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Two models of the Fibonacci numbers

1. A combinatorial model

2. A geometric model



A combinatorial model for Fibonacci numbers

Theorem
The number of ways to tile a board of length j with squares and
dominoes is fj where f0 = f1 = 1 and fj = fj−1 + fj−2.
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f4 = 5



Proof.

Consider a j-board. Suppose that this can be tiled in fj ways.

j

Case 1. If the first tile is a square then there are fj−1 ways to tile the
remaining (j − 1)-board.

j − 1

Case 2. If the first tile is a domino then there are fj−2 ways to tile the
remaining (j − 2)-board.

j − 2

Therefore fj = fj−1 + fj−2.
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Sums of squares of Fibonacci numbers

Theorem

f2
0 + f2

1 + f2
2 + · · ·+ f2

n = fnfn+1



Proof.

Question. How many ways can you tile an n-board and an
(n+ 1)-board?

n+ 1

n

Answer 1. There are fn and fn+1 tilings of the first and
second board, respectively. Therefore there are

fnfn+1

tilings of both boards.
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Answer 2. Condition on the position j corresponding to the
last common edge of each tiling.

j

To avoid future common edges, there is exactly one way to
finish the tiling.

Prior to this, the first and second board can each be tiled fj
ways, so both can be tiled f2

j ways.

Summing over all possible values of j gives
∑n

j=0 fj
2 tilings.
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A geometric model for Fibonacci numbers

Construct a rectangle comprising two adjacent squares of side
F1 = 1 and F2 = 1.

F1

F2



A geometric model

For every j ≥ 2 we construct a square of side Fj on the larger side
of the existing rectangle.
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A geometric model

For every j ≥ 2 we construct a square of side Fj on the larger side
of the existing rectangle.
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A geometric model

The jth square has side Fj where F1 = F2 = 1 and
Fj = Fj−1 + Fj−2 for n ≥ 2.
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Sums of squares of Fibonacci numbers.

Theorem

F 2
1 + F 2

2 + · · ·+ F 2
n = FnFn+1

F1F3 F5 F7
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F4

F6

Proof.
The total area is equal to the sum of its parts.



Sums of cubes of Fibonacci numbers

Question. Is there a closed formula for the sum of cubes of
Fibonacci numbers?

Answer. Yes, by Binet’s formula for the nth Fibonacci
number there has to be. However, the answer is not
expressible as the product of Fibonacci numbers.
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Sums of cubes of Fibonacci numbers

Theorem
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Proof.
A. T. Benjamin, B Cloitre and T. A. Carnes, Recounting the Sums
of Cubes of Fibonacci Numbers, Proceedings of the Eleventh
International Conference on Fibonacci Numbers and their
Applications, (2009), 45-51



A preliminary result

For the geometric proof we require one preliminary result,
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The centroid of a composite shape
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A Fibonacci tiling

Example
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The centroid of the tiling

Example
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Sums of cubes

Starting point:

Tn = 1 + 2 + · · ·+ n =
1

2
n(n+ 1)



Sums of cubes
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Sums of cubes
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Sums of cubes
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A generalisation

The same trick works more generally. Suppose our starting point is
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Apply the method again
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