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Overview |

© Introduction
@ Evolution of wireless
@ High-Doppler wireless channels
@ Conventional modulation scheme — OFDM
@ Effect of high Dopplers in conventional modulation

© Wireless channel representation
o Time—frequency representation
o Time—delay representation
@ Delay—Doppler representation

© OTFS modulation
@ Signaling in the delay—-Doppler domain
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Overview I

e OTFS Input-Output Relation in Matrix Form

© OTFS Signal Detection
@ Vectorized formulation of the input-output relation
@ Message passing based detection
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Introduction
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Evolution of wireless
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1980s, N/A 1990s, 0.5 Mbps 2000s, 63 Mbps 2010s, 300 Mbps

@ Waveform design is the major change between the generations
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High-Doppler wireless channels
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Wireless Channels - delay spread
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@ Delay of LoS path: 4 = n/c

Reflected path
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o Delay of reflected path: 7 = (. + r3)/c
@ Delay spread: m» — 7y
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Wireless Channels - Doppler spread
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@ Doppler frequency of LoS path: vy = f.Z
f vcos 6
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@ Doppler frequency of reflected path: v, =
o Doppler spread: v, — 1y

TX: s(t) RX: r(t) = hys(t — 11)e 2™t 4 hys(t — 7p)eJ2mvet
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Typical delay and Doppler spreads

Delay spread (c = 3-10%m/s)

Armax || Indoor (3m) | Outdoor (3km)
Tmax 10ns

10us
Doppler spread
Vinax fo =2GHz | f. = 60GHz
v = 1.5m/s = 5.5km/h 10Hz 300Hz
v = 3m/s = 11km/h 20Hz 600Hz
v = 30m/s = 110km/h 200Hz 6KHz
v = 150m/s = 550km/h 1KHz 30KHz
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Conventional modulation scheme — OFDM

o OFDM - Orthogonal Frequency Division Multiplexing

Subcarriers

Frequency

o OFDM divides the frequency selective channel into M parallel sub-channels
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OFDM system model
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Figure: OFDM Rx
(*) From Wikipedia, the free encyclopedia
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OFDM system model

® Received signal — channel is constant over OFDM symbol (no Doppler)
h = (hg, h1,- -+, hp_1) — Path gains over P taps

ho 0o - 0 hp_1 hp_o -+ hp ]
b hy -0 0 hp_y - h
: . .. . - .. - hP—l
r=hoes= . . . . . . . |s
oy . . . . . :
| O 0 - hp_1 hp_p -+ M ho |

Mx M Circulant matrix (H)

e Eigenvalue decomposition property H = FYDF where D = diag[DF T (h)]
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OFDM system model

@ At the receiver we have

P-1
r = F'DFs = Z hiM's
i=0

where I is the permutation matrix 00

0.---10
(notation used later as alternative representation of the channel)
@ At the receiver we have input-output relation in frequency domain
y=Fr= D x
~—
Diagonal matrix with subcarrier gains

o OFDM Pros

e Simple detection (one tap equalizer)
o Efficiently combat the multi-path effects
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Effect of high multiple Dopplers in OFD

@ H matrix lost the circulant structure — decomposition becomes erroneous

@ Introduces inter carrier interference (ICl)

Frequency

o OFDM Cons

e multiple Dopplers are difficult to equalize
o Sub-channel gains are not equal and lowest gain decides the performance
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Effect of high Dopplers in OFD

@ Orthogonal Time Frequency Space Modulation (OTFS)®*)

o Solves the two cons of OFDM
o Works in Delay—Doppler domain rather than Time—Frequency domain

(*) R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R.
Calderbank, "Orthogonal time frequency space modulation,” in Proc. IEEE WCNC, San
Francisco, CA, USA, March 2017.

cohere)

technologies
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Wireless channel representation
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Wireless channel representation

o Different representations of linear time variant (LTV) wireless channels

time-variant impulse response

g(t,7)

F F

time-frequency delay-Doppler

response H(t, f) SFFT h(T, V) résponse

(OFDM) (OTFS)
]-"\ / F
B(v, f)

Doppler-variant transfer response
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Wireless channel representation

@ The received signal in linear time variant channel (LTV)

r(t) = /g(t,T) s(t — 7)dT — generalization of LTI
——

time-variant impulse response

= / / h(r,v) s(t —7)e/*™*drdv — Delay-Doppler Channel
N——

Delay—Doppler spreading function

= /H(t, f)S(f)e*™df — Time-Frequency Channel
——

time-frequency response

@ Relation between h(7,v) and H(t, )

h(r,v) = / / (t, F)e 2 t=fT) gidf
H(t, f) = //h(T7 )2 V=) drdy

Pair of 2D symplectic FT
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Wireless channel representation
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Wireless channel representation
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Time-variant impulse response g(t, 7)

