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Intrinsic linking

Theorem (Conway and Gordon, 1983; Sachs, 1983)

Every embedding of the complete graph K6 in R3 contains a
nontrivial link.

We say that K6 is intrinsically linked.
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Linking number

Definition

Let C, D be oriented disjoint simple closed curves in R3. The
linking number of C and D, link(C,D), is the signed count of
crossings where C crosses over D.

Linking number is symmetric: link(C,D) = link(D,C)
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Proof K6 is intrinsically linked

1 Define

λ =
∑
{L,J}

link(L, J) mod 2,

summing over all 1
2

(6
3

)
= 10 pairs

of disjoint triangles in K6.
2 λ is unchanged by ambient

isotopies and crossing changes,
which suffice to take any
embedding to any other.

3 λ evaluates to 1 on a specific
embedding.

link≡ 1, link≡ 0

⇒ Every embedding contains an odd number of links of odd
linking number, hence at least one.
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Additional results of interest

Characterisation of linklessly embeddable graphs
The linklessly embeddable graphs are the graphs with:

No minor among the six graphs in the Petersen family
(Robertson, Seymour and Thomas, 1995).
Colin de Verdière invariant µ ≤ 4
(Lovás and Schrijver, 1998).

Intrinsic knotting
A graph is intrinsically knotted if every embedding in R3

contains a nontrivial knot.
K7 is intrinsically knotted (Conway and Gordon, 1983).
Graph Minor Theorem⇒ knotlessly embeddable graphs
are characterised by a finite set of forbidden minors.
Over 200 minor-minimal intrinsically knotted graphs are
known.
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What about larger complete graphs?

Question

Do embeddings of larger complete graphs in R3 necessarily
exhibit more complicated linking behavior?

For example:
Non-split links with many components?
Two-component links with large linking number?

We say the link C ∪ D is a strong link if

|link(C,D)| ≥ 2.



Key property: additivity of linking number

Fact: For oriented simple closed curves C, D in R3,

link(C,D) = class of D in H1(R3 − C) ∼= Z

Consequence: linking number is additive.

C

D3 = D1 + D2 as sums of edges

⇒ [D3] = [D1] + [D2] in H1(R3 − C) ∼= Z
⇒ link(C,D3) = link(C,D1) + link(C,D2)

here: 2 = 1 + 1



Key property: additivity of linking number

Fact: For oriented simple closed curves C, D in R3,

link(C,D) = class of D in H1(R3 − C) ∼= Z

Consequence: linking number is additive.

D1 D2 D3 C

D3 = D1 + D2 as sums of edges

⇒ [D3] = [D1] + [D2] in H1(R3 − C) ∼= Z
⇒ link(C,D3) = link(C,D1) + link(C,D2)

here: 2 = 1 + 1



Key property: additivity of linking number

Fact: For oriented simple closed curves C, D in R3,

link(C,D) = class of D in H1(R3 − C) ∼= Z

Consequence: linking number is additive.

D1 D2 D3 C

D3 = D1 + D2 as sums of edges

⇒ [D3] = [D1] + [D2] in H1(R3 − C) ∼= Z

⇒ link(C,D3) = link(C,D1) + link(C,D2)

here: 2 = 1 + 1



Key property: additivity of linking number

Fact: For oriented simple closed curves C, D in R3,

link(C,D) = class of D in H1(R3 − C) ∼= Z

Consequence: linking number is additive.

D1 D2 D3 C

D3 = D1 + D2 as sums of edges

⇒ [D3] = [D1] + [D2] in H1(R3 − C) ∼= Z
⇒ link(C,D3) = link(C,D1) + link(C,D2)

here: 2 = 1 + 1



Key property: additivity of linking number

Fact: For oriented simple closed curves C, D in R3,

link(C,D) = class of D in H1(R3 − C) ∼= Z

Consequence: linking number is additive.

D1 D2 D3 C

D3 = D1 + D2 as sums of edges

⇒ [D3] = [D1] + [D2] in H1(R3 − C) ∼= Z
⇒ link(C,D3) = link(C,D1) + link(C,D2)

here: 2 = 1 + 1



Disjoint links implies triple link

Lemma
Given a link X1 ∪ Y1 ∪ X2 ∪ Y2 in KN with

link(Xi ,Yi) 6≡ 0 mod 2 for i = 1,2,

there is a loop X in KN with all vertices on X1 ∪ X2 such that

link(X ,Yi) 6≡ 0 mod 2 for i = 1,2.
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Consequence: existence of chains

Theorem (Flapan et. al., 2001 (paraphrased))

Let k ∈ N. For N sufficiently large, every embedding of KN in R3

contains a k-component “chain”: a link L1 ∪ · · · ∪ Lk such that

link(Li ,Li+1) 6= 0

for i = 1, . . . , k − 1. (N = 6(k − 1) suffices)



Triple link implies strong link

Lemma (Flapan 2002, special case of Lemma 1)
Let C ∪D1 ∪D2 be a triple link contained in an embedding of Kn
in R3, such that link(C,D1) = link(C,D2) = 1.
Then there is a simple closed curve D in Kn, with all its vertices
on D1 ∪ D2, such that link(C,D) ≥ 2.

C

D2

D1

F2

[F1] + [F2] + [F3] = [D1] + [D2] = 1 + 1 = 2
[D] = [D1 + D2 − F2] ≥ 2
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Consequence: existence of strong links

Theorem (Flapan, 2002)
Let λ ∈ N. For N sufficiently large, every embedding of KN in
R3 contains a two component link L ∪ J such that

|link(L, J)| ≥ λ.

