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Secret sharing schemes

Secret sharing schemes describe how to distribute pieces of
information, called shares, among participants so that:

if the participants cooperate, their collective shares can be
used to recover a secret message, and

if too few participants cooperate, then the secret cannot be
recovered.
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We can’t find the secret without both shares.

We can choose share 1 uniformly at random. And choose share 2
to so that “share 1 + share 2” reveals the secret.
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Shamir’s Secret Sharing Scheme

Adi Shamir (of RSA fame) developed a secret sharing scheme.
(How to share a secret (1979), Comm. ACM.)

We have

` participants,

a secret number c , and

we want any t of the participants to be able to recover the
secret.

We generate a polynomial f of degree t − 1 with constant term c
and the other coefficients are chosen at random. The shares are
distinct points (x , f (x)) (except for when x = 0).

Given any t points, we can use Lagrange Interpolation to recover
f , and find the secret f (0).
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Shamir’s secret sharing scheme is in widespread use and has
withstood the test of time.

This relegates most subsequently
studied secret sharing schemes to be primarily of academic interest
(including the one I’m presenting, but it could be thought of as an
alternative).

Blakely developed a different secret sharing scheme where the
shares are hyperplanes and the secret is their unique intersection
point (via linear algebra). (Safeguarding cryptographic keys
(1979).)

Secret sharing was invented independently by Adi Shamir
and George Blakley in 1979. — Wikipedia.
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(Image source: SMBC)

A Latin square of order n = 3:0 1 2

1 2 0

2 0 1

 .
It contains entries e.g. (0, 0, 0), (1, 2, 0), (2, 0, 2). It has autotopisms (or
symmetries) e.g. ( row perm︷ ︸︸ ︷

(0, 1, 2),

col perm︷ ︸︸ ︷
(0, 1, 2),

sym perm︷ ︸︸ ︷
(0, 2, 1)

)
.



Latin squares (intro)

(Image source: SMBC)

A Latin square of order n = 3:0 1 2

1 2 0

2 0 1

 .

It contains entries e.g. (0, 0, 0), (1, 2, 0), (2, 0, 2). It has autotopisms (or
symmetries) e.g. ( row perm︷ ︸︸ ︷

(0, 1, 2),

col perm︷ ︸︸ ︷
(0, 1, 2),

sym perm︷ ︸︸ ︷
(0, 2, 1)

)
.



Latin squares (intro)

(Image source: SMBC)

A Latin square of order n = 3:0 1 2

1 2 0

2 0 1

 .
It contains entries e.g. (0, 0, 0), (1, 2, 0), (2, 0, 2).

It has autotopisms (or
symmetries) e.g. ( row perm︷ ︸︸ ︷

(0, 1, 2),

col perm︷ ︸︸ ︷
(0, 1, 2),

sym perm︷ ︸︸ ︷
(0, 2, 1)

)
.



Latin squares (intro)

(Image source: SMBC)

A Latin square of order n = 3:0 1 2

1 2 0

2 0 1

 .
It contains entries e.g. (0, 0, 0), (1, 2, 0), (2, 0, 2). It has autotopisms (or
symmetries) e.g. ( row perm︷ ︸︸ ︷

(0, 1, 2),

col perm︷ ︸︸ ︷
(0, 1, 2),

sym perm︷ ︸︸ ︷
(0, 2, 1)

)
.



Reconstruction from partial Latin squares

A Latin square of order 4 and a critical set:

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

0 1 · ·
· · · 2

· 3 · ·
· · 1 ·

A critical set (a) completes to a unique Latin square and (b) any
proper subset of these entries completes to ≥ 2 Latin squares.

Cooper, Donovan, and Seberry (1994) proposed having a secret
Latin square, and splitting critical sets among the participants.

This scheme has been (harshly) criticized in the literature as
impractical. (More about this later...)
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Reconstruction from contours

We can reconstruct a Latin square L from knowledge of a contour
C and an autotopism θ.

0 · 1

· · 0
· · ·

C

(0, 0, 0)
θ7−→ (1, 1, 1)

θ7−→ (2, 2, 2)

(0, 2, 1)
θ7−→ (1, 0, 2)

θ7−→ (2, 1, 0)

(1, 2, 0)
θ7−→ (2, 0, 1)

θ7−→ (0, 1, 2).

0 2 1

2 1 0

1 0 2

L

Here θ =
(
(0, 1, 2), (0, 1, 2), (0, 1, 2)

)
.

Ganfornina (2006) proposed having a secret Latin square, and
splitting contours among participants. This was not carefully
analyzed in his work (it felt more like he was proposing a potential
application).
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splitting contours among participants.

This was not carefully
analyzed in his work (it felt more like he was proposing a potential
application).
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Criticisms

Why a Latin square? There have been many proposed secret
sharing schemes using a variety of combinatorial objects as secrets;
why would we want a secret Latin square?

Latin squares also have
O(n2) entries, which might be “too much” for some applications
(in terms of time and/or space).

Verification If the participants cooperate and recover a Latin
square X , how can they be sure that X = L, the secret Latin
square?

