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Strong difference families

Strong difference families

Definition

Let F = [F1, F2, . . . , Ft] with Fi = [fi,0, fi,1, . . . , fi,k−1] for 1 ≤ i ≤ t, be
a family of t multisets of size k defined on a group (G,+) of order g. F is
a (G, k, µ) strong difference family, or a (g, k, µ)-SDF over G, if the list

∆F =

t⋃
i=1

[fi,a − fi,b : 0 ≤ a, b ≤ k − 1; a 6= b] = µG.

The members of F are also called base blocks.

If a (G, k, µ)-SDF has exactly one base block, then this block is
referred to as a (G, k, µ) difference multiset (or difference cover).

Note that µ is necessarily even.

A (3, 3, 2)-SDF over Z3: [0, 0, 1].
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Strong difference families

Relative difference families

Definition

Let (G,+) be an abelian group of order g with a subgroup N of order n.
A (G,N, k, λ) relative difference family, or (g, n, k, λ)-DF over G relative
to N , is a family B = [B1, B2, . . . , Br] of k-subsets of G such that the list

∆B :=

r⋃
i=1

[x− y : x, y ∈ Bi, x 6= y] = λ(G \N).

The members of B are called base blocks.

When N = {0}, a relative difference family is simply called a
difference family.

When a (relative) difference family only contains one base block, it is
often called a (relative) difference set.
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Strong difference families

References on strong difference families

M. Buratti in 1999 introduced the concept of strong difference families to
establish systematic constructions for relative difference families.

K.T. Arasu, A.K. Bhandari, S.L. Ma, and S. Sehgal, Regular
difference covers, Kyungpook Math. J., 45 (2005), 137–152.

M. Buratti, Old and new designs via difference multisets and strong
difference families, J. Combin. Des., 7 (1999), 406–425.

M. Buratti and L. Gionfriddo, Strong difference families over arbitrary
graphs, J. Combin. Des., 16 (2008), 443–461.

K. Momihara, Strong difference families, difference covers, and their
applications for relative difference families, Des. Codes Cryptogr., 51
(2009), 253–273.
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Strong difference families

Paley strong difference families

Theorem [Buratti, JCD, 1999]

(1) Let p be an odd prime power. Then {0} ∪ 2F2
p is an

(Fp, p, p− 1)-SDF (called Paley difference multiset of the first type).

(2) Let p ≡ 3 (mod 4) be a prime power. Then 2({0} ∪ F2
p ) is an

(Fp, p+ 1, p+ 1)-SDF (called Paley difference multiset of the second
type).

(3) Let p be an odd prime power. Set X1 = 2({0} ∪ F2
p ) and

X2 = 2({0} ∪ F62p ). Then [X1, X2] is an (Fp, p+ 1, 2p+ 2)-SDF
(called Paley strong difference family of the third type).
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Strong difference families

Twin prime power and Singer difference multisets

Theorem [Buratti, JCD, 1999]

(4) Given twin prime powers p > 2 and p+ 2, the set

(F2
p × F2

p+2) ∪ (F 62p × F62p+2) ∪ (Fp × {0}) is a

(p(p+ 2), p(p+2)−1
2 , p(p+2)−3

4 ) difference set over Fp × Fp+2. Let D be
its complement. Then 2D is a (p(p+ 2), p(p+ 2) + 1, p(p+ 2) + 1)
difference multiset (called twin prime power difference multiset).

(5) Given any prime power p and any integer m ≥ 3, there is a

(p
m−1
p−1 ,

pm−1−1
p−1 , p

m−2−1
p−1 ) difference set over Z pm−1

p−1
. Let D be its

complement. Then pD is a (p
m−1
p−1 , p

m, pm(p− 1)) difference multiset
(called Singer difference multiset).
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Strong difference families

Momihara’s strong difference families of order 2

Theorem [Momihara, DCC, 2009]

There exists a cyclic (2, k, k(k − 1)n/2)-SDF if and only if
k = pe11 p

e2
2 · · · pe

r

r with pi’s distinct primes satisfies

(n = 1) k is a square;

(n = 2) ei is even for every pi ≡ 3 (mod 4);

(n = 3) k 6≡ 2, 3 (mod 4) and k 6= 4a(8b+ 5) for any positive
integers a, b ≥ 0;

(n ≥ 4) k is arbitrary when n ≡ 0 (mod 4); k 6≡ 3 (mod 4) when
n ≡ 2 (mod 4); k ≡ 0, 1, 4 (mod 8) when n ≡ 1 (mod 2).
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Strong difference families

Momihara’s asymptotic result

For given positive integers d and m, write

Q(d,m) =
1

4
(U +

√
U2 + 4dm−1m)2, where U =

m∑
h=1

(
m

h

)
(d− 1)h(h− 1). (1)

Theorem [Momihara, DCC, 2009]

If there exists a (G, k, µ)-SDF with µ = λd, then there exists a
(G× Fq, G× {0}, k, λ)-DF

for any even λ and any prime power q ≡ 1 (mod d) with
q > Q(d, k − 1);

for any odd λ and any prime power q ≡ d+ 1 (mod 2d) with
q > Q(d, k − 1).
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2-designs

2-designs

Definition

A 2-(v, k, λ) design (also called (v, k, λ)-BIBD or balanced incomplete
block design) is a pair (V,B) where V is a set of v points and B is a
collection of k-subsets of V (called blocks) such that every 2-subset of V
is contained in exactly λ blocks of B.

A 2-(v, k, λ) design contains λ
(
v
2

)
/
(
k
2

)
blocks.

