The two-modular Fourier transform of binary functions

Yi Hong (Monash University, Melbourne, Australia)
Emanuele Viterbo (Monash University, Melbourne, Australia)
Jean-Claude Belfiore (Telecom ParisTech)

The Discrete Fourier Transform

- N samples of a discrete-time signal (real or complex) form the time-domain vector $\mathbf{x} = (x[n])_{n=0}^{N-1}$
- The discrete Fourier transform (DFT) of ${\bf x}$ is the frequency-domain vector ${\bf X}=(X[k])_{k=0}^{N-1}$

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{nk}{N}} \quad k = 0, \dots N-1$$

ullet The inverse discrete Fourier transform (IDFT) of ${f X}$ is

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{nk}{N}} \qquad n = 0, \dots N-1$$

The Discrete Fourier Transform

- The vector $\mathbf{x} = (x[n])_{n=0}^{N-1}$ gives the N samples of a time-domain function $f: \mathbb{Z} \to \mathbb{C}$
- If f is periodic by N samples then $f: \mathbb{Z}_N \to \mathbb{C}$ (assumption for DFT to provide the discrete spectrum)
- The time axis $\mathbb{Z}_N = \{0, 1, \dots N-1\}$ is an additive group $G = (\mathbb{Z}_N, +)$ with addition mod N then $f: G \to \mathbb{C}$
- In the frequency domain $\mathbf{X}=(X[k])_{k=0}^{N-1}$ represents the transform of f as a periodic function $\hat{f}:G\to\mathbb{C}$
- The frequency axis has the same additive group structure $G = (\mathbb{Z}_N, +)$

The Discrete Fourier Transform

 \bullet The DFT matrix $\mathbf{F}=\{e^{-\jmath 2\pi\frac{nk}{N}}\}_{n,k=0}^{N-1}$ is a unitary matrix such that

$$\mathbf{X}^T = \mathbf{F}\mathbf{x}^T \qquad \quad \mathbf{x}^T = \frac{1}{N}\mathbf{F}^H\mathbf{X}^T$$

• The vectors \mathbf{x} and \mathbf{X} are a two representations of the signal x[n] in different coordinate systems, defined by the time basis and frequency basis.

One-dimensional group representation

• The Abelian group $G = (\mathbb{Z}_N, +)$ with addition mod N admits the following one-dimensional representations

$$\chi_k: G \to S_k \subset \mathbb{C}$$
 $\chi_k(n) = e^{-\jmath 2\pi \frac{nk}{N}}$

where $k = 0, \dots, N-1$ and

$$S_k = \left\{1, e^{-\jmath 2\pi \frac{k}{N}}, e^{-\jmath 2\pi \frac{2k}{N}}, \cdots, e^{-\jmath 2\pi \frac{(N-1)k}{N}}\right\}$$

• The representation χ_k is a group homomorphism transforming the addition mod N in G into the multiplication of N-th roots of unity in S_k , i.e., for any $a,b \in G$

$$\chi_k(a+b) = \chi_k(a)\chi_k(b) \quad \text{since} \quad e^{-\jmath 2\pi\frac{(a+b)k}{N}} = e^{-\jmath 2\pi\frac{ak}{N}}e^{-\jmath 2\pi\frac{bk}{N}}$$

Example \mathbb{Z}_6

k	$S_k = \{\chi_k($	$(g), g \in G = \{0, 1, 2, 3, 4, 5\}\}$	$ Ker(\chi_k),\; G/Ker(\chi_k) $
0	0	{1}	$\{0,1,2,3,4,5\},\{0\}$
1	3 4 5 0	$\{1, e^{-j\frac{2\pi}{6}}, e^{-j\frac{4\pi}{6}}, e^{-j\frac{6\pi}{6}}, e^{-j\frac{8\pi}{6}}, e^{-j\frac{10\pi}{6}}\}$	$\{0\}, \{0, 1, 2, 3, 4, 5\}$
2	0	$\{1, e^{-\jmath \frac{4\pi}{6}}, e^{-\jmath \frac{8\pi}{6}}\}$	$\{0,3\},\{0,2,4\}$
3	3 0	$\{1,-1\}$	$\{0,2,4\},\{0,3\}$
4	2 0	$\{1, e^{j\frac{4\pi}{6}}, e^{j\frac{8\pi}{6}}\}$	$\{0,3\},\{0,2,4\}$
5	3 2 1 0	$\{1, e^{j\frac{2\pi}{6}}, e^{j\frac{4\pi}{6}}, e^{j\frac{6\pi}{6}}, e^{j\frac{8\pi}{6}}, e^{j\frac{10\pi}{6}}\}$	$\{0\}, \{0, 1, 2, 3, 4, 5\}$

Example \mathbb{Z}_6 (cont.)