* G. Matz and F. Hlawatsch, Chapter 1, Wireless Communications Over Rapidly Time-Varying
Channels. New York, NY, USA: Academic, 2011
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Time-frequency and delay-Doppler responses

= SFFT
2. —_—
" 4
ISFFT
02
200
Time (s) 0 1996199719981999200

Frequency (MHz)

Doppler

Channel in Time—frequency H(t, ) and delay-Doppler h(r,v)
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Time—Frequency and delay—Doppler grids

e Assume Af =1/T Delay
ﬁIM
Frequency
AfIM|
2D SFFT
_—
-—
2 2D ISFFT
1
L2 N Time 2
T
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OTFS Parameters

Subcarrier M | Bandwidth Symbol duration | delay I
spacing (Af) (W=MAFf) | (Ts=1/W) spread
15 KHz 1024 | 15 MHz 0.067 us 47 pus | 71 (= 7%)
Carrier N | Latency | Doppler UE speed | Doppler ki
frequency (NMT; | resolution | (v) frequency
(£) — NT) | (1/NT) (ts— £.0)
30 Kmph | 111 Hz 1 (~1.5%)
4 GHz 128 | 8.75 ms| 114 Hz 120 Kmph | 444 Hz 4 (~6%)
500 Kmph | 1850 Hz | 16(~ 25%)
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OTFS modulation
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OTFS modulation

Time-Frequency Domain

n,mj Heisenberg s(t) (‘hannel r(t) Wigner Y[ m] l_,..l/[k’”
—v—-| ISFFT "_‘i Transform (7, V) Transform :

Figure: OTFS mod/demod

@ Time—frequency domain is similar to an OFDM system with N symbols in a
frame (Pulse-Shaped OFDM)
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Time—frequency domain

@ Modulator — Heisenberg transform

2
._.

M—-1
X[n m]gtx l'f nT)ej27rmAf(t nT)

m=0

I
<)

n

@ Simplifies to IFFT in the case of N = 1 and rectangular g,
o Channel

r(t) = / H(t, f)S(f)e* " df
o Matched filter — Wigner transform
V(6.1 = Ag(t.0)2 [t~ r(e)e > 0d

Y[n,m] = Y(t, f)lt=nT r=mar

@ Simplifies to FFT in the case of N = 1 and rectangular g
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Tim quency domain — ideal pulses

o If gix and gy are perfectly localized in time and frequency then they satisfy
the bi-orthogonality condition and

Y [n, m] = H[n, m|X[n, m]

where

H[n, m] ://h(T, v)el2mvnT g=i2mmAFT g dy

N -
NV

«— Subcarrier
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Figure: Time—frequency domain

* F. Hlawatsch and G. Matz, Eds., Chapter 2, Wireless Communications Over Rapidly
Time-Varying Channels. New York, NY, USA: Academic, 2011 (PS—OFDM)

(Monash University, Australia) OTFS modulation



Signaling in the delay—Doppler domain

@ Time—frequency input-output relation

Y [n, m] = H[n, m|X[n, m]

where
Hin,m] = 305" hk, & (%)
k /
o ISFFT
N—1M-—
X[n, m] = Z Z xlk, e (%~ %)
=0 /=0
o SFFT
N—1M-1
ylk. 1} = & Y|[n, m]e7j2’r("*/\7*%')
NM n=0 m=0
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Delay—Doppler domain input-output relation

@ Received signal in delay—Doppler domain

P
ylk 1= hixllk = kuln, [ = b1l

i=1

= hlk,l|®x[k,l] (2D Circular Convolution)

(a) Input signal, x[k, /] (b) Channel, hlk, 1] (c) Output signal, y[k, /]
Figure: OTFS signals
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OTES with rectangular pulses — time

Assume gix and g to be rectangular pulses (same as OFDM) — don't follow
bi-orthogonality condition

Time—frequency input-output relation
Y[n, m] = H[n, m|X[n, m] 4+ ICl 4 ISI

@ ICl — loss of orthogonality in frequency domain due to Dopplers

ISI — loss of orthogonality in time domain due to delays

(*) P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference cancellation and iterative
detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol.
17, no. 10, pp. 6501-6515, Oct. 2018. Available on: https://arxiv.org/abs/1802.05242
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OTFS Input-Output Relation in Matrix Form
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OTFS: matrix representation

