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Partial Latin rectangles
An r × s partial Latin rectangle is an r × s matrix containing
symbols from [n] ∪ {·} such that each row and each column
contains at most one copy of any symbol in [n].

· 5 4 3 2

5 · · · 1

4 · · 1 ·

Every partial Latin rectangle L ∈ PLR(r , s, n) is uniquely
determined by its entry set:

Ent(L) := {
entry︷ ︸︸ ︷

(i , j , L[i , j ]) : i ∈ [r ], j ∈ [l ], and L[i , j ] ∈ [n]}.

Ent(above) =

{
(2, 5, 1),

(3, 4, 1),
(1, 5, 2), (1, 4, 3),

(1, 3, 4),

(3, 1, 4),

(1, 2, 5),

(2, 1, 5)

}
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Isotopisms and autotopisms{
r× s partial Latin rectangles
on symbol set [n]

}
The isotopism θ := (α, β, γ) ∈ Sr × Ss × Sn acts on PLR(r , s, n).

1 2 3 4 · ·
3 4 2 · · ·
· · · 5 · ·
· · · 6 5 ·
· · · · 6 5

· · · · · 6

swap first two rows α = (12)

swap last two columns β = (56)

do nothing to symbols γ = id−−−−−−−−−−−−−−−−−→

3 4 2 · · ·
1 2 3 4 · ·
· · · 5 · ·
· · · 6 · 5

· · · · 5 6

· · · · 6 ·

And, in some cases, we can apply an isotopism θ and end up back
where we started =⇒ θ is an autotopism.

The set of autotopisms form a group, named the autotopism group.
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This member of PLR(2, 2, 4) has 4 autotopisms.

(id, id, id),

((12), id, (13)(24)),

(id, (12), (12)(34)),

((12), (12), (14)(23)),

...forming a group isomorphic to C2 × C2.

Note: The row and column permutations determine the
autotopism.
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How to efficiently compute the autotopism group?

Input: partial Latin rectangle.
Output: its autotopism group.

By the looks of things, the answer is...

Basically, the answer depends on the partial Latin rectangle.

This work is a “pilot study” to (a) identify design goals of future
software for computing the autotopism group, and (b) eliminate
unpromising methods.

We experimentally compare 6 families of methods...
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Backtracking methods...

Family 1: Alpha-beta backtracking.

At each level of the α search tree,
we designate

row i
α7−→ row a

provided it doesn’t clash.

3 1 4

1 · ·
2 · ·i

a
α

Once α is determined...

At each level of the β search tree,
we designate

column j
β7−→ column b

provided it doesn’t clash.

3 1 4

1 · ·
2 · ·

j b

β

Then we check if (α, β, ??) is an autotopism.
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Backtracking methods...

Family 2: Entrywise backtracking.

At each level of the search tree,
we designate

entry (i , j , L[i , j ])
θ7−→ entry (a, b, L[a, b])

provided it doesn’t clash.

3 1 4

1 · ·
2 · ·

i

a

j b

α(i) = a
β(j) = b

γ(L[i, j]) = L[a, b]



Backtracking methods...
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Graph methods...

Family 3: McKay, Meynert, and Myrvold method.

Vertex set:

Ent(L) ∪ {Ri : i ∈ [r ] and row i of L is non-empty}
∪ {Sj : j ∈ [s] and column j of L is non-empty}
∪ {Nk : k ∈ [n] and symbol k occurs in L}

where each of the four subsets, Ent(L), {Ri}, {Sj}, and
{Nk}, are assigned a distinct color.
Edge set:

{RiL[i , j ] : (i , j , L[i , j ]) ∈ Ent(L)}
∪ {SjL[i , j ] : (i , j , L[i , j ]) ∈ Ent(L)}
∪ {NL[i ,j]L[i , j ] : (i , j , L[i , j ]) ∈ Ent(L)}.

The automorphism group of this graph is isomorphic to the
autotopism group of the partial Latin rectangle.
We compute this using Nauty.
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Graph methods...
Family 4: Bipartite graph method.

· 5 4 3 2

5 · · · 1

4 · · 1 ·

transform into
bipartite graph−−−−−−−−−→

row index

1

2

3

column index

1

2

3

4

5

(Edges are colored to illustrate construction.)

Then compute the automorphism group of the bipartite graph
using Nauty. Filter out non-autotopisms.