$g \in G$	0	1	2	3	4	5	
$\chi_0(g)$	1	1	1	1	1	1	$ \psi_0 $
$\chi_1(g)$	1	$e^{-\jmath \frac{2\pi}{6}}$	$e^{-j\frac{4\pi}{6}}$	$e^{-\jmath \frac{6\pi}{6}}$	$e^{-\jmath \frac{8\pi}{6}}$	$e^{-\jmath \frac{10\pi}{6}}$	$ oldsymbol{\psi}_1 $
$\chi_2(g)$	1	$e^{-\jmath \frac{4\pi}{6}}$	$e^{-\jmath \frac{8\pi}{6}}$	1	$e^{-\jmath \frac{4\pi}{6}}$	$e^{-\jmath \frac{8\pi}{6}}$	$ oldsymbol{\psi}_2 $
$\chi_3(g)$	1	-1	1	-1	1	-1	$ \psi_3 $
$\chi_4(g)$	1	$e^{j\frac{4\pi}{6}}$	$e^{\jmath rac{8\pi}{6}}$	1	$e^{j\frac{4\pi}{6}}$	$e^{j\frac{8\pi}{6}}$	$ oldsymbol{\psi}_4 $
$\chi_5(g)$	1	$e^{j\frac{2\pi}{6}}$	$e^{j\frac{4\pi}{6}}$	$e^{j\frac{6\pi}{6}}$	$e^{j\frac{8\pi}{6}}$	$e^{j\frac{10\pi}{6}}$	$oldsymbol{\psi}_5$

$$\mathbf{F} = \left(egin{array}{c} oldsymbol{\psi}_0 \ dots \ oldsymbol{\psi}_5 \end{array}
ight)$$

DFT using representations as Fourier basis

- The representations χ_k for $k=0,\ldots,N-1$ are all inequivalent.
- \bullet Some are one-to-one and some are many-to-one and the images can be associated with subgroups of G
- We can formally rewrite the DFT as

$$X[k] = \langle \mathbf{x}, \boldsymbol{\psi}_k \rangle = \sum_{g \in G} x[g] \chi_k(g) \quad k = 0, \dots, N-1$$

- The complex vectors $\psi_k = [\chi_k(g)]_{g \in G}$ form the discrete Fourier basis vectors
- Each representation provides a "lens" through which we observe the time-domain signal x[n].

FFT using representations as Fourier basis

- Given a normal subgroup $H \subseteq G$ we define the quotient group G/H consisting of the coset leaders u of the cosets u + H
- ullet The direct product of H and G/H is isomorphic to G i.e.,

$$G = \{u + v | u \in H, v \in G/H\} \approx H \times G/H$$

- All $u \in H = \operatorname{Ker}(\chi_k)$ are mapped to the same value $\chi_k(u) = \chi_k(0) = 1 \in S_k$
- Then we can compute the DFT more efficiently as

$$X[k] = \sum_{g \in G} x[g]\chi_k(g) = \sum_{v \in G/H} \sum_{u \in H} x[u+v]\chi_k(u+v)$$
$$= \sum_{v \in G/H} \left(\sum_{u \in H} x[u+v]\right) \chi_k(v) \quad k = 0, \dots, N-1$$

Known generalizations of the DFT concept

- $f: G \to \mathbb{C}$, where G can be an arbitrary group (not only Abelian): Fourier coefficients are complex matrices
- \bullet These generalizations make use of multi-dimensional representations of the group G with matrices over $\mathbb C$
- The inverse Fourier transform uses $\frac{1}{|G|} \text{Tr}(\cdot)$ the Trace operator of a matrix to get back to time domain scalar values of f.
- $f:G \to K$, where K is a field of characteristic p and p does not divide |G|: Fourier coefficients are scalars in K since an "exponential" function can be defined using a primitive element $\alpha \in K$.

The missing Fourier Transform for binary functions

- We consider a finite commutative ring $\mathcal R$ of characteristic p=2, e.g., $\mathbb F_2[X]/\phi(X)$, where $\phi(X)$ is a binary-coefficient polynomial of degree m.
- Elements of \mathcal{R} are represented by m-bit vectors (or polynomials of degree at most m-1) and multiplications are computed by polynomial multiplication mod $\phi(X)$.
- Let $G = C_2^n$ be the additive group of \mathbb{F}_2^n (n bit vectors)
- We study binary functions $f:G\to \mathcal{R}$ (n bit to m bit) and their convolutions (group ring $\mathcal{R}[G]$)

What does not work? If p=2 divides $|G|=2^n=N$, the inverse DFT term 1/N is not defined in $\mathcal R$ and the Trace fails to work in the generalized inverse DFT.