9 / 53



2-designs

Automorphisms

Definition

An automorphism α of a 2-design (V,B) is a permutation on V leaving B
invariant, i.e.,

{{α(x) : x ∈ B} : B ∈ B} = B.

A (7, 3, 1)-BIBD over Z7: {0, 1, 3}+ i, 0 ≤ i ≤ 6.

Definition

A design on v points is said to be cyclic or 1-rotational if it admits an
automorphism consisting of a cycle of length v or v − 1, respectively.
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2-designs

2-designs from relative difference families

Proposition

If there exist a (G,N, k, λ)-DF and a (cyclic) 2-(|N |, k, λ) design,
then there exists a (cyclic) 2-(|G|, k, λ) design.

If there exist a (G,N, k, λ)-DF and a (1-rotational) 2-(|N |+ 1, k, λ)
design, then there exists a (1-rotational) 2-(|G|+ 1, k, λ) design.

Relative difference families was implicitly used in many papers (for
example, [S. Bagchi and B. Bagchi, JCTA, 1989]).

The concept of relative difference families was initially put forward by
M. Buratti [JCD, 1998].

When G is cyclic, we say that the (g, n, k, λ)-DF is cyclic.
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2-designs

Basic Lemma [Costa, Feng, Wang, FFA, 2018]

Let F = [F1, F2, . . . , Ft] be a (G, k, µ)-SDF and let Φ = (Φ1,Φ2, . . . ,Φt)
be an ordered multiset of ordered k-subsets of Fq with Fi = [fi,0, fi,1, . . . ,
fi,k−1] and Φi = (φi,0, φi,1, . . . , φi,k−1) for 1 ≤ i ≤ t. For each h ∈ G, the
list

Lh =

t⋃
i=1

[φi,a − φi,b : fi,a − fi,b = h; (a, b) ∈ Ik × Ik; a 6= b]

has size µ. In the hypothesis that q = en+ 1, µ = λdn with d a divisor of
e and Lh = Ce,q0 ·Dh with Dh a λ-transversal of the cosets of Cd,q0 in F∗q
for each h ∈ G, then there exists a (G× Fq, G× {0}, k, λ)-DF.

Proof Let S be a 1-transversal for the cosets of Ce,q0 in Cd,q0 , the required
DF is [{(fi,0, φi,0s), (fi,1, φi,1s), . . . , (fi,k−1, φi,k−1s)} : 1 ≤ i ≤ t; s ∈ S].
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2-designs

A 2-(694, 7, 2) design

Take e = q − 1. Then Ce,q0 = {1} and S = Cd,q0 .

1 A (Z63, 7, 2)-SDF: F1 = [0, 4, 15, 23, 37, 58, 58],
F2 = [0, 1, 3, 7, 13, 25, 39], F3 = [0, 1, 3, 11, 18, 34, 47].

2 A (Z63 × F11,Z63 × {0}, 7, 1)-DF:

B1 = {(0, 0), (4, 3), (15, 5), (23, 6), (37, 8), (58, 1), (58, 10)},
B2 = {(0, 0), (1, 2), (3, 4), (7, 6), (13, 1), (25, 10), (39, 8)},
B3 = {(0, 0), (1, 4), (3, 7), (11, 9), (18, 2), (34, 3), (47, 5)}.

Then
[Bi · (1, s) : 1 ≤ i ≤ 3, s ∈ C2,11

0 ]

forms a (Z63 × F11,Z63 × {0}, 7, 1)-DF.

Input a 2-(64, 7, 2) design which exists by Abel [JCD, 2000].
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2-designs

Other six new 2-designs

Take e = q − 1. Then Ce,q0 = {1} and S = Cd,q0 .

(Z27, 9, 8)-SDF =⇒ a 2-(459, 9, 4) design and a 2-(783, 9, 4) design.

Take e = (q − 1)/2. Then Ce,q0 = {1,−1}.

(Z45, 9, 8)-SDF =⇒ a 2-(765, 9, 2) design and a 2-(1845, 9, 2) design.

Take e = (q − 1)/4. Then Ce,q0 = {1,−1, ξ,−ξ}, where ξ is a
primitive 4th root of unity in Fq.

(Z63, 8, 8)-SDF =⇒ a 2-(1576, 8, 1) design;
(Z81, 9, 8)-SDF =⇒ a 2-(2025, 9, 1) design.
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2-designs

A 2-(2025, 9, 1) design

1 A (Z81, 9, 8)-SDF: F1 = [0, 4, 4,−4,−4, 37, 37,−37,−37],
F2 = F3 = F4 = F5 = [0, 1, 4, 6, 17, 18, 38, 63, 72],
F6 = F7 = F8 = F9 = [0, 2, 7, 27, 30, 38, 53, 59, 69].

2 A (Z81 × F25,Z81 × {0}, 9, 1)-DF (let ξ = ω6):

B1 = {(0, 0), (4, 1), (4,−1), (−4, ξ), (−4,−ξ), (37, ω), (37,−ω), (−37, ωξ), (−37,−ωξ)},
B2 = {(0, 0), (1, 1), (4, ω), (6, ω2), (17, ω3), (18, ω4), (38, ω5), (63, ω7), (72, ω8)},
B6 = {(0, 0), (2, 1), (7, ω4), (27, ω17), (30, ω2), (38, ω18), (53, ω8), (59, ω10), (69, ω14)},
B3 = B2 · (1,−1), B4 = B2 · (1, ξ), B5 = B2 · (1,−ξ),
B7 = B6 · (1,−1), B8 = B6 · (1, ξ), B9 = B6 · (1,−ξ).