Nauty can also return (a) the row/column orbits or (b) entry
orbits, under the autotopism group. We can alternatively use
alpha-beta or entrywise backtracking on these orbits.
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Graph methods...

Family 5: Partial Latin rectangle graph method.

Partial Latin rectangle graph ΓL (left):

2

1

1
convert
to ΓL←−−−−−

2 1

1 ·
convert
to ΓL−−−−−→

2

1

1

2

1

1 2

1

1 2

1

1

Then compute the automorphism group of ΓL using Nauty.
Filter out non-autotopisms [autoparatopisms & graph
artifacts].

Also edge-colored version ΓL (right), because Nauty doesn’t
allow edge colors. No filtering required—Nauty output is
autotopism group.
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Graph methods...

Family 6: Rook’s graph method.

Induced subgraph of the rook’s graph ΞL (left):
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Then compute the automorphism group of ΞL using Nauty.
Filter out non-autotopisms.

Also edge-colored version ΞL (right)...
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Summary thus far...

We have six families of methods:

Backtracking : alpha-beta and entrywise.

Graphical : bipartite graph, MMM graph, PLR graph, rook’s
graph.

Each of these methods can be improved by using invariants,
properties of partial Latin rectangles which are invariant under
autotopisms.

We consider two invariants. (More sophisticated invariants may
improve run-times, but will improve run-times for every method.)
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Strong entry invariants...

For entry (i , j , k) we define the strong entry invariant as
the vector (a, b, c) where

a is the number of entries in row i ,

b is the number of entries in column j ,

c is the number of copies of symbol k in the partial Latin
rectangle.

1 · 2 · · · 3 · ·
2 · · 4 1 5 6 · 7

· 1 5 3 · 4 · · ·
· 2 · 5 · 3 · 4 ·
4 3 · · 5 · 1 · 2

· · · · 2 · · 1 3

strong entry invariants
relabeled 1, 2, . . .−−−−−−−−−−−−−−→

1 · 2 · · · 1 · ·
3 · · 4 3 4 5 · 5

· 6 7 6 · 8 · · ·
· 6 · 8 · 6 · 7 ·
9 10 · · 9 · 10 · 10

· · · · 1 · · 2 1

...useless for Latin rectangles (i.e., no empty cells and number
columns = number symbols).



Strong entry invariants...

For entry (i , j , k) we define the strong entry invariant as
the vector (a, b, c) where

a is the number of entries in row i ,

b is the number of entries in column j ,

c is the number of copies of symbol k in the partial Latin
rectangle.

1 · 2 · · · 3 · ·
2 · · 4 1 5 6 · 7

· 1 5 3 · 4 · · ·
· 2 · 5 · 3 · 4 ·
4 3 · · 5 · 1 · 2

· · · · 2 · · 1 3

strong entry invariants
relabeled 1, 2, . . .−−−−−−−−−−−−−−→

1 · 2 · · · 1 · ·
3 · · 4 3 4 5 · 5

· 6 7 6 · 8 · · ·
· 6 · 8 · 6 · 7 ·
9 10 · · 9 · 10 · 10

· · · · 1 · · 2 1

...useless for Latin rectangles (i.e., no empty cells and number
columns = number symbols).



Square invariants...
The entry (i , j , k) belongs to exactly (r − 1)(s − 1)
2× 2 sub-matrices, a typical one looking like:

j j ′

i k x

i ′ y z

which may have some of the following five properties: (a) x is undefined,
(b) y is undefined, (c) z is undefined, (d) k = z , and (e) x = y .

This gives a maximum of 25 = 32 possibilities, whose enumeration gives
a length-32 vector that sums to (r − 1)(s − 1).

2 1 3 4 5

1 4 2 5 3

4 3 5 1 2

5 2 1 3 4

3 5 4 2 1

square invariants
relabeled 1, 2, . . .−−−−−−−−−−−→

3 2 3 3 2

2 3 3 3 2

3 3 3 2 2

3 3 2 3 2

2 2 2 2 1

We call this length-32 vector the square invariant.



Square invariants...
The entry (i , j , k) belongs to exactly (r − 1)(s − 1)
2× 2 sub-matrices, a typical one looking like:

j j ′

i k x

i ′ y z

which may have some of the following five properties: (a) x is undefined,
(b) y is undefined, (c) z is undefined, (d) k = z , and (e) x = y .