@ Transmit signal at time—frequency domain: ISFFT+Heisenberg+pulse
shaping on delay—Doppler

S = G Fi(FuXF}) = G, XFY
——
ISFFT
@ In vector form:
s = vec(S) = (FN ® Giy)x

@ Received signal at delay—Doppler domain: pulse shaping+Wigner+SFFT on
time—frequency received signal

Y = F}/(FuG,.R)Fy = G.«RFy
@ In vector form:

y = (Fn ® Gux)r
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OTFS transmitter implementation: M = 2048, N = 128

time

time
28 symbol

E/—(—b—n\m symbols)

:

2048)

2048)

delay (M
delay (M

Doppler (N=128) Doppler (N=128)

)

frequency
(2048 subcarriers)

TX complexity | PAPR
OTFS  MN*log,(N) N @ )

OFDM  MN*log,(M) M

Heisenberg transform
time-frequency -> time
(N-symbol OFDM transmitter)

Only
2048 samples one CP
— —

L J
T
Time domain signal (128 symbols, 2048 samples each)

e OTFS transmitter implements inverse ZAK transform (2D—1D)
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OTFS receiver implementation: M = 2048, N = 128

2048 samples
time varyin,
Pt _— | | -

channel h

v
Time domain signal (128 symbols, 2048 samples each)

Doppler (N=128)

time FFT
28 b 128 §
remove ) 3 Yo
cp ] received
=
+ =
. &
S/pP ]

@ OTFS receiver implements ZAK transform (1D—2D)
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OTFS: matrix representation — channel

@ Received signal in the time—frequency domain

r(t) = //h(T, v)s(t — T)e"%”(t*T)deV + w(t)

@ Channel

@ Received signal in discrete form

r(n) = Zhe’z”w(ﬁ' — ) + w(n),0 < n< MN — 1
=1 Doppler Delay
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OTFS: matrix representation — channel

@ Received signal in vector form
r=Hs+w
@ His an MN x MN matrix of the following form
P
H=> nn'alk),
i=1

where, M is the permutation matrix (forward cyclic shift), and A is the
diagonal matrix

0 -~ 0 1 R N 0
k(1)
no |t 0 0 A _ | O e 0
0 1 O ymmm 0 0 e
Delay (similar to OFDM) Doppler
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OTFS: matrix representation — channel

@ Received signal at delay—Doppler domain
y = [(Fy ® Gu)H(F ©@ Gio)] x + (Fy ® Gy )w
= Hex + w

o Effective channel for arbitrary pulses

Her = (In © G ) (Fy @ In)H(FR @ 1) (Iv @ Giy)

=(Iv®Gix) HE (Iv® Gi)
S~
Channel for rectangular pulses (G.x=G,.=Iu)

o Effective channel for rectangular pulses

P
HEe =3 by [(F @ ) (Y © )] [(FN®|M)A<kf>(Fﬂ®|M)

i=1

PO (delay) Q® (Doppler)

Q()—ZhT

M*o

i=1
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OTEFS: channel for rectangular pulses

e T() has only one non-zero element in each row and the position and value of
the non-zero element depends on the delay and Doppler values.

eI R efzwki([mn;Ar,i]M)7 if g=[m—l]u+ M[n—ki]y and m < |;
T(’)(P» q) = ejzwki([mA/TN,i]M)7 if g=[m—Il]u+ M[n— ki]ny and m > |;
0, otherwise.

o Example M=N=2and j=1and k; =1

0
0

0

- 1

() —

T e i2i 0 0
0

= O O O
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OTFS Signal Detection
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Vectorized formulation of the input-output relation

@ The input-output relation in the delay-Doppler domain is a 2D convolution
(with i.i.d. additive noise w[k, [])
P
ylk, 1] = Zh,-x[[k —kyn, [ = lnIm] + wlk,l] k=1...N;/=1...M (1)

i=1
@ Detection of information symbols x[k, /] requires a deconvolution operation
i.e., the solution of the linear system of NM equations
y=Hx+w (2)
where x,y,w are x[k, /], y[k, ], w[k, I] in vectorized form and H is the

NM x NM coefficient matrix of (1).