The two-modular representations of G

• Let $G = C_2 = \{0, 1\}$ then a two-modular representation as 2×2 binary matrices over \mathcal{R} , is given by the two matrices

$$E_0=\pi_1(0)=\left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight) \ \ {
m and} \ \ E_1=\pi_1(1)=\left(egin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}
ight)$$

The matrix entries are the 'zero' and 'one' element in \mathcal{R} .

• The *n*-fold direct product of C_2 , $G = C_2^m = C_2 \times \cdots \times C_2$ can be represented as the Kroneker product of the representations of C_2 , i.e.,

$$\pi_n(G) \triangleq \pi_1(C_2) \otimes \cdots \otimes \pi_1(C_2)$$

The two-modular representations of $G = C_2 \times \cdots \times C_2$

• Let the binary vectors $\mathbf{b} = (b_1, \dots, b_n)$ represent the elements of G with bitwise addition mod 2 (XOR). Then

$$\pi_n(\mathbf{b}) = E_{\mathbf{b}} = \pi_1(b_1) \otimes \cdots \otimes \pi_1(b_n)$$

• Example $G = C_2 \times C_2$

$$E_{00} = \begin{pmatrix} \begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \ E_{01} = \begin{pmatrix} \begin{smallmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \ E_{10} = \begin{pmatrix} \begin{smallmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \ E_{11} = \begin{pmatrix} \begin{smallmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

The two-modular Fourier basis for $G = C_2 \times \cdots \times C_2$

• Consider the two-modular representations $(2^k \times 2^k \text{ matrices})$ of the nested subgroups of $G = C_2^n$,

$$H_0 = \{\mathbf{0}_n\} \lhd H_1 \lhd \cdots \lhd H_k \lhd \cdots \lhd H_{n-1} \lhd H_n = G$$

where
$$H_1 \cong C_2$$
, $H_2 \cong C_2 \times C_2$, $H_3 \cong C_2 \times C_2 \times C_2$, etc.

 \bullet The Fourier basis 'vectors' are made up of all the inequivalent two-modular representations π_k

$$\begin{array}{rcl} H_0 &\cong& \operatorname{Im}(\pi_0) = \{1\} \\ H_1 &\cong& \operatorname{Im}(\pi_1) = \{E_0, E_1\} \\ H_2 &\cong& \operatorname{Im}(\pi_2) = \{E_{00}, E_{01}, E_{10}, E_{11}\} \\ H_3 &\cong& \operatorname{Im}(\pi_3) = \{E_{000}, E_{001}, E_{010}, E_{011}, E_{100}, E_{101}, E_{110}, E_{111}\} \\ &: \end{array}$$

Example $G = C_2^3$

The Fourier basis 'vectors' $\psi_k = [E_{\tau_k(g)}: g \in G]$ are the 2^n -component vectors (indexed by g) of $2^k \times 2^k$ matrices from the set $\mathrm{Im}(\pi_k)$

$g \in G$	000	001	010	011	100	101	110	111	
$\pi_0(g)$	1	1	1	1	1	1	1	1	$ \psi_0 $
$\pi_1(g)$	E_0	E_1	E_0	E_1	E_0	E_1	E_0	E_1	$ \psi_1 $
$\pi_2(g)$	E_{00}	E_{01}	E_{11}	E_{10}	E_{00}	E_{01}	E_{11}	E_{10}	$ \psi_2 $
$ \begin{array}{c} \pi_1(g) \\ \pi_2(g) \\ \pi_3(g) \end{array} $	E_{000}	E_{010}	E_{001}	E_{011}	E_{111}	E_{101}	E_{110}	E_{100}	$ \psi_3 $

The two-modular Fourier Transform of $f: G \to \mathcal{R}$

• We abstractly define the k-th Fourier coefficients as the $2^k \times 2^k$ matrix with elements in $\mathcal R$

$$\hat{f}_k = \langle f, \psi_k \rangle \triangleq \sum_{g \in G} f(g) E_{\tau_k(g)} \text{ for } k = 0, \dots, n$$
 (1)

where $E_{\tau_k(g)} \in \psi_k$ selected by g according to a (surjective) group homomorphism $\tau_k : G \mapsto C_2^k$ (n-bit to k-bits).