This gives a maximum of 25 = 32 possibilities, whose enumeration gives
a length-32 vector that sums to (r − 1)(s − 1).

2 1 3 4 5

1 4 2 5 3

4 3 5 1 2

5 2 1 3 4

3 5 4 2 1

square invariants
relabeled 1, 2, . . .−−−−−−−−−−−→

3 2 3 3 2

2 3 3 3 2

3 3 3 2 2

3 3 2 3 2

2 2 2 2 1

We call this length-32 vector the square invariant.



Square invariants...
The entry (i , j , k) belongs to exactly (r − 1)(s − 1)
2× 2 sub-matrices, a typical one looking like:

j j ′

i k x

i ′ y z

which may have some of the following five properties: (a) x is undefined,
(b) y is undefined, (c) z is undefined, (d) k = z , and (e) x = y .

This gives a maximum of 25 = 32 possibilities, whose enumeration gives
a length-32 vector that sums to (r − 1)(s − 1).
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Row and column invariants

Given some kind of entry invariant:

the multiset of entry invariants in a given row is preserved
under autotopisms and

the multiset of entry invariants in a given column is preserved
under autotopisms.

In the alpha-beta backtracking method, once α is determined,
then...

...when we decide that β(j) = b, the filled/unfilled cells in
column j map to filled/unfilled cells in column b. This can also be
used to improve the computation.
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Experiments...

So we have six families of methods, and two invariants, etc.

Putting these together gives around 48 different ways of computing
the autotopism group of a partial Latin rectangle.

Q: Which is the best?

Experiment set 1 : Start with empty PLR(r , s, n) and add try to
add entry (i , j , k) ∈ [r ]× [s]× [n] randomly.

Experiment set 2 : Start with random r × s submatrix of a LS(n)
and delete entries randomly.

(Each data point is averaged over 10000 samples.)
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(r , s, n) = (5, 5, 5); discard bad methods
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(a) (r , s, n) = (7, 8, 9)
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(b) (r , s, n) = (8, 9, 10)
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Figure: Average run times of the remaining methods.

The 63-entry and 64-entry data points for (r , s, n) = (8, 8, 8) and
the 72-entry data points for (r , s, n) = (8, 9, 10) are omitted as
they took too long to compute.



Squares vs. rectangles

run time (µs)

(r , s, n) (17, 18, 19) (7, 7, 7)

no. entries rs − 0 rs − 1 rs − 2 rs − 0 rs − 1 rs − 2

MMM (Nauty) 58.2 30.4 29.0 1203.0 30.8 5.6

MMM (Nauty, SEI) 206.5 42.6 42.7 1200.6 24.2 5.7

MMM (Nauty, sq.) 42.4 33.1 33.0 6.6 2.8 2.2

MMM (Nauty, SEI, sq.) 42.2 33.6 33.6 6.5 3.0 2.2

PLR graph (Nauty) 29.7 18.5 18.5 840.3 22.1 2.2

PLR graph (Nauty, SEI) 110.7 20.7 20.1 837.7 4.3 2.6

PLR graph (Nauty, sq.) 35.5 33.0 33.1 5.3 2.2 2.1

PLR graph (Nauty, SEI, sq.) 36.1 34.0 33.7 5.4 2.3 2.1

PLR beats MMM method (to my surprise!).

Massive difference between Latin squares and everything else.

Square invariants were crucial for Latin squares.
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Usefulness of invariants...
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Figure: Proportion of time computation is required (10000 samples).

Invariants often eliminate the need for computation with an
intermediate number of entries.
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invariants, for random Latin squares (10000 samples).

I’m really surprised by this—the MMM method is the usual
method.



Conclusion: Design goals...
To write a decent piece of code for computing
autotopism groups of PLRs...

For very few entries, we have lots of symmetries, but we
should be able to account for these mathematically.

For an intermediate number of entries, we can often eliminate
computation using an entry invariant.

For a large number of entries, we may be best using the PLR
graph method without invariants. (Maybe some theoretical
work to reduce post-filtering?)

For Latin squares, we’re in another world...

Some Latin squares have transitive autotopism groups
(invariants are useless!).
Some Latin squares have
large autotopism groups—computing this will be slow,
even with an oracle. (Can we recognize these?)

It may be worthwhile re-implementing Nauty’s
individualization-refinement method for this purpose.
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