Then [Bi · (1, s) : 1 ≤ i ≤ 9, s ∈ S] is a (Z81 × F25,Z81 × {0}, k, 1)-DF,
where S is a representative system for the cosets of C6,25

0 = {1,−1, ξ,−ξ}
in C2,25

0 .

Input a 2-(81, 9, 1) design (affine plane of order 9).
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2-designs

Basic Lemma with Paley difference multisets

Let p = 4m+ 1 be a prime power with m = λd and let q be a prime power
satisfying λ(q − 1) ≡ 0 (mod p− 1). Let δ be a generator of C2,p

0 and ξ
be a primitive 4th root of unity in Fq.

Apply Basic Lemma using the first type Paley (Fp, p, p− 1)-SDF
whose only base block is (f0, f1, . . . , fp−1) =

(0, δ0, δ0,−δ0,−δ0, . . . , δm−1, δm−1,−δm−1,−δm−1)

and a multiset (φ0, φ1, . . . , φp−1) on Fq of the form

(0, y0,−y0, ξy0,−ξy0, . . . , ym−1,−ym−1, ξym−1,−ξym−1).

Then there exists a (Fp × Fq,Fp × {0}, p, λ)-DF provided that each

Dh, h ∈ Fp, is a λ-transversal for the cosets of Cd,q0 in F∗q .
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2-designs

Improved asymptotic results - I

Theorem 1

Let p and q be prime powers with p = 4λd+ 1 and λ(q − 1) ≡ 0
(mod p− 1).

(1) There exists an (Fp × Fq,Fp × {0}, p, λ)-DF provided that p ≡ 1, 5
(mod 12) and q > Q(d, p− 4).

(2) There exists an (Fp × Fq,Fp × {0}, p, λ)-DF provided that p is a

power of 9, q > Q(d, p− 4), and either λ > 1 or 1− ξ 6∈ Cd,q0 , where
ξ is a primitive 4th root of unity in Fq.

Corollary [Greig, JCMCC, 1998]

There exists a (5q, 5, 5, 1)-DF for any prime power q ≡ 1 (mod 4).
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2-designs

Improved asymptotic results - I

Theorem 1

Let p and q be prime powers with p = 4λd+ 1 and λ(q − 1) ≡ 0
(mod p− 1).

(1) There exists an (Fp × Fq,Fp × {0}, p, λ)-DF provided that p ≡ 1, 5
(mod 12) and q > Q(d, p− 4).

(2) There exists an (Fp × Fq,Fp × {0}, p, λ)-DF provided that p is a

power of 9, q > Q(d, p− 4), and either λ > 1 or 1− ξ 6∈ Cd,q0 , where
ξ is a primitive 4th root of unity in Fq.

Corollary

There exists an (Fp × Fq,Fp × {0}, p, (p− 1)/4)-DF for any prime powers
p and q with p ≡ q ≡ 1 (mod 4) and q ≥ p.

The above corollary generalizes a result from Buratti [JCD, 1999], in
which p ≡ 1 (mod 4) and q ≡ 1 (mod p− 1).
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2-designs

Improved asymptotic results - I

Theorem 1

Let p and q be prime powers with p = 4λd+ 1 and λ(q − 1) ≡ 0
(mod p− 1).

(1) There exists an (Fp × Fq,Fp × {0}, p, λ)-DF provided that p ≡ 1, 5
(mod 12) and q > Q(d, p− 4).

(2) There exists an (Fp × Fq,Fp × {0}, p, λ)-DF provided that p is a

power of 9, q > Q(d, p− 4), and either λ > 1 or 1− ξ 6∈ Cd,q0 , where
ξ is a primitive 4th root of unity in Fq.

By Momihara’s Theorem with the first type Paley SDF, there is an
(Fp × Fq,Fp × {0}, p, 1)-DF for any odd prime powers p and q with
q ≡ p (mod 2(p− 1)) and q > Q(p− 1, p− 1). This means that for
p = 13, we must have q > Q(12, 12) = 7.94968× 1027.

The above theorem shows that q > Q(3, 9) = 9.68583× 109.
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2-designs

New 2-designs with block size 13 or 17

Theorem 2

(1) There exists a 2-(13q, 13, 1) design for all primes q ≡ 1 (mod 12)
with 19 possible exceptions.

(2) There exists a 2-(13q, 13, 3) design for all primes q ≡ 1 (mod 4) and
q > 9.

(3) There exists a 2-(17q, 17, 1) design for all primes q ≡ 1 (mod 16) and
q > Q(4, 13) = 3.44807× 1017.

(4) There exists a 2-(17q, 17, 2) design for all primes q ≡ 1 (mod 8).

(5) There exists a 2-(17q, 17, 4) design for all primes q ≡ 1 (mod 4) and
q > 13.

Remark: [Buratti, 1997, FFA]; [Buratti, 1999, DCC].
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2-designs

Improved asymptotic results - II

Theorem 3

Let p = 2λd+ 1 be a prime power. There exists an
(Fp × Fq,Fp × {0}, p, λ)-DF for any prime power q with λ(q − 1) ≡ 0
(mod p− 1) and q > Q(d, p− 2).

Theorem 4

Let p = 2λd− 1 be a prime power and p ≡ 3 (mod 4). There exists an
(Fp × Fq,Fp × {0}, p+ 1, λ)-DF for any prime power q with λ(q − 1) ≡ 0
(mod p+ 1) and q > Q(d, p).
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Resolvable 2-designs

Resolvable 2-designs

Definition

A 2-(v, k, λ) design (V,B) is said to be resolvable if there exists a partition
R of B (called a resolution) into parallel classes, each of which is a
partition of V .

