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Outline of the talk

1- Introduction

Background: Cryptographic Multilinear Maps and Applications
Background: Ideal Lattices

2- Review of GGH construction of approx. multilinear maps

3- GGHLite: Our more efficient construction

Main ingredients
Construction
Asymptotic efficiency
Using GGHLite in applications

4- Concluding Remarks
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Background: Cryptographic Multilinear Maps

Non-interactive Key Exchange (NIKE):

Alice and Bob want to communicate privately over public
channel

Marvin can see everything sent over the public channel

Non-interactive setup

Solution: Diffie-Hellman Key Exchange (1976)

Publish a cyclic group G (generator g , order q) where
Discrete Log (DL) problem is hard.

Alice chooses random x1 ∈ Zq, publishes y1 = g x1 .

Bob chooses random x2 ∈ Zq, publishes y2 = g x2 .

Correctness: Both Alice and Bob compute agreed secret key
K = g x1x2 = y x2

1 = y x1
2 .

Security: Eavesdropper Marvin has to solve the
Computational Diffie-Hellman problem (CDH),

CDH: Given g , g x1 , g x2 , compute g x1x2 .
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Background: Cryptographic Multilinear Maps

21st Century variant (privacy for Facebook): Group of N > 2
parties want to communicate privately via ‘cloud’.
Solution[J00,BS02]: Use a group where DL is hard and there is an
efficient (N − 1)-linear map e : GN−1 → GT :

e(g x1 , g x2 , . . . , g xN−1) = e(g , . . . , g)x1···xN−1∀x1, . . . , xN−1 ∈ Zq.

N-party Non-Interactive Key Exchange

Publish cyclic groups G ,GT (generators g , gT , order q) where
Discrete Log (DL) problem is hard, with an efficient
(N − 1)-linear map e.

For i = 1, . . . ,N, party Pi chooses xi ∈ Zq, publishes yi = g xi .

Correctness: All parties can compute agreed secret key
K = e(g , . . . , g)x1···xN = e(y2, y3, . . . , yN)x1 .

Security: Hardness of Multilinear CDH problem (MCDH),

MCDH: Given g , g x1 , . . . , g xN , compute e(g , . . . , g)x1···xN .

Ron Steinfeld More Efficient Cryptographic Multilinear Maps from Ideal Lattices Mar 2014 4/28



Introduction GGH Construction GGHLite Conclusions

Background: Cryptographic Multilinear Maps

21st Century variant (privacy for Facebook): Group of N > 2
parties want to communicate privately via ‘cloud’.
Solution[J00,BS02]: Use a group where DL is hard and there is an
efficient (N − 1)-linear map e : GN−1 → GT :

e(g x1 , g x2 , . . . , g xN−1) = e(g , . . . , g)x1···xN−1∀x1, . . . , xN−1 ∈ Zq.

N-party Non-Interactive Key Exchange

Publish cyclic groups G ,GT (generators g , gT , order q) where
Discrete Log (DL) problem is hard, with an efficient
(N − 1)-linear map e.

For i = 1, . . . ,N, party Pi chooses xi ∈ Zq, publishes yi = g xi .

Correctness: All parties can compute agreed secret key
K = e(g , . . . , g)x1···xN = e(y2, y3, . . . , yN)x1 .

Security: Hardness of Multilinear CDH problem (MCDH),

MCDH: Given g , g x1 , . . . , g xN , compute e(g , . . . , g)x1···xN .

Ron Steinfeld More Efficient Cryptographic Multilinear Maps from Ideal Lattices Mar 2014 4/28



Introduction GGH Construction GGHLite Conclusions

Background: Cryptographic Multilinear Maps

21st Century variant (privacy for Facebook): Group of N > 2
parties want to communicate privately via ‘cloud’.
Solution[J00,BS02]: Use a group where DL is hard and there is an
efficient (N − 1)-linear map e : GN−1 → GT :

e(g x1 , g x2 , . . . , g xN−1) = e(g , . . . , g)x1···xN−1∀x1, . . . , xN−1 ∈ Zq.

