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This is what a partial Latin rectangle looks like today...

1 2

2 3

2 1 3

No symbol is duplicated in any row or column.

We have r = 3 rows.

We have s = 5 columns.

We have n = 3 symbols.

We have weight m = 7. I.e. 7 non-empty cells.

No row is empty. No column is empty. Every symbol {1, 2, . . . , n}
is used at least once.
Rows are labeled {1, 2, . . . , r}. Columns are labeled {1, 2, . . . , s}.
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Some partial Latin rectangles have symmetries...

For this partial Latin rectangle

1 2

1 2

if we swap the two rows, and swap columns 1 and 3, and swap
columns 2 and 4, we generate the partial Latin rectangle we
started off with.

(This why we don’t want empty rows and columns, and unused
symbols. E.g. if there were two empty rows, we can swap them to
give an uninteresting symmetry.)
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Two types of operations...

We can permute the rows, columns, and symbols.

A
combination of these three operations is called an isotopism.
There are r !s!n! operations of this kind.

If cell (i , j) contains symbol k, then we define the entry
(i , j , k), and the set of all entries is called the entry set.

1 2

3
←→

{(1, 1, 1),
(1, 2, 2),
(2, 1, 3)}

Our second operation is permuting the coordinates of every
entry in the entry set, e.g., if we cyclically permute the
coordinates of the entries above, we get:

1 2

1
←→

{(1, 1, 1),
(2, 2, 1),
(1, 3, 2)}

There are 3! = 6 operations of this kind.

A combination of these two types of operations is called an
paratopism.
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Formality...

Let St denote the symmetric group on {1, 2, . . . , t}.

The group

(Sr × Ss × Sn) o S3

operates on the set of weight-m partial Latin rectangles
L = (lij)r×s ...

... with

θ = (α, β, γ; δ) ∈ P

mapping L to the partial Latin rectangle defined by:

First, we permute the rows of L according to α, the columns
according to β, and the symbols according to γ, giving the
partial Latin square L′ = (l ′ij).

Then, we permute the coordinates of each entry in L′

according to δ, i.e., if (e1, e2, e3) is an entry of L′, then it
maps to (eδ(1), eδ(2), eδ(3)).
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Technically, this is not a group action, as we don’t preserve the
dimensions of the partial Latin rectangle.

But if we restrict to the operations that preserve the dimensions
(r , s, n), we indeed have a group action. And it’s okay to talk
about stabilizers under this group action.

E.g. it’s okay to take the transpose if the number of rows equals
the number of columns.
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Two symmetry groups...

Given a partial Latin rectangle L with parameters r , s, n, there are
two symmetry subgroups of Pr ,s,n we will care about:

The autoparatopism group apar(L) is the subgroup of
(Sr × Ss × Sn) o S3 consisting of all θ for which θ(L) = L.

The autotopism group atop(L) is the subgroup of
(Sr × Ss × Sn) o 〈id〉 consisting of all θ for which θ(L) = L.

Question
Given two groups H1 and H2, does there exist a partial Latin
rectangle L with apar(L) ∼= H1 and atop(L) ∼= H2?

There are some obvious “no” instances; e.g. we obviously need
H2 ≤ H1. There’s some slightly less obvious “no” instances ...
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Important necessary condition

Lemma
atop(L) is a normal subgroup of apar(L) ...

... and moreover

apar(L)/atop(L) ∼= {δ ∈ S3 : ∃(α, β, γ; δ) ∈ apar(L)}.

Hence, apar(L)/atop(L) is isomorphic to a subgroup of S3, i.e.,
one of 〈id〉, C2, C3 or S3.

Question
Given a group H1 with a normal subgroup H2 satisfying
H1/H2

∼= 〈id〉, C2, C3 or S3, does there exist a partial Latin
rectangle L with apar(L) ∼= H1 and atop(L) ∼= H2?

I.e., is the above necessary condition sufficient?
The answer is “yes” when H1 = H2 (Phelps 1979, S. 2013).
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Weight watching...

Question
Given two groups H1 and H2 (satisfying the lemma), for which
weights m does there exist a weight-m partial Latin rectangle L
with apar(L) ∼= H1 and atop(L) ∼= H2?

