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Latin squares

A latin square of order n is an n × n matrix in which each of n symbols
occurs exactly once in each row and once in each column.

e.g.


1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

 is a latin square of order 4.

A partial Latin square (PLS) is a matrix, possibly with some empty cells,
where no symbol is repeated within a row or column:

e.g.


1 · · 4
· 4 · 3
3 1 · ·
· · 2 ·

 is a PLS of order 4.
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Embedding PLS in groups

The PLS
1 2 3
· 3 1
2 1 ·

embeds in Z4 since. . .
0 1 3 2
1 3 2 0
3 2 0 1
2 0 1 3

Formally, an embedding in a group G is a triple (α, β, γ) of injective
maps from respectively the rows, columns and symbols, to G , which
respects the structure of the group.

[If (a, b, c) 7→
(
α(a), β(b), γ(c)

)
then α(a)β(b) = γ(c).]

Injectivity is crucial!
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From a PLS to a group

P =

c1 c2 c3
r1 1 2 3
r2 · 3 1
r3 2 1 ·

. . . defines a group

〈r1, r2, r3, c1, c2, c3, s1, s2, s3 | r1c1 = s1, r1c2 = s2, r1c3 = s3,

r2c2 = s3, r2c3 = s1,

r3c1 = s2, r3c2 = s1〉

WLOG we can add the relations r1 = c1 = ε,

The resulting group/presentation will be denoted 〈P〉.
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Latin trades

A pair of “exchangeable” PLS are known as Latin trades

· 2 3 4
· · · ·
· · 4 2
· 3 2 ·

· 3 4 2
· · · ·
· · 2 4
· 2 3 ·

Theorem: To change the Cayley table of a group of order n into

I another latin square, requires O(log n) changes, [Szabados’14]

I another Cayley table requires linearly many changes,

I a Cayley table for a non-isomorphic group requires quadratically
many changes [Ivanyos/Le Gall/Yoshida’12].

There is no finite trade that embeds in Z.
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Arguing that black is white!

Cavenagh/W.[’09] and Drápal/Hämäläinen/Kala [’10]:

Theorem: Let (W ,B) be spherical trades. There is a finite abelian
group AW ,B such that both W and B embed in AW ,B .

Theorem: [Blackburn/McCourt’14] For spherical trades (W ,B), the
abelianisations of 〈W 〉 and 〈B〉 are isomorphic.

0 1 2 3 4 5

1 2 3 4 5 0

2 3 4 5 0 1

3 4 5 0 1 2

4 5 0 1 2 3

5 0 1 2 3 4

2 3 1 0 · ·
· · · · · ·
3 1 2 · · 4

0 · · 3 · ·
· · · · · ·
· · 4 · · 1

W embedded in Z6 B can’t embed in cyclic
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Growth rates

The canonical group of a (spherical) trade W is the abelianisation of
〈W 〉.

The minimal group of W is the order of the smallest abelian group in
which W embeds.

For a trade of size s the canonical group has order 6 O(1.445s).

There are examples where the minimal group and canonical group both
achieve growth > 1.260s .

The rank of a group is the size of its smallest generating set.

The rank of the canonical group may grow linearly in s.

The minimal group has rank O(log s).
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Smallest PLS not embedding in a group of order n

Open Problem 3.8 in Dénes & Keedwell [’74] asks for the value of ψ(n),
the largest number m such that for every PLS P of size m there is some
group of order n in which P can be embedded.

Theorem:

ψ(n) =



1 when n = 1, 2,

2 when n = 3,

3 when n = 4, or when n is odd and n > 3,

5 when n = 6, or when n ≡ 2, 4 mod 6 and n > 4,

6 when n ≡ 0 mod 6 and n > 6.
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An abelian variant

Let ψ+(n) denote the largest number m such that for every PLS P of size
m there is some abelian group of order n in which P can be embedded.

Theorem:

ψ+(n) =


1 when n = 1, 2,

2 when n = 3,

3 when n = 4, or when n is odd and n > 3,

5 when n is even and n > 4.

We found that ψ+(n) is also the largest number m such that every PLS
P of size m embeds in the cyclic group Zn.
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Upper bounds

A famous conjecture of Evans stated that every PLS of size n − 1 could
be embedding in some LS of order n.

This is known to be best possible
because of examples such as(

1 2 3 · · · n − 1 ·
· · · · · · · n

)
Andersen/Hilton and Smetaniuk/Damerell proved the Evans’ Conjecture
and showed that examples like the above are the only ones of size n
which cannot be embedded.

Nevertheless ψ+(n) 6 ψ(n) < n for all n.
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Upper bounds

A similar conclusion can be drawn for n ≡ 2 mod 4 because
1

2
3

. . .

n


cannot be embedded in any group, by a theorem of Hall & Paige.

We found that ψ+(n) = ψ(n) = n − 1 for n ∈ {2, 3, 4, 6}.
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Another upper bound

Lemma: For each ` > 2 there exists a PLS of size 2` that can only be
embedded in groups whose order is divisible by `.

C` =

(
a1 a2 · · · a`−1 a`
a2 a3 · · · a` a1

)
Suppose that C` is embedded in rows indexed r1 and r2 of the Cayley
table of a group G . From the regular representation of G as used in
Cayley’s theorem, it follows that r−1

1 r2 has order ` in G . In particular `
divides the order of G .

For odd n > 5 it follows that ψ+(n) = ψ(n) 6 3, and
for n ≡ 2, 4 mod 6, n > 4 it follows that ψ+(n) = ψ(n) 6 5.
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A uniform upper bound

The following pair of PLS of size 7 a b ·
c a b
· c d

  a b ·
c a b
· d a


each fail the so-called quadrangle criterion and hence neither can be
embedded into any group.