N-party Non-Interactive Key Exchange

Publish cyclic groups G ,GT (generators g , gT , order q) where
Discrete Log (DL) problem is hard, with an efficient
(N − 1)-linear map e.

For i = 1, . . . ,N, party Pi chooses xi ∈ Zq, publishes yi = g xi .

Correctness: All parties can compute agreed secret key
K = e(g , . . . , g)x1···xN = e(y2, y3, . . . , yN)x1 .

Security: Hardness of Multilinear CDH problem (MCDH),

MCDH: Given g , g x1 , . . . , g xN , compute e(g , . . . , g)x1···xN .

Ron Steinfeld More Efficient Cryptographic Multilinear Maps from Ideal Lattices Mar 2014 4/28



Introduction GGH Construction GGHLite Conclusions

Background: Cryptographic Multilinear Maps – History
2000: Bilinear (k = 2) via Weil pairings on algebraic curves,
applications:

2000: 3-party non-interactive key agreement [J00]
2000-2001: Identity-Based Encryption (IBE) [SK00,BF01]
2001: Short signatures [BS01]
2000-2013: lots of others

2002: Applications for k-linear maps [BS02]
(k + 1)-party non-interactive key agreement
Efficient Broadcast Encryption
and others...

2012: First plausible realization for k > 2, via ideal lattices
[GGH12], applications:

2012-2013: Functional Encryption for arbitrary functions
2013: Program obfuscation notions for arbitrary functions

2014: GGHLite – More efficient variant of GGH construction
(this talk)
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Approx. Multilin. Maps: GGH ‘Graded Encoding Scheme’

GGH realization: not quite a k-linear map, but essentially the same
Technically, a k-graded encoding scheme:

Replace groups Zq,G by
Rings Rg ,Rq and some public parameters par.

Replace ‘Encode x ∈ Zq as g x ∈ G ’ by
‘Encode x ∈ Rg as Enc1(par, x ; ρ) ∈ Rq’ – randomized ‘level 1
encoding’ of ‘level 0’ element x using randomness ρ.

Replace e(g x1
1 , . . . , g

xk
k ) = e(g1, . . . , gk)x1···xk by

Homomorphic up to ‘level k ’:
Enc1(par, x1; ρ1) · · ·Enc1(par, xk ; ρk) = Enck(par, x1 · · · xk ; ρ)

and
x · Enck(par, z ; ρ) = Enck(par, x · z ; ρ′), for any x ∈ Rg .

Randomness-independent extraction at level k –
Ext(par,Enck(par, x ; ρ)) = r(x) ∈ {0, 1}n is independent of
randomness ρ, and uniformly random for x ←↩ U(Rg ).
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Multilinear Maps: GGH ‘Graded Encoding Scheme’

N-party NIKE from N − 1-Graded Encoding Scheme:

Publish rings Rg ,Rq and pub. params. par of N − 1-Graded
Encoding Scheme.

For i = 1, . . . ,N, party Pi chooses xi ∈ Rg , publishes
yi = Enc1(par, xi ; ρi ).

Correctness: All parties can compute agreed secret key

K = Ext(par,EncN−1(par, x1 · · · xN ; ρ)) = Ext(par, x1·y2·y3 · · · yN)

Security: To compute K , eavesdropper Marvin has to solve
the Extraction Graded Computational Diffie-Hellman
problem – Ext-GCDH: Given
par,y1 = Enc1(par, x1; ρ1),. . .,yN = Enc1(par, xN ; ρN),
compute Ext(par,EncN−1(par, x1 · · · xN ; ρ)).
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Polynomial Rings

Take φ ∈ Z[x ] monic of degree n.

Rφ :=
[
Z[x ]/(φ),+,×

]
.

Interesting φ’s:

φ = xn − 1 → R−, φ = xn + 1 → R+.

For n a power of 2, the ring R+ is isomorphic to the ring of
integers of K = Q[eiπ/n]:

K ' Q[x ]/(xn + 1)

OK ' Z[x ]/(xn + 1).

⇒ Rich algebraic structure (great for design and proofs).
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Polynomial Rings

Let q ≥ 2 and Zq = Z/qZ.