Initialization and reconstruction complexity Typically, it is
difficult to find a critical set C , and given a critical set C , it is
difficult to find the completion of C (determining if a partial Latin
square admits a completion is NP-complete; Colbourn 1984).
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More criticisms

Partial information The shares reveal partial information about
the secret Latin square to the participants.

A subtle “flaw” It was shown in Donovan et al. (2012) that some
partial critical sets embed in only one critical set (so the secret can
be determined without knowledge of the full critical set).

Multi-level scheme It is impractical to extend these schemes to
multi-level schemes (where certain subsets of the participants can
combine to find the secret).
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The proposed scheme

The method we propose differs in two key aspects:

Instead of having a secret Latin square that admits an
autotopism, we have a secret autotopism (and we use the
Latin square for verification).

We enforce particular cycle structures for the autotopism; this
allows a concrete theoretical analysis.

We call an isotopism θ = (α, β, γ) suitable if α, β, and γ all
decompose into 2 disjoint (n/2)-cycles.



The proposed scheme

The method we propose differs in two key aspects:

Instead of having a secret Latin square that admits an
autotopism, we have a secret autotopism (and we use the
Latin square for verification).

We enforce particular cycle structures for the autotopism; this
allows a concrete theoretical analysis.

We call an isotopism θ = (α, β, γ) suitable if α, β, and γ all
decompose into 2 disjoint (n/2)-cycles.



The proposed scheme

The method we propose differs in two key aspects:

Instead of having a secret Latin square that admits an
autotopism, we have a secret autotopism (and we use the
Latin square for verification).

We enforce particular cycle structures for the autotopism; this
allows a concrete theoretical analysis.

We call an isotopism θ = (α, β, γ) suitable if α, β, and γ all
decompose into 2 disjoint (n/2)-cycles.



Generating the “prior” contour
We generate a random contour for the autotopism ζ = (τ, τ, τ)
where τ := (0, 1, . . . , n/2− 1)(n/2, n/2 + 1, . . . , n − 1) by sticking
0’s and n/2’s along the diagonals indicated below:

D =

· · 0 · · 3

· 3 · · 0 ·
0 · · 3 · ·
· · 3 · · 0

· 0 · · 3 ·
3 · · 0 · ·

contour−−−−→ Lprior =

5 1 0 2 4 3

1 3 2 4 0 5

0 2 4 3 5 1

2 4 3 5 1 0

4 0 5 1 3 2

3 5 1 0 2 4

(for this to work we need, and hence assume n ≡ 0 (mod 4)).
Instead of the original contour for D, we retain a random contour
Cprior by replacing each entry (i , j , di ,j) in the contour with
ζt(i , j , di ,j) for t ∈ {0, 1, . . . , n/2− 1} randomly chosen for each
entry.

Cprior =

5 · · · · ·
1 · · 4 0 ·
0 · · 3 · ·
· · · · · ·
· 0 5 · · 2

· 5 · · 2 4
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Randomizing the contour and autotopism
We randomly generate an isotopism ϕ.

If Lprior is a Latin square that admits the autotopism ζ, then
L := ϕ(Lprior) admits the autotopism θ := ϕζϕ−1. Note: θ is a
suitable autotopism.

If we apply the random isotopism

ϕ =
(
(0, 4, 1, 3, 5, 2), (1, 2, 4), (1, 3, 2, 5)

)
to the earlier example, we obtain the Latin square

L = ϕ(Lprior) =

0 1 5 2 4 3

4 2 0 3 1 5

2 5 1 0 3 4

3 0 2 4 5 1

1 4 3 5 0 2

5 3 4 1 2 0

which admits the autotopism

θ = ϕζϕ−1

=
(
(0, 4, 3)(1, 2, 5), (0, 2, 4)(1, 5, 3), (0, 3, 5)(1, 2, 4)

)
.
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Randomizing the contour (cont.)

Further, it is generated by the contour

C = ϕ(Cprior) =

0 · · 2 · ·
· · 0 · 1 5

· 5 1 · · 4

3 0 · 4 · ·
1 · · · · ·
· · · · · ·

and the autotopism θ.



Splitting the autotopism

If we have e.g. 4 participants, we split the autotopism θ into 3
random isotopisms σ1, σ2, σ3, and we choose σ4 such that
θ = σ1σ2σ3σ4.

E.g., we might end up with:

σ1 =
(
(0, 4)(1, 5), (0, 4, 5, 3, 1), (0, 5, 1)(2, 4, 3)

)
σ2 =

(
(0, 4)(1, 3, 5, 2), (0, 2, 5), (0, 1, 3, 4, 5, 2)

)
σ3 =

(
(0, 1, 3, 2, 5), (0, 1, 3, 5, 4), (1, 5)(2, 4)

)
σ4 =

(
(1, 4, 3, 5, 2), (0, 2, 5, 3, 1), (0, 5, 2, 1, 4, 3)

)
.

These are our shares and we distribute one to each participant.
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Public contour

We compute Cpublic := ξ(C ) where ξ := σ`σ`−1 · · ·σ1.