This is the question I’ve been working on with Raúl.

Our current aim is to answer this question in the following
instances:

When H1 ∈ {〈id〉,C2,C3,S3} and H2
∼= 〈id〉.

(Raúl emailed me an update which would mean that this is
now done; I haven’t had time to check properly yet.)

When H1
∼= H2

∼= Ck .
(This is more complicated.)
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now done; I haven’t had time to check properly yet.)

When H1
∼= H2

∼= Ck .
(This is more complicated.)
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Partial Latin rectangles graphs

· · · · 1

· 5 2 · ·

3 · · 1 4

Any weight-m partial Latin rectangle L = (lij) corresponds to a
m-vertex partial Latin rectangle graph with:

vertex set equal to the entry set of L, and

an edge between distinct vertices (i , j , k) and (i ′, j ′, k ′)
whenever i = i ′, j = j ′, or k = k ′.

Same row: green edge. Same column: orange edge. Same
symbol: purple edge.



Partial Latin rectangles graphs

· · · · 1

· 5 2 · ·

3 · · 1 4

Any weight-m partial Latin rectangle L = (lij) corresponds to a
m-vertex partial Latin rectangle graph with:

vertex set equal to the entry set of L, and

an edge between distinct vertices (i , j , k) and (i ′, j ′, k ′)
whenever i = i ′, j = j ′, or k = k ′.

Same row: green edge. Same column: orange edge. Same
symbol: purple edge.



Partial Latin rectangles graphs

· · · · 1

· 5 2 · ·

3 · · 1 4

Any weight-m partial Latin rectangle L = (lij) corresponds to a
m-vertex partial Latin rectangle graph with:

vertex set equal to the entry set of L, and

an edge between distinct vertices (i , j , k) and (i ′, j ′, k ′)
whenever i = i ′, j = j ′, or k = k ′.

Same row: green edge. Same column: orange edge. Same
symbol: purple edge.



Partial Latin rectangles graphs

· · · · 1

· 5 2 · ·

3 · · 1 4

Any weight-m partial Latin rectangle L = (lij) corresponds to a
m-vertex partial Latin rectangle graph with:

vertex set equal to the entry set of L, and

an edge between distinct vertices (i , j , k) and (i ′, j ′, k ′)
whenever i = i ′, j = j ′, or k = k ′.

Same row: green edge. Same column: orange edge. Same
symbol: purple edge.



Lemma
An autotopism of a partial Latin rectangle induces an
edge-color-preserving automorphism of the corresponding partial
Latin rectangle graph.

Lemma
An autoparatopism of a partial Latin rectangle induces an
edge-color-class-preserving automorphism of the corresponding
partial Latin rectangle graph.

· · · · 1

· 5 2 · ·

3 · · 1 4

atop =〈(id, (23), (25); id)〉 (size 2)

apar =〈(id, (23), (25); id), (id, (1325), (1523); (23))〉 (size 4)

aut (ignoring edge colors) (size 8)
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Subgroup lattice

If Γ(L) denotes the partial Latin rectangle graph of L, then we
have the (partial) subgroup lattices for apar(L) and aut(Γ(L)):

apar(L)

atop(L)

aut(Γ(L))

apar(Γ(L))

atop(Γ(L))

∼=

∼=

...usually...



Well, actually...

Annoyingly, there’s some cases where this lattice is not right.

This
arises when a non-trivial autoparatopism induces the trivial
automorphism of the partial Latin rectangle graph. E.g.,

1 · · ·
· 2 · ·
· · 3 ·
· · · 4


admits the autoparatopism (id, id, id; (123)), which induces the
trivial automorphism of the partial Latin rectangle graph.

I’ll just pretend this doesn’t happen (this situation only arises in
boring cases).
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Constructions...

Many of our constructions follow the same pattern:

We design L so that H1 ≤ apar(L) and H2 ≤ atop(L) are
apparent.

We exclude the possibility of other autotopisms and
autoparatopisms of L by studying the automorphisms of Γ(L).