Rφq :=
[
Zq[x ]/(φ),+,×

]
.

Arithmetic in Rφq costs Õ(n log q).

R+
q is isomorphic to OK/(q).
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Lattices Background: Approx-SVP

Lattice ≡ {
∑

i≤n xibi : xi ∈ Z},
for some lin. independent bi ’s.

Minimum: λ(L) = min(‖b‖ : b ∈ L \ 0)

γ-SVP

Find b ∈ L with: 0 < ‖b‖ ≤ γ · λ(L).

No known sub-exp. algorithm
for γ = Poly(n).

Not even quantumly.

Seems harder than Int-Fac and DLog.
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Lattices Background: Approx-Ideal-SVP

I ⊆ Rφ is an ideal if:

∀a, b ∈ I ,∀r ∈ Rφ : a + b · r ∈ I .

We identify polynomials to vectors via their coefficients:

Rφ → Zn∑
i<n fix

i 7→ (f0, . . . , fn−1)t

An ideal I can be viewed as a lattice, called an ideal lattice.

Poly(n)-Ideal-SVP: Poly(n)-SVP restricted to ideal lattices.

No significant computational advantage known for this general
family of inputs.
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Lattices Background: Discrete Gaussian Distributions

DL,S ,c denotes discrete Gaussian distrib. on n-dim. lattice L,
full-rank deviation matrix S ∈ Rn×n, centre c (sample using
[GePeVa’08]):

∀x ∈ L : DL,S ,c [x ] ∼ exp
(
−π(x − c)T (STS)−1(x − c)

)
.
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Approx. Multilin. Maps: GGH k-graded encoded scheme

Public Parameters Generation:

• Sample ‘small’ g ←↩ DR,σ until ‖g−1‖ ≤ `g−1 and I = 〈g〉 is a
prime ideal. Define encoding domain Rg = R/〈g〉.
• Sample z ←↩ U(Rq).

• Sample a level-1 encoding of 1: set y = [a · z−1]q with
a←↩ D1+I ,σ′ .

• Sample mr level-1 encodings of 0: set xj = [bj · z−1]q with
bj ←↩ DI ,σ′ for all j ≤ mr .

• Sample h←↩ DR,
√
q and define the zero-testing parameter

pzt = [ hg z
k ]q ∈ Rq.

• Return par = (n, q, y , {xj}j≤mr ) and pzt .
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Approx. Multilin. Maps: GGH k-graded encoded scheme

Level-1 encoding Enc1(par, e): Given level-0 e ∈ R:

Encode e at level 1: u′ = [e · y ]q (note u′ = [c ′/z ]q with
c ′ ∈ e + I ).

Re-randomize: Sample small ρj ←↩ DZ,σ∗1 for j ≤ mr and
return u = [u′ +

∑mr
j=1 ρjxj ]q.

(Note u = [c/z ]q with c ∈ e + I and c = c ′ +
∑

j ρjbj .)

Multiplying encodings mult: Given level-k1 encoding
u1 = [c1/z

k1 ]q and level-k2 encoding u2 = [c2/z
k2 ]q:

Return u = [u1 · u2]q, a level-(k1 + k2) encoding of [c1 · c2]g .
(note u1 · u2 = [c1c2/z

k1+k2 ]q and c1 · c2 ∈ e1 · e2 + I ).
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Approx. Multilin. Maps: GGH k-graded encoded scheme

Extraction at level k Ext(par, u): Given a level-k encoding
u = [c/zk ]q, return v = MSB`([pzt · u]q) with ` < (1/4− ε) log q .

Correctness of extraction:

At level 1: if c = [c]g + gr for some small r ∈ R, then
v = MSB`(

h
g ([c]g + gr)) = MSB`(

h
g [c]g + hr), which is equal

to MSB`(
h
g [c]g ), with high probability if q > ‖r‖8.

After k multiplications:
Let ui = [ xi+g ·ri

z ]q for i = 1, . . . , k be encodings of x1, . . . , xk .