Example: A resolvable 2-(v, 2, 1) design is equivalent to a
1-factorization of the complete graph Kv.
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Resolvable 2-designs

Frame difference families

Definition

Let F be a (g, n, k, λ)-DF over G relative to N . F is a frame difference
family if it can be partitioned into λn/(k − 1) subfamilies
F1,F2, . . . ,Fλn/(k−1) such that each Fi has size of (g − n)/(nk), and the
union of base blocks in each Fi is a system of representatives for the
nontrivial cosets of N in G.

Proposition

If there exist a (G,N, k, λ)-FDF and a resolvable 2-(|N |+ 1, k, λ) design,
then there exists a resolvable 2-(|G|+ 1, k, λ) design.

When λn = k − 1, a (g, n, k, λ)-FDF is said to be elementary.
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Resolvable 2-designs

Partitioned difference families

Definition

Let (G,+) be an abelian group of order g with a subgroup N of order n.
A (G,N,K, λ) partitioned relative difference family (PRDF ) is a family
B = [B1, B2, . . . , Br] of G such that the elements of B form a partition
of G \N , and the list

∆B :=

r⋃
i=1

[x− y : x, y ∈ Bi, x 6= y] = λ(G \N),

where K is the multiset {|Bi| : 1 ≤ i ≤ r}.

When N = {0}, a (G, {0},K, λ)-PRDF is called a partitioned
difference family and simply written as a (G,K, λ)-PDF.

A (G,N, [ku11 ku22 · · · k
ul
l ], λ)-PRDF is a PRDF in which there are uj

base blocks of size kj , 1 ≤ j ≤ l.
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Resolvable 2-designs

Applications

Proposition

If there exists an elementary (G,N, k, 1)-FDF with |N | = k − 1, then
there exists a (G, [(k − 1)1ks], k − 1)-PDF, where s = (|G| − k + 1)/k.

Proof Let F be an elementary (G,N, k, 1)-FDF with |N | = k − 1. Then F
satisfies

⋃
F∈F,h∈N (F + h) = G \N . Set

B = {F + h : F ∈ F, h ∈ N} ∪ {N}.

Then B forms a (G, [(k − 1)1ks], k − 1)-PDF, where s = (|G| − k + 1)/k.
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Resolvable 2-designs

Applications

Proposition [Costa, Feng, Wang, DCC, 2018]

If there exists an elementary (g, k − 1, k, 1)-FDF, then there is an optimal
(g, g, g − k + 1, [(k − 1)1kq−1])q-constant composition code, where
q = (g + 1)/k.

Proposition [Bao, Ji, IEEE IT, 2015]

Let k and v be positive integers satisfying k + 1|v − 1. Then there exists a
strictly optimal frequency hopping sequences of length kv over an
alphabet of size (kv + 1)/(k + 1) if and only if there exists an elementary
(kv, k, k + 1, 1)-FDF over Zkv.
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Resolvable 2-designs

Basic Lemma for frame difference families

Let q ≡ 1 (mod e) be a prime power and d|e. Let S be a representative

system for the cosets of Ce,q0 in Cd,q0 . Let d(q − 1) ≡ 0 (mod ek) and
t = d(q − 1)/ek. Suppose that there exists a (G, k, ktλ)-SDF S = [F1,
F2, . . . , Fn], where λ|G| ≡ 0 (mod k − 1) and Fi = (fi,0, fi,1, . . . , fi,k−1),
1 ≤ i ≤ n. If there exists a partition P of base blocks of S into
λ|G|/(k − 1) multisets, each of size t, such that one can choose
appropriate multiset [Φ1,Φ2, . . . ,Φn] of ordered k-subsets of F∗q with
Φi = (φi,0, φi,1, . . . , φi,k−1), 1 ≤ i ≤ n, satisfying

(1)
⋃n
i=1[φi,a−φi,b : fi,a− fi,b = h, (a, b) ∈ Ik× Ik, a 6= b] = Ce,q0 ·Dh for

each h ∈ G, where Dh is a λ-transversal for the cosets of Cd,q0 in F∗q ,

(2)
⋃
i:Fi∈P [φi,a : a ∈ Ik] = Ce,q0 · EP for each P ∈ P, where EP is a

representative system for the cosets of Cd,q0 in F∗q ,

then F = [Bi · {(1, s)} : 1 ≤ i ≤ n, s ∈ S] is a (G×Fq, G×{0}, k, λ)-FDF,
where Bi = {(fi,0, φi,0), (fi,1, φi,1), . . . , (fi,k−1, φi,k−1)}.
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Resolvable 2-designs

Eight new resolvable 2-designs

Theorem 5

There exists a resolvable 2-(v, 8, 1) design for
v ∈ {624, 1576, 2976, 5720, 5776, 10200, 14176, 24480}.

[Theorem, Handbook, Table 7.41]

Values of v ≡ 8 (mod 56) for which no resolvable 2-(v, 8, 1) design is known.

176 624 736 1128 1240 1296 1408 1464 1520 1576
1744 2136 2416 2640 2920 2976 3256 3312 3424 3760
3872 4264 4432 5216 5720 5776 6224 6280 6448 6896
6952 7008 7456 7512 7792 7848 8016 9752 10200 10704

10760 10928 11040 11152 11376 11656 11712 11824 11936 12216
12328 12496 12552 12720 12832 12888 13000 13280 13616 13840
13896 14008 14176 14232 21904 24480
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Resolvable 2-designs

A resolvable 2-(624, 8, 1) design

Take e = q − 1. Then Ce,q0 = {1} and S = Cd,q0 .