The two-modular Fast Fourier Transform

• We can represent the elements of $H_k \cong C_2^k$ as n-bit vectors with the first n-k bits set to zero i.e.,

$$H_k = \{(0, \dots, 0, b_{n-k+1}, \dots, b_n) | b_i \in \{0, 1\}\} \cong C_2^k \quad k = 1, \dots, n$$

• The quotient groups G/H_k are represented as n-bit vectors with the last k bits set to zero i.e.,

$$G/H_k = \begin{cases} \{(b_1, \dots, b_{n-k}, 0, \dots, 0) | b_i \in \{0, 1\}\} & k = 1, \dots, n-1 \\ \{\mathbf{0}_n\} & k = n \end{cases}$$

ullet Consider the binary subgroup $\langle d_k
angle = \{ {f 0}, d_k \}$ of H_k where

$$d_k = (0, \dots, 0, b_{n-k+1} = 1, 0 \dots, 0)$$

Then

$$\underbrace{G}_{2^n} \approx \underbrace{H_k/\langle d_k \rangle}_{2^{k-1}} \times \underbrace{\langle d_k \rangle}_2 \times \underbrace{G/H_k}_{2^{n-k}}$$

The two-modular Fast Fourier Transform

The k-th Fourier coefficients \hat{f}_k can be explicitly computed by collecting the terms with the same $E_{\tau_k(q)}$, i.e.,

$$\hat{f}_k = \sum_{u \in H_k/\langle d_k \rangle} \left\{ \left[\sum_{v \in G_n/H_k} f(u+v) \right] E_{\sigma_k(u)} + \left[\sum_{v \in G_n/H_k} f(u+d_k+v) \right] E_{\overline{\sigma_k(u)}} \right\} \quad k = 0, \dots, n$$

where $\sigma_k(u)$ is a map converting the n bit vector $u \in H_k/\langle d_k \rangle$ to a k bit vector in C_2^k , i.e., it removes the first n-k zero bits of the n bit vector u. The corresponding $\overline{\sigma_k(u)}$ is the binary complement of the bits of $\sigma_k(u)$.

The two-modular Inverse Fourier Transform

• Let $\pi_k(g)=E_{\tau_k(g)}$ be the $2^k\times 2^k$ representation of an element $g\in C_2^k$ then we define the character of g as

$$\Phi_k(E_{\tau_k(g)}) \triangleq (E_{\tau_k(g)})_{(1,2^k)} \in \{0,1\}$$

i.e., Φ extracts the top-right corner element of the matrix E_q .

- The representation of the all ones vector $\mathbf{1}=(1,1,\ldots,1)$ yields $\Phi(E_1)=1$, while any other binary vector representation is mapped to zero.
- Since Φ_k is an homomorphism, we have

$$\Phi_k(E_{\mathbf{a}}E_{\mathbf{b}}) = \Phi_k(E_{\mathbf{a}\oplus\mathbf{b}}) = \left\{ \begin{array}{ll} 1 & \text{iff } \mathbf{a}\oplus\mathbf{b} = \mathbf{1} \text{ (or } \mathbf{a} = \bar{\mathbf{b}}) \\ 0 & \text{otherwise} \end{array} \right.$$

The two-modular Inverse Fourier Transform

The inverse Fourier transform is given by

$$f_j = f_{\mathbf{c}} = \hat{f}_0 + \sum_{k=1}^n \Phi_k \left(\hat{f}_k E_{\tau_k(\mathbf{c})} \right) \quad j = 0, \dots, 2^n - 1$$
 (2)

where $\mathbf{c} = (c_n, \dots, c_k, \dots, c_1)$ and $j = D(\mathbf{c})$ is the decimal representation of \mathbf{c} .

The convolution theorem

 The two-modular Fourier transform can be used to transform convolution in the 'time-domain' defined as

$$(f_1 * f_2)(a) \triangleq \sum_{b \in G} f_1(ab^{-1}) f_2(b) = \sum_{b \in G} f_1(\mathbf{a} \oplus \mathbf{b}) f_2(\mathbf{b})$$

into the product in the 'frequency domain' i.e.,

$$\widehat{(f_1 * f_2)}(\rho) = \widehat{f_1}(\rho)\widehat{f_2}(\rho)$$

ullet This is where the multiplicative structure of ${\cal R}$ plays a role.

Conclusions

Potential applications of the two-modular Fourier transform

- reliable computation of binary functions
- classification of binary functions (polynomial vs. transcendental over \mathcal{R})
- cryptography
- complexity of binary functions

Thank you!