For u
def
= u1 · u2 · · · uk = [ x+g ·r

zk
]q to be a valid encoding of

x = x1 · · · xk , need ‖r‖ to stay small compared to q:

‖r‖ = O(2k · ‖(g · r1) · · · (g · rk)‖) = O((Poly(n) ·N)k) < q1/8.

where N
def
= maxi ‖g · ri‖.

Ron Steinfeld More Efficient Cryptographic Multilinear Maps from Ideal Lattices Mar 2014 15/28



Introduction GGH Construction GGHLite Conclusions

Approx. Multilin. Maps: GGH k-graded encoded scheme

Security of GDH for GGH scheme: not well understood.
Known attack needs ‘small’ multiple d of g (‖d · g‖ < q).

Fact: Easy [GGH12] to compute basis for 〈g〉 from par .
Conclusion: Security relies on hardness of q-ideal-SVP.

Attack on ‘Graded Discrete Log’ prob. given
u = Enc1(par, x ; r) = [ x+r ·g

z ]q (idea):

Compute p′zt
def
= [d · g · pzt ]q = [(d · g) · ( h

g z
k)]q = [d · h · zk ]q.

Lift: u′ = [u · yk−1]q = [ x+r ′·g
zk

]q, y ′ = [yk ]q = [
1+r ′y ·g

zk
]q.

Compute u′′ = [u′ · p′zt ]q = d · h · (x + r ′ · g) ∈ R and
y ′′ = [y ′ · p′zt ]q = d · h · (1 + r ′y · g) ∈ R.
Using basis for 〈g〉, easy to compute a (’large’) rep. x ′ ∈ R
with x ′ ≡ u′′ · (y ′′)−1 mod 〈g〉, so x ′ ≡ x mod 〈g〉.
Compute a ‘small’ rep. x ′′ = x ′ mod 〈d · g〉 with
x ′′ ≡ x mod 〈g〉.
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GGHLite: Main Ingredients

We improve encoding re-randomization in GGH:

Pub. Pars. contain level-1 encodings of 0, namely
{xj = [bj/z ]q}j≤mr and level-1 encoding of 1, namely y .

To randomize level-1 encoding u′ = [e · y ]q, output
u = [u′ +

∑
j ρjxj ]q = [c/z ]q with c = c ′ +

∑
j ρjbj .

Randomizers ρj ’s are sampled from a discrete Gaussian
distribution over Z with deviation parameter σ∗.

Re-randomization is essential for security of GDH:

Without re-randomization, e can be be efficiently recovered
from u′ = [e · y ]q and y (u = [u′y−1]q).

Re-randomization can prevent this attack.
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GGHLite: First Main Ingredient

But, how to choose the re-randomization parameters for security
level 2λ?
Question: How large should re-randomization deviation σ∗ be?

in GGH, exponential drowning: σ∗/‖c ′‖ ≥ 2λ

Makes distribution of u (almost) independent of u′

But incurs severe efficiency penalty.
Need q ≥ 2λ.
Security of q-ideal-SVP deteriorates exponentially with log q.
Need quadratic dimension: n ≥ λ2!

GGHLite First Ingredient: We show that polynomial drowning is
sufficient for security: σ∗/‖c ′‖ ≥ Poly(λ)
But, our analysis only seems to apply to computational GDH
problem.

We use Rényi Divergence in place of Statistical Distance in
analysing re-randomized distribution vs. ‘canonical’ one
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GGHLite: Second Main Ingredient

Question: How many encodings of 0 are needed?
GGH construction:

Needs mr = Ω(n log n) encodings of 0

Uses rational integer Gaussian randomizers (ρj ∈ Z) as
coefficients

Uses a ‘discrete Gaussian Leftover Hash Lemma’ to show∑
j≤mr

ρjbj distrib. is close to a discrete Gaussian on I

GGHLite Second Ingredient: mr = 2 encodings of 0 are sufficient

Uses Gaussian randomizers over full ring (ρj ∈ R)

New algebraic variant of ‘discrete Gaussian Leftover Hash
Lemma’ over R: we show

∑
j≤mr

ρjbj distribution is close to a
discrete Gaussian on I
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GGHLite: Our simplified k-graded encoded scheme
Public Parameters Generation:

• Sample g ←↩ DR,σ until ‖g−1‖ ≤ `g−1 and I = 〈g〉 is prime.