1 A (Z7, 8, 8)-SDF: [0, 0, 1, 1, 2, 2, 4, 4].

2 An elementary (Z7 × F89,Z7 × {0}, 8, 1)-FDF:

B = {(0, 1), (0, 20), (1, 14), (1, 58), (2, 18), (2, 61), (4, 26), (4, 73)}.

Then
F = [B · (1, s) : s ∈ C8,89

0 ]

forms an elementary (Z7 × F89,Z7 × {0}, 8, 1)-FDF.

Input a trivial resolvable 2-(8, 8, 1) design.
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Resolvable 2-designs

New resolvable 2-designs

Theorem 6

If there exists a (G, k, ktλ)-SDF with λ|G| ≡ 0 (mod k − 1), then there
exists a (G× Fq, G× {0}, k, λ)-FDF

for any even λ and any prime power q ≡ 1 (mod kt) with
q > Q(kt, k);

for any odd λ and any prime power q ≡ krt+ 1 (mod 2krt) with
q > Q(krt, k), where r is any positive integer.
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Resolvable 2-designs

New resolvable 2-designs

Theorem 7

Let p ≡ 3 (mod 4) be a prime power. Then there exists an elementary
(Fp × Fq,Fp × {0}, p+ 1, 1)-FDF for any prime power q ≡ 1 (mod p+ 1)
and q > Q((p+ 1)/2, p).

Theorem 8

Let p and p+ 2 be twin prime powers satisfying p > 2. Then there exists
an elementary (Fp × Fp+2 × Fq,Fp × Fp+2 × {0}, p(p+ 2) + 1, 1)-FDF for
any prime power q ≡ 1 (mod p(p+ 2) + 1) and
q > Q((p(p+ 2) + 1)/2, p(p+ 2)).

Theorem 9

Let m ≥ 3 be an integer. Then there exists an elementary
(Z2m−1 × Fq,Z2m−1 × {0}, 2m, 1)-FDF for any prime power q ≡ 1
(mod 2m) and q > Q(2m−1, 2m − 1).
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Resolvable 2-designs

New resolvable 2-designs

Theorem 10

Let p ≡ 1 (mod 4) be a prime power. Then there exists an elementary
(Fp× Fq,Fp×{0}, p+ 1, 1)-FDF for any prime power q ≡ 1 (mod 2p+ 2)
and q > Q(p+ 1, p).

Theorem [Buratti, Finizio, BICA, 2007]

There exists a (Zp × Zq,Zp × {0}, p+ 1, 1)-FDF for p ∈ {5, 7} and any
prime q.
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Strong differences families

Outline

[Chang, Costa, Feng, Wang, DM, 2019, submitted]

Strong differences families with special patterns:
1 A SDF has a pattern of length two.
2 A SDF has a pattern of length four.

Applications to GDDs and OOCs.
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Pattern of length two

A SDF has a pattern of length two

Definition

Let (G,+) be an abelian group. A (G, k, µ)-SDF has a pattern of length
two if it is the union of three families Σ1,Σ2 and Σ3, each of which could
be empty, where

1) if k ≡ 0 (mod 2), then for any A ∈ Σ1, A is of the form

[x1, δ + x1, x2, δ + x2, . . . , xbk/2c, δ + xbk/2c]

(resp. with a 0 at the beginning if k ≡ 1 (mod 2)), where δ is either
an involution of G or zero, and ∆[x1, x2, . . . , xbk/2c] does not contain
involutions and zeros;

2) for any A ∈ Σ2, each element of ∆(A) is either an involution or zero;

3) for any A ∈ Σ3, the multiplicity of A in Σ3 is even and ∆(A) does
not contain involutions and zeros.
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Pattern of length two

Strong differences families

Example 1

The (Z10, 5, 12)-SDF given below has a pattern of length two:

Σ1 Σ2 Σ3

[[0, 3, 3, 7, 7]] [[0, 0, 0, 5, 5]] [[0, 9, 6, 7, 8], [0, 9, 6, 7, 8],
[0, 8, 4, 6, 7], [0, 8, 4, 6, 7]]

Lemma [Paley SDFs]

(1) Let p be an odd prime power. Then the (p, p, p− 1)-SDF over Fp
given by the single block {0} ∪ 2C2,p

0 , has a pattern of length two.

(2) Let p ≡ 3 (mod 4) be a prime power. Then the (p, p+ 1, p+ 1)-SDF
over Fp given by the single block 2({0} ∪ C2,p

0 ), has a pattern of
length two.
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Pattern of length two

(Z10 × Fq,Z10 × {0}, 5, 1)-DF

Example 2

Given any prime power q ≡ 1 (mod 12) and q > Q(6, 4), there exists a
(Z10 × Fq,Z10 × {0}, 5, 1)-DF.

