i<, € R"™" is said LLL-reduced if
o Vi j: |[L,J| < 1/2 [Size-reduction]
o Vi: - ”b;k”2 < |’bf+1||2 = M,?H,iHb}kHz [Lovdsz’ condition]

Damien Stehlé Computing with Euclidean lattices 01/11/2012 14/24



The LLL algorithm

The Lenstra-Lenstra-Lovasz reduction

Let 0 € (1/4,1). A basis B = (b;)i<, € R"™" is said LLL-reduced if
o Vi j: |[L,J| < 1/2 [Size-reduction]
o Vi: - ”bf”z < |’bf+1||2 = M%Jrl,iHbﬂ’z [Lovdsz’ condition]

b,

v

(1,
L

7))
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The LLL algorithm

The Lenstra-Lenstra-Lovasz reduction

Let 0 € (1/4,1). A basis B = (b;)i<, € R"™" is said LLL-reduced if

o Vi j: |[L,J| < 1/2 [Size-reduction]
o Vi: ”b*”2 < ”bl+1||2 + M%Jrl,iHbﬂ’z [Lovdsz’ condition]
b,
The Hb*Hs can't drop too fast: %
L IbEl? > (6 - )lIbF)1? /
= A(L) < [[ba]| <290V A(L) 0

A
L

7))
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The LLL algorithm

The Lenstra-Lenstra-Lovasz reduction

Let 0 € (1/4,1). A basis B = (b;)i<, € R"™" is said LLL-reduced if

o Vi, j: |y <£1/2 [Size-reduction]
o Vi: §-|bf||> < |[bf,1[I* + p, 1 IbF®  [Lovész' condition]
The Hb*Hs can't drop too fast: % b2
o L N Rl - \
= A(L) < [Iba]| < 2000 \(L) / o)
0 < 1 is important to get a polynomial complexity 77/
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The LLL algorithm

The Lenstra-Lenstra-Lovasz reduction

Let 0 € (1/4,1). A basis B = (b;)i<, € R"™" is said LLL-reduced if
o Vi j: |[L,J| < 1/2 [Size-reduction]
o Vi: ”b*”2 < ”bl+1||2 = M%Jrl,iHbﬂ’z [Lovész' condition]

The Hb*Hs can't drop too fast:
o L N Rl -
= ML) < [lby]| <2907 - (L)

=X

\ } b;

0 < 1 is important to get a polynomial complexity

Y
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The LLL algorithm

The Lenstra-Lenstra-Lovdsz algorithm
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The LLL algorithm

The Lenstra-Lenstra-Lovdsz algorithm

Let 0 € (1/4,1). A basis B = (b;)i<, € R"™" is said LLL-reduced if
o Vi j: |[L,J| < 1/2 [Size-reduction]
o Vi: - ”bf”z < |’bf+1||2 = M%Jrl,iHbﬂ’z [Lovdsz’ condition]

© Enforce size-reduction, using a modified Gaussian elimination
@ If there is an j with & - [|b} |2 > [|b},, > + 2, ;|Ib7]|2,

then swap b; and b;; 1, and go to Step 1
© Return the current basis (by,...,b,)
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The LLL algorithm

The Lenstra-Lenstra-Lovdsz algorithm

Let 0 € (1/4,1). A basis B = (b;)i<, € R"™" is said LLL-reduced if
o Vi j: |[L,J| < 1/2 [Size-reduction]
o Vi: - ”bf”z < |’bf+1||2 = M%Jrl,iHbﬂ’z [Lovdsz’ condition]

© Enforce size-reduction, using a modified Gaussian elimination
@ If there is an j with & - [|b} |2 > [|b},, > + 2, ;|Ib7]|2,

then swap b; and b;; 1, and go to Step 1
© Return the current basis (by,...,b,)

= Correctness is trivial
= Termination is much less so:
O(n?B) loop iterations, with 3 = max; ||bi"||
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The LLL algorithm

Bit-complexity of LLL and practical run-time

[LLL82, Kaltofen83]
LLL terminates in O(n*B%(n + B)) operations, with 3 = log max; ||bi"||

With MAGMA V2.16:

n := 25; B := RMatrixSpace(Integers(),n,n)!0;
for i:=1 to 25 do
B[i] [i]:=1; B[i] [1] :=RandomBits(2000) ;
end for;
time C := LLL(B:Method:=°‘Integral’’);

Time: 11.700

> time C := LLL(B);

Time: 0.240

V V. V V V
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A numeric-symbolic LLL

Plan of the talk

Plan of the talk:
© Euclidean lattices
@ Applications of euclidean lattices
© The LLL algorithm
© Speeding up LLL

Section based on joint works with X.-W. Chang, |. Morel,
P. Q. Nguyen, A. Novocin, X. Pujol and G. Villard
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A numeric-symbolic LLL

LLL in practice: the numeric-symbolic approach

The Gram-Schmidt computations dominate the cost

Odlyzko's hybrid approach

Replace the rational computations on the GSO by floating-point
approximations, but keep the basis operations exact
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LLL in practice: the numeric-symbolic approach
The Gram-Schmidt computations dominate the cost

Odlyzko's hybrid approach

Replace the rational computations on the GSO by floating-point
approximations, but keep the basis operations exact