(N = λ(15λ− 9) suffices)

In fact:

Theorem
For all k , λ ∈ N, for N sufficiently large every embedding of KN
in R3 contains a k-component link with all pairwise linking
numbers

at least λ in absolute value (Flapan et al., 2008).
a nonzero multiple of λ (T., 2019).

Result extends to higher dimensions (T., 2019).
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Motivating question

Let C, D be disjoint simple closed curves in R3. We say
C and D link if link(C,D) 6= 0
C and D are weakly linked if |link(C,D)| = 1
C and D are strongly linked if |link(C,D)| ≥ 2

Question
What is the least n such that Kn is intrinsically strongly linked?

That is:
What is the least n such that every embedding of Kn in R3

contains a strong link?



Prior results

Theorem (Flapan-Naimi-Pommersheim, 2000)
K10 is intrinsically triple linked, but K9 is not.

⇒ K10 is intrinsically strongly linked

Theorem (Fleming and Mellor, 2009)
K8 has an embedding with no strong
link.

Theorem (Naimi and Pavelescu,
2014)
Linear embeddings of K9 are triple
linked.

Image: Fleming and Mellor

Conjecture
K9 is intrinsically strongly linked.
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Impasse

Many partial results, including:

A necessary and sufficient condition for an embedding of
K9 to be weakly linked.
K9 minus two adjacent edges has a weakly linked
embedding
(found by computer search).

— but so far unable to resolve the question of whether K9 is
intrinsically strongly linked.



New question: Km–Kn embeddings

If you can’t solve a problem, then there is an easier
problem you can solve: find it.

— George Pólya

Problem
Algebraically characterise linked embeddings of Km and Kn in
R3 such that no cycle in Km strongly links any cycle in Kn.

— now we only care about links between cycles in one graph
and cycles in the other, which makes things easier.



Strategy

Characterise in turn weak linking between
1 a simple closed curve and Kn.
2 a theta curve Θ and Kn.
3 K4 and Kn, n ≥ 4.
4 Km and Kn, m,n ≥ 5.

A common theme is that each graph gets partitioned into sets
of vertices that are interchangeable with respect to linking.



Stars: definition

Definition

Let
{
{p},O, I

}
be a partition of the vertices of Kn. The star pOI

consists of all oriented triangles of the form pqr , with q ∈ O and
r ∈ I.

q0 q1

p: the apex

r0

r1

r2

O: the out set

I: the in set

pOI is an improper star if 1 ∈ {|O|, |I|} (so apex is not unique).
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Stars: linking

Definition
Let C be an oriented simple closed curve disjoint from Kn.
Then C links Kn in the star pOI if it links precisely the triangles
in pOI: if for all oriented triangles T in Kn,

link(C,T ) =


+1 if T ∈ pOI,
−1 if −T ∈ pOI,
0 else.

C
p

q0 q1

r0
r1

r2



Stars and strong linking

Let C be an oriented simple closed curve disjoint from Kn.

Lemma
If C links Kn in the star pOI, then C does not strongly link Kn.

cycle D ⊆ Kn

[D] =
∑

i

[Ti ]

=

{
0 if p /∈ D

[T0] if p as shown

∈ {0,±1}

Lemma
Conversely, if C links but does not strongly link Kn, then it links
Kn in a star.
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Proof for n = 4

In H1(R3 − C):

[T0] + [T1] + [T2] + [T3] = 0

If no cycle links C strongly
then (up to relabelling)

[T0] = [T2] = 0, [T1] = −[T3] = 1

and C links the star

v0{v2}{v1, v3}.

v2v2

v3v3 v1v1

v0

T0
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Theta curves I

A theta curve is the following graph:

C3

With respect to any simple closed curve D we have

[C1] + [C2] + [C3] = 0,

so if D links Θ weakly then

{[C1], [C2], [C3]} = {−1,0,1}.



Theta curves I

A theta curve is the following graph:

C1 C2 C3

With respect to any simple closed curve D we have

[C1] + [C2] + [C3] = 0,

so if D links Θ weakly then

{[C1], [C2], [C3]} = {−1,0,1}.



Theta curves II

Theorem
Let Θ be a theta curve that links but does not strongly link an
embedding of Kn in R3. Then the linking between Θ and Kn is
described by one of the pictures below.

p
C1

C2

C3

I1

I2I3

Θ

q1

q2q3

C1

C2

C3
I

Θ



K4

Key properties:
Graph decomposes as a union of triangles summing to 0:

T0 + T1 + T2 + T3 = 0.

Any two of the Ti form a theta curve.

T1

T2

T3

v2

v3 v1
T0T0



Weakly linked K4–Kn embeddings

Two possible pictures:

Y

I0

I1

I2

I3

q

On the right I0 ∪ I1 ∪ I2 ∪ I3 = Kn − {q}; some Ij may be empty.



m,n ≥ 5

Key: get a “common vertex” or an “edge-incident triangle”:

Key Lemma
Suppose that G = Km, H = Kn are weakly linked. If m ≥ 5 then
exactly one of the following occurs:

1 There is a vertex p of G common to all triangles of G
linking H.

2 There is a triangle T ∗ of G such that a triangle T 6= T ∗ of G
links H if and only if it shares an edge with T ∗.

Theorem
For m,n ≥ 5 there are three families of weak embeddings:

1 A common vertex in each graph.
2 A common vertex in one, an edge-incident triangle in the

other.
3 An edge-incident triangle in each graph.
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An edge-incident triangle in each graph

X Y

— underlying pattern is a K4–K4 embedding.



A common vertex with an edge-incident triangle

I0

I1

I2

I3

X

— underlying pattern is a K4–K5 embedding.



A common vertex in each graph

Y0

X0

Y1

X1

Y2

X2

Y3X3

Y4

X4

— underlying pattern two wheels with ` spokes (` = 5 shown).