Proof Take the (Z10, 5, 12)-SDF, Σ = [A1, A2, . . . , A6], where
A1 = [0, 3, 3, 7, 7], A2 = [0, 0, 0, 5, 5], A3 = A4 = [0, 9, 6, 7, 8] and
A5 = A6 = [0, 8, 4, 6, 7]. Now, consider the family B = [B1, B2, . . . , B6] of
base blocks whose first components come from Σ, where

B1 = {(0, 0), (3, y1,1), (3,−y1,1), (7, y1,2), (7,−y1,2)};
B2 = {(0, y2,1), (0, y2,2), (0, y2,3), (5, y2,4), (5, y2,5)};
B3 = {(0, y3,1), (9, y3,2), (6, y3,3), (7, y3,4), (8, y3,5)}; B4 = (1,−1) ·B3;
B5 = {(0, y4,1), (8, y4,2), (4, y4,3), (6, y4,4), (7, y4,5)}; B6 = (1,−1) ·B5.
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Pattern of length two

(Z10 × Fq,Z10 × {0}, 5, 1)-DF (Cont.)

One can check that

∆[B1, B2, . . . , B6] =
⋃
g∈Z10

{g} ×Dg,

where Dg = {1,−1} · Lg, Lg = L−g and

L0 = {2y1,1, 2y1,2, y2,1 − y2,2, y2,1 − y2,3, y2,3 − y2,2, y2,4 − y2,5};
L1 = {y3,2 − y3,1, y3,2 − y3,5, y3,5 − y3,4, y3,4 − y3,3, y4,2 − y4,5, y4,5 − y4,4};
L2 = {y3,1 − y3,5, y3,5 − y3,3, y3,2 − y3,4, y4,1 − y4,2, y4,2 − y4,4, y4,4 − y4,3};
L3 = {y1,1, y1,2, y3,4 − y3,1, y3,2 − y3,3, y4,1 − y4,5, y4,5 − y4,3};
L4 = {y1,2 − y1,1, y1,2 + y1,1, y4,4 − y4,1, y4,1 − y4,3, y4,3 − y4,2, y3,3 − y3,1};
L5 = {y2,4 − y2,1, y2,4 − y2,2, y2,4 − y2,3, y2,5 − y2,1, y2,5 − y2,2, y2,5 − y2,3}.

For any prime power q ≡ 1 (mod 12) and q > Q(6, 4), we can always
require that every Lg is a system of representatives for C6,q

0 in F∗q .

Therefore, given a transversal S for {1,−1} in C6,q
0 , the family

[B · (1, s) | s ∈ S, B ∈ B] is a (Z10 × Fq,Z10 × {0}, 5, 1)-DF.
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Pattern of length two

Asymptotic results - III

Theorem 11

If there exists a (G, k, µ)-SDF with a pattern of length two, then there
exists a (G× Fq, G× {0}, k, 1)-DF for any prime power q ≡ 1 (mod µ)
and q > Q(µ/2, k − 1).

Let k be odd and Σ be a (G, k, µ)-SDF with a pattern of length two.
If Σ consists only of base blocks belonging to Σ1, then the lower
bound on q can be improved. That is to say, there exists a
(G× Fq, G× {0}, k, 1)-DF for any prime power q ≡ 1 (mod µ) and
q > Q(µ/2, k − 2).
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Pattern of length two

SDFs with a pattern of length two

(Z2, 5, 20)-SDF Σ2 = [[0, 0, 0, 1, 1], [0, 0, 0, 0, 1]]
(Z12, 5, 20)-SDF Σ2 = [[0, 0, 0, 6, 6], [0, 0, 0, 0, 6]]

Σ3 = 2 [[0, 1, 2, 3, 4], [0, 1, 2, 4, 5], [0, 1, 3, 5, 8], [0, 1, 4, 5, 8], [0, 2, 4, 7, 9]]
(Z25, 6, 6)-SDF Σ1 = [[0, 0, 5, 5, 14, 14]]

Σ3 = 2 [[0, 1, 2, 3, 6, 18], [0, 2, 8, 12, 15, 19]]
(Z30, 6, 6)-SDF Σ1 = [[0, 0, 6, 6, 16, 16], [0, 15, 3, 18, 7, 22]]

Σ3 = 2 [[0, 1, 2, 3, 8, 21], [0, 2, 5, 9, 13, 18]]
(Z35, 6, 6)-SDF Σ1 = [[0, 0, 8, 8, 18, 18]]

Σ3 = 2 [[0, 1, 2, 3, 5, 15], [0, 3, 7, 14, 23, 29], [0, 4, 9, 17, 23, 28]]
(Z45, 6, 6)-SDF Σ1 = [[0, 0, 10, 10, 26, 26]]

Σ3 = 2 [[0, 1, 3, 11, 17, 31], [0, 4, 9, 22, 30, 37],
[0, 1, 3, 7, 12, 25], [0, 1, 3, 7, 12, 25]]

(Z5, 6, 12)-SDF Σ1 = [[0, 0, 1, 1, 2, 2], [0, 0, 2, 2, 4, 4]]
(Z15, 6, 12)-SDF Σ1 = [[0, 0, 3, 3, 8, 8], [0, 0, 4, 4, 9, 9]]

Σ3 = 2 [[0, 1, 2, 3, 4, 7], [0, 1, 2, 4, 8, 10]]
(Z35, 7, 6)-SDF Σ1 = [[0, 7, 7, 17, 17, 30, 30]]

Σ3 = 2 [[0, 1, 2, 3, 5, 21, 29], [0, 3, 9, 13, 17, 24, 29]]
(Z49, 7, 6)-SDF Σ1 = [[0, 4, 4, 16, 16, 36, 36]]

Σ3 = 2 [0, 1, 3, 20, 28, 38, 43], [0, 1, 3, 27, 31, 36, 42], [0, 1, 3, 27, 31, 36, 42]]
(Z21, 7, 12)-SDF Σ1 = [[0, 5, 5, 10, 10, 17, 17], [0, 3, 3, 9, 9, 17, 17]]