Floating-point numbers: x1.x2X3...x, - BS, where:
@ p is the precision
@ B is the base, and x; € {0,...,B — 1}
@ e € Z is the exponent
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A numeric-symbolic LLL

LLL in practice: the numeric-symbolic approach

The Gram-Schmidt computations dominate the cost

Odlyzko's hybrid approach

Replace the rational computations on the GSO by floating-point
approximations, but keep the basis operations exact

Floating-point numbers: x1.x2X3...x, - BS, where:
@ p is the precision
@ B is the base, and x; € {0,...,B — 1}
@ e € Z is the exponent

Floating-point arithmetic:
fl(a op b) is a nearest fp number to a op b, for any op € {+,—,/, x}
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A numeric-symbolic LLL

Odlyzko's hybrid approach is only heuristic

Odlyzko's hybrid approach

Replace the rational computations on the GSO by floating-point
approximations, but keep the basis operations exact

Principle: For p small, fp arith. may efficiently simulate rational arith.
= In practice: we aim for 53-bit machine precision
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Odlyzko's hybrid approach is only heuristic

Odlyzko's hybrid approach

Replace the rational computations on the GSO by floating-point
approximations, but keep the basis operations exact

Principle: For p small, fp arith. may efficiently simulate rational arith.
= In practice: we aim for 53-bit machine precision

But Odlyzko's approach is heuristic:
@ Fp arithmetic is inexact

@ Small errors can be amplified
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A numeric-symbolic LLL

Odlyzko's hybrid approach is only heuristic

Odlyzko's hybrid approach

Replace the rational computations on the GSO by floating-point
approximations, but keep the basis operations exact

Principle: For p small, fp arith. may efficiently simulate rational arith.
= In practice: we aim for 53-bit machine precision

But Odlyzko's approach is heuristic:
@ Fp arithmetic is inexact
@ Small errors can be amplified
= Infinite loops

= Incorrect outputs

Damien Stehlé Computing with Euclidean lattices 01/11/2012 19/24



A numeric-symbolic LLL

Making the numeric-symbolic approach rigorous

Underlying mathematical phenomenon [CSVi2]

Any LLL-reduced basis is well-conditioned with respect to GSO

@ Well-conditioned? The GSO computed in small precision
is close to the genuine GSO

= We'd like to rely on LLL-reduced bases as much as we can
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A numeric-symbolic LLL

Making the numeric-symbolic approach rigorous

Underlying mathematical phenomenon [CSVi2]
Any LLL-reduced basis is well-conditioned with respect to GSO

@ Well-conditioned? The GSO computed in small precision
is close to the genuine GSO

= We'd like to rely on LLL-reduced bases as much as we can

Use a greedy LLL algorithm [NS05,MSV09]:
o Consider the first i/ s.t. by, ..., b; is not LLL-reduced
= b1,...,bj_1 is well-conditioned
@ lterate on b; until nothing happens (iterative refinement)
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A numeric-symbolic LLL

Bit complexity of floating-point LLL

Small precision? O(n) bits suffice for correctness.

Bit-complexity:

O(8)- 0(rP)-| O(n8) + O() | = O (2(n + ).
—_——— —— | —— ——
1 2 3 4
© loop iterations
@ size-reduction arithmetic steps
© integer arithmetic
© floating-point arithmetic

Damien Stehlé Computing with Euclidean lattices 01/11/2012 21/24



A numeric-symbolic LLL

Bit complexity of floating-point LLL

Small precision? O(n) bits suffice for correctness.

Bit-complexity:

O(8)- 0(rP)-| O(n8) + O() | = O (2(n + ).
—_——— —— | —— ——
1 2 3 4
© loop iterations
@ size-reduction arithmetic steps
© integer arithmetic
© floating-point arithmetic

Asymptotically not much better than LLL's O(n*5%(n + f3)),
but much better in practice
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A numeric-symbolic LLL

Can we do better? [nsviopsviz?

The totally numeric approach

LLL can be accelerated further by using approximations for the
bases too!

= O(n°B5) operations
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A numeric-symbolic LLL

Can we do better? [nsviopsviz?

The totally numeric approach

LLL can be accelerated further by using approximations for the
bases too!
= O(n®B®) operations

The totally numeric approach, continued

Do the same with several levels of recursion
= O(n°B) operations
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A numeric-symbolic LLL

Can we do better? [nsviopsviz?

The totally numeric approach

LLL can be accelerated further by using approximations for the
bases too!
= O(n®B®) operations

The totally numeric approach, continued

Do the same with several levels of recursion
= O(n°B) operations

The totally numeric approach with blocking

ConEider sub-matrices of the GSO
= O(n*p) operations
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Conclusion

Plan of the talk

Plan of the talk:
© Euclidean lattices
@ Applications of euclidean lattices
© The LLL algorithm
© Speeding up LLL

@ Conclusion
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Conclusion

Open problems

On LLL:
@ Lower the cost further: as fast as matrix multiplication?

@ Improve current implementations
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Conclusion

Open problems

On LLL:
@ Lower the cost further: as fast as matrix multiplication?

@ Improve current implementations

In the general area of lattices
@ Faster algorithms computing shorter vectors than LLL
@ Quantum algorithms
@ Hardness proofs for worst-case lattice problems

@ Hardness proofs for average-case lattice problems
(crucial for lattice-based cryptography)
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