• Sample z ←↩ U(Rq).

• Sample a level-1 encoding of 1: y = [a · z−1]q with
a←↩ D1+I ,σ′ .

Sample B = (b1, b2) from (DI ,σ′)
2. If 〈b1, b2〉 6= I , or

σn(rotB) < `b, then re-sample.

Define level-1 encodings of 0: x1 = [b1 · z−1]q,
x2 = [b2 · z−1]q.

• Sample h←↩ DR,
√
q and define the zero-testing parameter

pzt = [ hg z
k ]q ∈ Rq.

• Return par = (n, q, y , x1, x2, pzt).

Level-1 encoding Enc1(par, e): Given level-0 e ∈ R:

Encode e at level 1: Compute u′ = [e · y ]q.

Return u = [(u′ + ρ1 · x1 + ρ2 · x2)/z ]q, with ρ1, ρ2 ←↩ DR,σ∗1
.
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GGHLite: Formalizing Re-randomization Security

How to formalize re-randomization security requirement?
Informal req.: Prevent correlation of statistical properties of
re-randomized encoding with encoded element.
Formal req.: Breaking Ext-GCDH problem is as hard as breaking
canonical Ext-GCDH problem

Ext-GCDH: Given
par, y1 = [e1 · y + ρ1,1 · x1 + ρ2,1 · x2]q,. . .,yN =
[eN · y + ρ1,N · x1 + ρ2,N · x2]q, compute
Ext(par,EncN−1(par, x1 · · · xN ; ρ)) = MSB`(pzt · e1 · · · eN).

canonical Ext-GCDH: Given
par, y1 = [c1z

−1]q, . . . , yN = [cNz
−1]q with ci ←↩ DI+ei ,σ

∗
1 B

T

for i = 1, . . . ,N, compute
Ext(par,EncN−1(par, x1 · · · xN ; ρ)) = MSB`(pzt · e1 · · · eN).

Theorem. This requirement is satisfied, i.e. such a reduction
exists for GGHLite, under suitable parameter conditions.
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GGHLite Re-randomization Security: First Ingredient

D1: distrib. of yi = [vi/z ]q in Ext-GCDH problem

vi distrib. ≈ DI+ei ,σ
∗
1 B

T ,c ′i
– ‘small’ centre c ′i .

D2: distrib. of yi = [vi/z ]q in canonical Ext-GCDH problem

vi distrib. ≈ DI+ei ,σ
∗
1 B

T – zero centre.

GGH strong requirement based on statistical distance (SD) ∆:

∆(D1,D2)
def
=
∑
x

|D1(x)− D2(x)| ≤ 2−λ,

Prob. Preservation Property of SD: Any adversary A with succ.
prob. ε against Ext-GCDH problem, has succ. prob. ε′ against
canonical Ext-GCDH problem with:

ε′ ≥ ε−∆(D1,D2) ≥ ε− 2−λ,

To handle ε = 2−λ, need ∆(D1,D2) < 2−λ!

Consequently, need
σ∗1
‖c ′i ‖

= 2Ω(λ) (exponential drowning).
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GGHLite Re-randomization Security: First Ingredient

D1: distrib. of yi = [vi/z ]q in Ext-GCDH problem

vi distrib. ≈ DI+ei ,σ
∗
1 B

T ,c ′i
– ‘small’ centre c ′i .

D2: distrib. of yi = [vi/z ]q in canonical Ext-GCDH problem

vi distrib. ≈ DI+ei ,σ
∗
1 B

T – zero centre.

GGHLite weak requirement based on Rényi divergence (RD) R:

R(D1‖D2)
def
=
∑
x

D2
1 (x)/D2(x) ≤ Poly(λ),

Prob. Preservation Property of RD: Any adversary A with succ.
prob. ε against Ext-GCDH problem, has succ. prob. ε′ against
canonical Ext-GCDH problem with:

ε′ ≥ ε/R(D1‖D2)2 ≥ ε/Poly(λ),

Useful even if ε < R(D1,D2)−1 – use R(D1‖D2) ≤ Poly(λ).
We show: R(D1‖D2) ≤ exp

(
2π‖c ′i ‖2/σn(σ∗1B

T )2
)
.