Σ3 = 2 [[0, 1, 2, 3, 4, 5, 11], (0, 1, 3, 7, 11, 13, 16]]
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Pattern of length two

New relative difference families

Theorem 12

Let q be a prime. Then there exists a (Zh × Fq,Zh × {0}, k, 1)-DF in the
following cases:

(hq, h, k, λ) possible exceptions / definite ones

(2q, 2, 5, 1): q ≡ 1 (mod 20)

(10q, 10, 5, 1): q ≡ 1 (mod 12)

(12q, 12, 5, 1): q ≡ 1 (mod 20)

(hq, h, 6, 1): h ∈ {25, 30, 35, 45}, (25× 7, 25, 6, 1)
q ≡ 1 (mod 6)

(hq, h, 6, 1): h ∈ {5, 15}, (5× 13, 5, 6, 1)
q ≡ 1 (mod 12)

(hq, h, 7, 1): h ∈ {35, 49}, (35× 7, 35, 7, 1), (49× 7, 49, 7, 1)
q ≡ 1 (mod 6)

(21q, 21, 7, 1): q ≡ 1 (mod 12)
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Pattern of length four

A SDF has a pattern of length four

Definition

Let (G,+) be an abelian group of odd order. A (G, k, µ)-SDF has a
pattern of length four if k ≡ 0, 1 (mod 4) and it is the union of two
families Σ1 and Σ2 (Σ2 could be empty), where

1) if k ≡ 0 (mod 4), then Σ1 consists of only one base block of the form

[x1, x1,−x1,−x1, . . . , xbk/4c, xbk/4c,−xbk/4c,−xbk/4c]

(resp. with a 0 at the beginning if k ≡ 1 (mod 4)) and
∆[x1,−x1, x2,−x2, . . . , xbk/4c,−xbk/4c] does not contain zeros;

2) for any A ∈ Σ2, the multiplicity of A in Σ2 is doubly even and ∆(A)
does not contain zeros.

For a (G, k, µ)-SDF, Σ, with a pattern of length four, the zero
element of G must appear bk/4c × 4 times in ∆Σ, so µ = 4bk/4c.
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Pattern of length four

Strong differences families

Example 3

The (Z45, 5, 4)-SDF given below has a pattern of length four:

Σ1 Σ2

[[0, 1, 1,−1,−1]] [[0, 3, 7, 13, 30], [0, 3, 7, 13, 30], [0, 3, 7, 13, 30],
[0, 3, 7, 13, 30], [0, 5, 14, 26, 34], [0, 5, 14, 26, 34],
[0, 5, 14, 26, 34], [0, 5, 14, 26, 34]]

Lemma [Paley SDFs]

Let p ≡ 1 (mod 4) be an odd prime power. Then the (p, p, p− 1)-SDF
over Fp given by the single block {0} ∪ 2C2,p

0 , has a pattern of length four.
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Pattern of length four

(Z45 × Fq,Z45 × {0}, 5, 1)-DF

Example 4

Given any prime power q ≡ 1 (mod 4), there exists a
(Z45 × Fq,Z45 × {0}, 5, 1)-DF.

Proof Take the (Z45, 5, 4)-SDF, Σ = [A1, A2, . . . , A9], where
A1 = [0, 1, 1,−1, −1], A2 = A3 = A4 = A5 = [0, 3, 7, 13, 30] and
A6 = A7 = A8 = A9 = [0, 5, 14, 26, 34]. Let ξ be a primitive 4th root of
unity in F∗q . Now, consider the family B = [B1, B2, . . . , B9] of base blocks
whose first components come from Σ, where

B1 = {(0, 0), (1, y1,1), (1,−y1,1), (−1, y1,1ξ), (−1,−y1,1ξ)};
B2 = {(0, y2,1), (3, y2,2), (7, y2,3), (13, y2,4), (30, y2,5)};
B3 = (1, ξ) ·B2; B4 = (1,−1) ·B2; B5 = (1,−ξ) ·B2;
B6 = {(0, y6,1), (5, y6,2), (14, y6,3), (26, y6,4), (34, y6,5)};
B7 = (1, ξ) ·B6; B8 = (1,−1) ·B6; B9 = (1,−ξ) ·B6.
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Pattern of length four

(Z45 × Fq,Z45 × {0}, 5, 1)-DF (cont.)

One can check that

∆[B1, B2, . . . , B9] =
⋃
g∈Z45

{g} ×Dg,

where Dg = {1,−1, ξ,−ξ} · Lg and |Lg| = 1 for any g ∈ Z45. For any
prime power q ≡ 1 (mod 4), we can always require that each Lg does not
contain zero. Therefore, given a transversal S for {1,−1, ξ,−ξ} in F ∗q , the
family [B · (1, s) | s ∈ S, B ∈ B] is a (Z45 × Fq,Z45 × {0}, 5, 1)-DF.
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Pattern of length four

Asymptotic results - IV

Theorem 13

If there exists a (G, k, µ)-SDF with a pattern of length four, whose
distinguished base block is denoted by A, then for any prime power q ≡ 1
(mod µ) and q > Q(µ/4, k − 1), there exists a (G× Fq, G× {0}, k, 1)-DF
in the following cases

1) k ≡ 0 (mod 4);

2) k = 5;

3) k ∈ {9, 13, 17} and x1 6= ±2x2 for any nonzero x1, x2 ∈ A (x1 could
be x2);

4) k ≡ 1 (mod 4), k ≥ 21 and 3x 6= 0 for any nonzero x ∈ A.