@ Given the sparse nature of H we can solve (2) by using a message passing
algorithm similar to (*)

(*) P. Som, T. Datta, N. Srinidhi, A. Chockalingam, and B. S. Rajan, “Low-complexity
detection in large-dimension MIMO-ISI channels using graphical models,” IEEE J. Sel. Topics in
Signal Processing, vol. 5, no. 8, pp. 1497-1511, December 2011.
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Message passing based detection

@ Symbol-by-symbol MAP detection

x[c] = argmax Pr (x[c] =
aj€A

y,H)

= arg max % Pr(y|x[c] = a;, H)

aje

A arg max H Pr (y[d]| x[c] = a;, H)
€A geg,

o Received signal y[d]

yld = x[c]Hld.c] + > x[e]H[d, €] + [d]
e€Zy,e#c

C‘(f)cﬁ assumed to be Gaussian
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Messages in factor graph

Algorithm 1 MP algorithm for OTFS symbol detection
Input: Received signal y, channel matrix H
Initialization: pmf pf;)l, =1/Q repeat
- Observation nodes send the mean and variance to variable nodes
- Variable nodes send the pmf to the observation nodes

- Update the decision

until Stopping criteria;

Output: The decision on transmitted symbols X[c]

(#d,enog,el) (/"d,6570‘§,65)
alea| *°° [ofes]
{er,e2,+,est =14 {er,e2, - est =T
Observation node messages Variable node messages
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Messages in factor graph — observation node messages

(Hd.er>T5.0,)

(Hdes J(%,SS )

@ Received signal

yldl = x[c]Hld,c]+ Y x[e]H]d, e] + 2[d]
ey etc {e1,e2,- -, es} =14

¢\ — assumed to be Gaussian

@ Mean and Variance

Q.
S S Al P (a)aHId, €]

e€Zy,e#c j=1

(g = > (Zp (@)l Hd €] - Zp 2 (@)aHld ]

e€Zy,e#c \ j=1
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Messages in factor graph — variable node messages

@ Probability update with damping
factor A

P(a) = 8- p04a) + (1= D) - pl U (a), e h fenea st =
where

@) o T Pr(vlel|xlel = 2. M)

ecJ.,e#d

- 11 £ (e, c,j)
B Q c)(e.c k
ecJ.,ed Zk:lf (e,c, k)

2
~ |yle] — €k — Hecar]
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Final update and stopping criterion

o Final update

§W(e, c,j)
61;[75 Zl?:l é(i)(e7 < k)

Xlc] = argmax p)(a;), c=1,---,NM.
ajEA

p{)(a)) =

@ Stopping Criterion
o Convergence Indicator n() =1

MZH(maxp >099>

o Maximum number of lterations

o Complexity (linear) — O(njter SQ) per symbol which is much less even
compared to a linear MMSE detector O((NM)?)
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Simulation results — OTFS vs OFDM with ideal pulses

10° . . : :
——OTFS, Ideal, 30 Kmph
---OTFS, Ideal, 120 Kmph
1 4-QAM =" OTFS, Ideal, 500 Kmph
10 —e~OFDM, 30 kmph
—*—QOFDM, 120 kmph
—=-0FDM, 500 kmph
102F
o
)
M
10°F
8
10E
-5 . . | |
10 5 10 15 20 25 30
SNR in dB

Figure: The BER performance comparison between OTFS with ideal pulses and OFDM
systems at different Doppler frequencies.
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Simulation results — Ideal and Rectangular pulses

——OTFS, Rect., WC, 30 Kmph Y
——-OTES, Rect,, WC, 120 Kmph
——-OTFS, Rect., WC, 500 Kmph
—6—OTFS, Rect., WO, 30 Kmph E
—+OTFS, Rect., WO, 120 Kmph
—&—OTES, Rect., WO, 500 Kmph

\ ——OTFS, Ideal
142 143 144 ——OFDM, 500 kmph
10° ‘ ‘ ‘ ‘
5

10 15 20 25 30
SNR in dB

3.795

Figure: The BER performance of OTFS with rectangular and ideal pulses at different
Doppler frequencies for 4-QAM.
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Simulation results — Ideal and Rect. pulses - 16-QAM

(0]
10 — OTFS, Rect., WC, 30 Kmph
---OTFS, Rect., WC, 120 Kmph
16-QAM |-~ OTFS, Rect., WC, 500 Kmph
' —e—OTFS, Ideal
1079 = —e—OTFS, Rect., WO, 120 Kmphfj
* —v— OFDM
102
103 F
10—4 I | | L
10 15 20 25 30 35

SNR in dB

Figure: The BER performance of OTFS with rectangular and ideal pulses at different
Doppler frequencies for 16-QAM.
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