For R(D1‖D2) ≤ Poly(λ), can use
σ∗1
‖c ′i ‖

= O( 1
log λ).
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GGHLite Re-randomization Security: Second Ingredient

D1: distrib. of yi = [vi/z ]q in Ext-GCDH problem

vi distrib. ≈ DI+ei ,σ
∗
1 B

T ,c ′i
– ‘small’ centre c ′i .

In actual scheme (ei · a + ρ1 · b1 + ρ2 · b2)/z ]q with ρi ∼ DR,σ∗1
.

How do we show ρ1 ·b1 +ρ2 ·b2 ≈ DI ,σ∗1 B
T (B = g · [t1, t2] ∈ R2)?

Step 1: Show T · R2 = [t1, t2] · R2 = R, except for some
constant probability < 1.

Probability that two ‘random’ algebraic integers are co-prime
(≈ ζR(2)−1).

Step 2: Study the ‘orthogonal’ lattice
AT = {v ∈ R2 : T · v = 0}.

Use equality of Minkowski minima of AT to bound ‘smoothing
parameter’ ηε(AT ).
Apply known results [AGHS12] on ‘smoothing of Gaussians
modulo a lattice’: If σ∗1 > ηε(AT ), then ρ1 · t1 + ρ2 · t2 is
within SD 2ε of DR,σ∗

1 T
T .
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GGHLite: Asymptotic Parameters

Parameter GGHLite GGH

mr 2 Ω(n log n)
σ O(n log n) O(n log n)
`g−1 O(1/

√
n log n) O(1/

√
n log n)

εd , εe , ερ O(k−1) O(2−λk−1)

σ′ Õ(n2.5) Õ(n1.5
√
λ)

σ∗1 Õ(n4.5
√

log k) Õ(2λn4.5(λ+ log k))

εext O(λ−ω(1)) O(λ−ω(1))

q Õ((n8.5
√

log k)8k) Õ((2λn8λ1.5)8k)
n O(kλ log λ) O(kλ2)
|enc| O(k2λ log2(kλ)) O(k2λ3)
|par| O(k3λ log2(kλ)) O(k3λ5 log(kλ))
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Adapting Applications of GGH to GGHLite

Applications often need semantic security: no partial information
on key leaks.
GGH security analysis applies to Graded Decision Diffie-Hellman
problem (GDDH): Distinguish between the distributions

DDDH = {par, (ui = Enc1(xi ))0≤i≤k , v = Enc1(x0 · x1 · · · xk)}
and

DR = {par, (ui = Enc1(xi ))0≤i≤k , v = Enc1(f0)} for indep. unif.
dist. f0.

GGHLite security analysis only applies to Extraction Graded
Computational Diffie-Hellman problem (Ext-GCDH).
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Adapting Applications of GGH to GGHLite

Question: How to adapt GGH app. to rely on Ext-GCDH rather
than GDDH?
Answer: Replace agreed key K = Ext(par, v) in original protocol
by

K = H(Ext(par, v))

in modified protocol, where H(·) is a cryptographic hash function.
If H(·) is modelled as a black-box random function (‘Random
Oracle Model’), then security of modified protocol relies on
Ext-GCDH – our GGHLite analysis applies!
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Conclusions

Presented GGHLite, a more efficient variant of GGH graded
encoding scheme.
Open Problems:

Can our Rényi divergence analysis be applied to the Decision
Graded Diffie Hellman problem?

Understand the complexity of our canonical Ext-GCDH
problem – provable relation to well studied lattice problems?

Alternative constructions for graded encoding scheme, with
provable security from standard lattice problems?

Understand relation beteen GGH/GGHLite and more recent
‘Jigsaw puzzle’ variants (obfuscation).

Concrete computational / space efficiency of GGHLite based
on best known attacks?
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