Let Σ be a (G, k, µ)-SDF with a pattern of length four. If Σ = Σ1,
then the lower bound on q can be improved, that is to say,
q > Q(µ/4, k − 3) when k ≡ 0 (mod 4) and q > Q(µ/4, k − 4) when
k ≡ 1 (mod 4)).
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Pattern of length four

New relative difference families

SDFs with a pattern of length four

(Z63, 8, 8)-SDF Σ1 = [[20, 20,−20,−20, 29, 29,−29,−29]]
Σ2 = 4 [[0, 1, 3, 7, 19, 34, 42, 53], [0, 1, 4, 6, 26, 36, 43, 51]]

(Z81, 9, 8)-SDF Σ1 = [[0, 4, 4,−4,−4, 37, 37,−37,−37]]
Σ2 = 4 [[0, 1, 4, 6, 17, 18, 38, 63, 72], [0, 2, 7, 27, 30, 38, 53, 59, 69]]

Theorem 14

Let q be a prime. Then there exists a (Zh × Fq,Zh × {0}, k, λ)-DF in the
following cases:
(hq, h, k, λ) possible exceptions

(45q, 45, 5, 1)-DF: q ≡ 1 (mod 4)

(63q, 63, 8, 1)-DF: q ≡ 1 (mod 8) (63× 17, 63, 8, 1)

(81q, 81, 9, 1)-DF: q ≡ 1 (mod 8) (81× 17, 81, 9, 1), (81× 41, 81, 9, 1)
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Group divisible designs

Group divisible designs

Definition

Group divisible designs are closely related to difference families. Let K be
a set of positive integers. A group divisible design (GDD) K-GDD is a
triple (X,G,A) satisfying the following properties: (1) G is a partition of a
finite set X into subsets (called groups); (2) A is a set of subsets of X
(called blocks), whose cardinalities are from K, such that every 2-subset
of X is either contained in exactly one block or in exactly one group, but
not in both.

If G contains ui groups of size gi for 1 ≤ i ≤ r, then gu11 gu22 · · · gurr is
called the type of the GDD.

The notation k-GDD is used when K = {k}.
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Group divisible designs

New group divisible designs

[Theorem 12]

A (Z30 × Fq,Z30 × {0}, 6, 1)-DF for any prime q ≡ 1 (mod 6).

Lemma [Handbook, Table 3.18]

It is reported that when u < 100, a 6-GDD of type 30u exists for
u ∈ {6, 16, 21, 26, 31, 36, 41, 51, 61, 66, 71, 76, 78, 81, 86, 90, 91, 96}.

Theorem 15

There exists a 6-GDD of type 30u for
u ∈ {6, 16, 21, 25, 26, 36, 41, 42, 48, 49, 51, 66, 71, 76, 78, 81, 84, 85, 86, 90,
91, 96} ∪ {q : q ≡ 1 (mod 6) is a prime}.
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Optical orthogonal codes

Optical orthogonal codes

A (v, k, 1)-optical orthogonal code (OOC) is defined as a set of
k-subsets (called codewords) of Zv whose list of differences does not
contain repeated elements.

It is optimal if the size of the set of missing differences is less than or
equal to k(k − 1).

A cyclic (gv, g, k, 1)-DF can be seen as a (gv, k, 1)-OOC whose set of
missing differences is {0, v, 2v, . . . , (g − 1)v}.
Furthermore, one can construct a (g, k, 1)-OOC on the set of missing
differences to produce a new (gv, k, 1)-OOC.
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Optical orthogonal code

New optimal optical orthogonal codes

Theorem 16

(1) There exist an optimal (2q, 5, 1)-OOC and an optimal
(12q, 5, 1)-OOC for any prime q ≡ 1 (mod 20).

(2) There exists an optimal (gq, k, 1)-OOC where
(g, k) ∈ {(10, 5), (5, 6), (15, 6), (21, 7)} for any prime q ≡ 1 (mod 12)
except for (g, q, k) = (5, 13, 6).

(3) There exists an optimal (gq, k, 1)-OOC where (g, k) ∈ {(25, 6),
(30, 6), (35, 6), (45, 6), (35, 7), (49, 7)} for any prime q ≡ 1 (mod 6)
except for (g, q, k) ∈ {(25, 7, 6), (35, 7, 7), (49, 7, 7)}.

(4) There exists an optimal (45q, 5, 1)-OOC for any prime q ≡ 1 (mod 4)
and q > 5.

(5) There exists an optimal (63q, 8, 1)-OOC for any prime q ≡ 1 (mod 8)
and q > 17.
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Strong difference families

Open problems [Buratti, 1999, JCD]

Problem A

Given a positive integer k, determine the numbers

tk =min{t| there exists a (k, k, µ)-SDF with t base blocks for some integer µ}.

t′k =min{t| there exists a (k− 1, k, µ)-SDF with t base blocks for some integer µ}.

√
The existence of (k, k, k(k − 1))-SDF =⇒ tk ≤ k.

√
The existence of (k − 1, k, k(k + 1))-SDF =⇒ t′k ≤ k + 1.
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Strong difference families

Open problem [Buratti, 1999, JCD]

Problem B

Determine the sets:

S = {k ∈ N |there exists a (k, k, k − 1)-SDF}.

S′ = {k ∈ N |there exists a (k − 1, k, k)-SDF}.

S contains the set of odd prime powers.

S′ contains the set {q + 1|q prime power ≡ 3 (mod 4)}, the set
{pq + 1|p and q twin prime powers} and the powers of 2.
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Strong difference families

Thank you!
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