Hence ψ+(n) = ψ(n) 6 6 for all n.

We now have only finitely many PLS to consider.



A uniform upper bound

The following pair of PLS of size 7 a b ·
c a b
· c d

  a b ·
c a b
· d a


each fail the so-called quadrangle criterion and hence neither can be
embedded into any group.

Hence ψ+(n) = ψ(n) 6 6 for all n.

We now have only finitely many PLS to consider.



A uniform upper bound

The following pair of PLS of size 7 a b ·
c a b
· c d

  a b ·
c a b
· d a


each fail the so-called quadrangle criterion and hence neither can be
embedded into any group.

Hence ψ+(n) = ψ(n) 6 6 for all n.

We now have only finitely many PLS to consider.



Reducing the list of candidates

Most PLSs don’t need to be considered because they contain one or
more entries which may be omitted without affecting embeddability.

e.g. a · ·
· a b
b c ·


a b · ·

c · b ·
· d · c


size 1 2 3 4 5 6 7

#species 1 2 5 18 59 306 1861
reduced# 0 0 0 2 0 11 50
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The interesting ones

Of the 11 PLS(6), the two most interesting are a · · · · c
· a · · b ·
· · b c · ·

  a b ·
c · b
· c d


The left one doesn’t embed in either group of order 6,

and the right one
doesn’t embed in any abelian group.
Of the 50 PLS(7), there are 42 embed in Z6, 4 others embed in D6, and
2 don’t embed in any group. The other two are a b c

b a ·
c · a

  a b c
b c ·
c · a


The first embeds in any group that has more than one element of order
2. The second embeds in any group with an element of order 4.
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The first embeds in any group that has more than one element of order
2. The second embeds in any group with an element of order 4.
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Summary

Smallest PLSs which are obstacles for ψ(n)

n smallest # obstacles

2,3,4 n bn/2c Evans
odd> 5 3 1 C2

6 6 5 Evans,transversal,sporadic
2, 4 mod 6 6 1 C3

0 mod 12 7 2 Quad.Crit.
6 mod 12 7 3 Quad.Crit., el of order 4
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How many candidates?

We can assume the PLS is connected,

since otherwise we simply embed
each piece and use direct products.

size 1 2 3 4 5 6 7 8 9 10
all 1 2 5 18 59 306 1861 15097 146893 1693416
conn. 1 1 3 11 36 213 1405 12274 125235 1490851
red. 0 0 0 2 0 11 50 489 6057 92533

size 11 12
conn. 20003121 299274006
red. 1517293 27056665

But this is only the beginning of the problems. For each PLS, we may
have to solve a (potential undecidable!) word problem.
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Mind the GAP

1. Use Tietze transformations to simplify the presentation 〈P〉 and write
the old generators as words in the new generators.

If, say, two rows are
represented by the same word then P cannot embed in any group.

2. Assume commutativity. If P embeds in the abelianisation of 〈P〉, then
P embeds in some finite abelian group (and vice versa). More generally,
using GAP’s nilpotent quotient algorithm we computed the largest
quotients of 〈P〉 having nilpotency class c = 1, 2, 3, 4. If P embeds in
any of these quotients we try to find a finite group in which it embeds by
adding random relations.

3. Brute force. Consider all possible homomorphisms into a small group
(say, order 6 24).

4. Find the intersection of all low-index subgroups. The quotient of 〈P〉
by this subgroup is finite, and sometimes P embeds in it.

This last step was only needed for PLS of size 12.
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size None Fab Fnonab nFab nFnonab ∞
4 0 1 0 1 0 0
6 0 7 1 3 0 0
7 2 37 4 7 0 0
8 16 401 32 34 6 0
9 147 5153 412 294 51 0

10 2402 78343 6784 4212 792 0
11 42884 1272586 120767 66230 14826 0
12 854559 22297343 2365541 1223063 316109 50

None : cannot be embedded in any group
Fab : in free group and in finite abelian group
Fnonab : in free group, not in any abelian group,

but in finite non-abelian group
nFab : in finite abelian group but not in free group
nFnonab : in finite non-abelian group,

but not in in free group, nor any abelian group
∞ : in an infinite group, but no finite group



The smallest example:

The PLS

P =


a b c d ·
b e f · d
c · · f ·
· · · e a


can be embedded in an infinite group, but in no finite group.

Baumslag [’69] considered

B = 〈u, v | u = [u, uv ]〉,

where, as usual, uv = v−1uv and [u, uv ] = u−1u(uv ). He proved that B
is infinite, but u = 1 in every finite quotient of B.



The smallest example:

The PLS

P =


a b c d ·
b e f · d
c · · f ·
· · · e a


can be embedded in an infinite group, but in no finite group.

Baumslag [’69] considered

B = 〈u, v | u = [u, uv ]〉,

where, as usual, uv = v−1uv and [u, uv ] = u−1u(uv ). He proved that B
is infinite, but u = 1 in every finite quotient of B.



50 shades of...

For the 50 candidate PLS we found that 〈P〉 is always Baumslag’s group
(sometimes with a slightly different presentation).

Moreover, P embeds in 〈P〉.
e.g.

P =

ε b c bc [b, c]

ε ε b c bc ·
b b b2 bc · bc

c c · · bc ·
[c, b] · · · b2 ε

If two labels coincided then 〈P〉 would be cyclic, which it isn’t.
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Open Question

Which diagonal PLS embed in groups?

M.Hall [1952] answered this for abelian groups.

Theorem: Let ∆ be the diagonal PLS of size n with ∆(i , i) = a for
i 6 3 and ∆(i , i) = b for 4 6 i 6 n. Then ∆ has an embedding into a
group G of order n if and only if n is divisible by 3.
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