In our
running example, we have the situation

ξ =
(
(0, 3)(1, 4, 5, 2), (0, 3, 1)(2, 5, 4), (0, 2, 4, 3)(1, 5)

)
and so

Cpublic = ξ(C ) =

· · · · · ·
· 0 · 2 · ·
1 · 4 · 3 ·
· · · 1 · ·
· 3 2 5 · ·
2 · · · 4 1

which we make public. When the shares are returned to reveal the
secret, we use this to verify that the shares combine correctly.
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Review

generate Cprior pRNG
Step 1

generate ϕ

compute C compute θ

Step 2

generate σ1, . . . , σ`
Step 3

compute ξ

compute Cpublic

Step 4

verify θ 6= ξ

release Cpublic; distribute shares σ1, . . . , σ`

Figure : Flow chart of the proposed secret sharing scheme: initialization
phase. (We also check θ = ξ, restarting if this happens.)



Recovery
When all participants decide to cooperate, the participants securely
send the shares σ̃1, σ̃2, . . . , σ̃` to a combiner (possibly
incorrectly—if share i is correctly sent, we have σ̃i = σi ).

1. The combiner computes θcand := σ̃1σ̃2 · · · σ̃`.
2. If θcand is not suitable, then we return fail. Otherwise we

verify that Lcand, determined from the contour
C = ξ−1(Cpublic) = σ−1

1 σ−1
2 · · ·σ−1

` (Cpublic) and θcand, is a
Latin square.

3. If Lcand is not a Latin square, then we return fail. Otherwise
θcand is revealed to the participants.

Security The security of this scheme depends on the small chance
of θcand being returned when θcand 6= θ.

Efficiency We don’t need to generate the Latin square L for
verification. It suffices, and is more efficient to check the two
“leading” rows and columns for clashes.
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Security analysis

Collusion Each σi is a random isotopism (distributed uniformly at
random from Sn × Sn × Sn); knowledge of fewer than all ` shares
σi is of no more use in recovering θ or C than is a random suitable
isotopism.

Brute-force attack Search spaces are too large:

n nr LS with autotop. ζ nr suitable isotop. is(L) lower bound

6 648 6× 104 2× 105

10 20820000 3× 1014 4× 1014

14 ? 7× 1026 1× 1027

18 ? 6× 1040 7× 1039
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n nr LS with autotop. ζ nr suitable isotop. is(L) lower bound

6 648 6× 104 2× 105

10 20820000 3× 1014 4× 1014

14 ? 7× 1026 1× 1027

18 ? 6× 1040 7× 1039



Security analysis (cont.)

Attack by finding a completion of Cpublic If an attacker
managed to find L, they could compute its autotopism group, and
find the secret θ.

So we need to ensure Cpublic cannot be used to
find L.

Assuming an attacker managed to find a completion of Cpublic, this
would at most give the attacker knowledge of the isotopism class
containing L. If the attacker attempted to randomly guess L from
knowledge of M, their probability of being correct is 1/is(L). This
probability is prohibitively small, even for n = 10.

Partial information about L Since the isotopisms σi are random,
they provide no information about L. The public contour Cpublic

might give some information about the isotopism class that L
belongs to (such as the existence of subsquares), but even full
knowledge of the isotopism class is of limited use.
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Security analysis (cont.)

Attack by replacing shares How likely is it that an isotopism
θcand 6= θ is returned?

Obstacle 1 : If participant i returns the share σ̃i chosen uniformly
at random from those whose components are even permutations,
we have

Pr[θcand suitable | σ̃i returned] =
64

n6
.

Obstacle 2 : Let p denote the probability of θcand 6= θ returned
assuming Obstacle 1 is overcome. This is tested experimentally:

n experimentally p ≤ theoretically p ≥
6 4.5× 10−5 (99.995% confidence) 3.13× 10−5

10 2× 10−11 (99.995% confidence) 1.04× 10−14
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Concluding remarks

1. The ability to verify the secret is correct is an advantage overy
Shamir’s scheme.

2. We can easily extend to a multi-level scheme on-the-fly.

3. We can eliminate working with Latin squares altogether
(they’re “behind the scenes”); this saves on space and time
complexity.
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Thank you!

(Image source: xkcd)



Probability (C , θcand) generates a Latin square, when θcand is
random We have

p := Pr[(C , θcand) generates a Latin square]

= Pr[(ϕ−1(C ), ϕ−1θcandϕ) generates a Latin square]

= Pr[(Cprior, ϕ
−1θcandϕ) generates a Latin square]

= Pr[(Cprior, θcand) generates a Latin square]

since θcand and ϕ−1θcandϕ are equal in distribution. This was used
to simplify method used in the simulations.

For n = 6, we generate 109 pairs (Cprior, β), for random suitable
autotopism β, and find 43409 generate a Latin square. The upper
bound on the Wald confidence interval is 4.5× 10−5 with 99.995%
confidence. For n = 10, we made N := 3.6× 1011 samples, and no
Latin square was generated this way. Using a modified “rule of
three”, we can be 99.995% confident that p ≤ 7.6/N ≈ 2× 10−11.
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