We begin with aut(Γ(L)) and add vertex or edge colors
to Γ(L) that are preserved by automorphisms of Γ(L)
corresponding to autotopisms or autoparatopisms of L.
We (eventually) come to the conclusion that apar(Γ(L))
and atop(Γ(L)) are contained in subgroups of aut(Γ(L))
of size |H1| and |H2|, respectively.
We conclude apar(L) ∼= H1 and atop(L) ∼= H2.
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Construction
For all odd m ≥ 5, these partial Latin rectangles have a trivial
autoparatopism group (and hence a trivial autotopism group):

even:

[
2 3 4 5

· 1 2 ·

]
,

[
2 3 4 5 6

· 1 2 3 ·

]
, · · ·

odd:

[
2 3 4

4 1 ·

]
,

[
2 3 4 5

5 1 2 ·

]
,

[
2 3 4 5 6

6 1 2 3 ·

]
, · · ·

The number of rows, columns, and symbols are all different. So
any autoparatopism is an autotopism. So any autoparatopism
induces an edge-color-preserving automorphism of the partial Latin
rectangle graph.

The number of entries in the first row differs from the second row,
so the row permutation must be trivial. We color the vertices of
the partial Latin rectangle graph red/blue according to their row.
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The partial Latin rectangle graphs look like:

K7

K5

or

K7

K6

which has no automorphisms that preserve both the edge and
vertex colors.

So the autoparatopism group (and hence a trivial autotopism
group) of the partial Latin rectangle is trivial.
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Concluding comments: What we have at the moment...

We have developed the machinery to study symmetries of
partial Latin rectangles.

Switching to graphs ↔ rephrasing the problem. But
symmetries of graphs are more familiar.
There was a lot of proofs that were completely rewritten
as the machinery developed.

We have a bunch of constructions (like the one we just looked
at) for different H1, H2.

We focus on connected partial Latin rectangles. (I.e., the
partial Latin rectangle graph is connected.)

One result: There exists a weight-m, connected partial
Latin rectangle L with apar(L) = atop(L) ∼= Ck whenever
m ≥ 2k + 2. Open: Is this the best possible for
connected PLRs?
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Disconnected PLRs

Our apar(L) = atop(L) ∼= Ck construction is not, in general, the
best possible if we allow disconnected cases:

1 2 · ·
3 1 · ·
· · 4 5

 ,


1 2 · · ·
· 1 3 · ·
4 · 1 · ·
· · · 5 6

 ,


1 2 · · · ·
· 1 3 · · ·
· · 1 4 · ·
5 · · 1 · ·
· · · · 6 7


.

These have apar(L) = atop(L) ∼= Ck × C2.

If k is odd, then
apar(L) = atop(L) ∼= C2k .
This (and other blockwise constructions) is why we focus on
connected partial Latin rectangles.
(The connected PLRs also feel like the “primes”, and we can glue
them together blockwise to form the “composites”.)



Disconnected PLRs

Our apar(L) = atop(L) ∼= Ck construction is not, in general, the
best possible if we allow disconnected cases:

1 2 · ·
3 1 · ·
· · 4 5

 ,


1 2 · · ·
· 1 3 · ·
4 · 1 · ·
· · · 5 6

 ,


1 2 · · · ·
· 1 3 · · ·
· · 1 4 · ·
5 · · 1 · ·
· · · · 6 7


.

These have apar(L) = atop(L) ∼= Ck × C2. If k is odd, then
apar(L) = atop(L) ∼= C2k .

This (and other blockwise constructions) is why we focus on
connected partial Latin rectangles.
(The connected PLRs also feel like the “primes”, and we can glue
them together blockwise to form the “composites”.)



Disconnected PLRs

Our apar(L) = atop(L) ∼= Ck construction is not, in general, the
best possible if we allow disconnected cases:

1 2 · ·
3 1 · ·
· · 4 5

 ,


1 2 · · ·
· 1 3 · ·
4 · 1 · ·
· · · 5 6

 ,


1 2 · · · ·
· 1 3 · · ·
· · 1 4 · ·
5 · · 1 · ·
· · · · 6 7


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These have apar(L) = atop(L) ∼= Ck × C2. If k is odd, then
apar(L) = atop(L) ∼= C2k .
This (and other blockwise constructions) is why we focus on
connected partial Latin rectangles.

(The connected PLRs also feel like the “primes”, and we can glue
them together blockwise to form the “composites”.)
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