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Introduction

Higman (1950) published the papers Enumerating p-groups I and II and introduced the so-called
“PORC’-functions. (PORC stands for Polynomial On Residue Classes.) A function f is called
PORC if there exists a natural number N and polynomials fy, ..., fn—1 such that f(z) = fo.(z) for
all x € N-Z + a. So, f behaves like a polynomial for all x in the same residue class modulo N.
Higman (1950) proofed that the number f4(q) of isomorphism classes of algebras of fixed dimension d
over an arbitrary field with q elements can be described by a PORC-function in q. He conjectured
that the number g, (p) of isomorphism types of p-groups of order p™ is given by a PORC-function
in p. It is a still open problem in group theory. Vaughan-Lee (2013) sketched a method to compute
the PORC-functions for f;(q) and he determined them for d < 4.

This paper will give an introduction to Higman’s PORC theory and the basic ideas of the classification
of finite dimensional algebras over finite fields.
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Basic definitions and examples

Definition 1.1: Algebra

An algebra A of dimension d over a field K is a d-dimensional vector space over K equipped with a bilinear
mapping K¢ x K¢ — K? called multiplication.

If the multiplication is associative', then A is called associative. If the multiplication is Jacobian?, then A is
called a Lie-algebra.

Remark 1.2
It is not assumed that an algebra contains an identity element.

Example 1.3

1. Let V' be any finite dimensional vector space over any field K. Equipping V with the trivial multiplication
VxV =V, (x,y) — 0, gives an algebra. It is easy to see, that it is an associative and commutative
algebra.

2. Let V. = M, (K) be the vector space of all nxn matrices with entries in the field K. Equipping V with the
standard multiplication of matrices, one gets an associative algebra. It is not commutative.

3. Let V = R3 equipped with the cross product: x : R® x R® — R3, (z,y) > x X y. As this multiplication is
Jacobian, (R3, x) is a Lie-algebra.
There are a lot of applications for this algebra: In maths it can be used for the calculation of the distance
of skew lines or the volume of polyhedra. In physics it is used for computing an angular momentum or the
Lorentz force.

Definition 1.4: f;(K)
Let f4(K) be the number of isomorphism types of algebras of dimension d over the field K.

Remark 1.5
Two algebras are isomorphic if there exists a bijective base transformation preserving their structure.

Central Question:
What can be said about f;(K) depending on d and K?

Example 1.6

Independently from the chosen field, there are two isomorphism types of one dimensional algebras: The algebra
Ay with zero multiplication - : A; X A; — Ay, (x,y) — 0, and the algebra As with non-zero multiplication.
When increasing the dimension to two, there are already infinitely many algebras® if the field is not finite (see
[Goze and Remm, 2011]). However, if the field is finite with |K| = p® = q, then the number of isomorphism
types can be given by polynomials (see [Vaughan-Lee, 2013]).

Hd:l\ d=2

K| = o0 2 00
@+ +4¢>+3¢g+6, p=2
K| =p°=gq 2 @+ +4¢2+49+6, p=3
AP +H42+49+T7, p>5

Table 1: Number of isomorphism types of algebras for small dimension d

L Associative: for all a,b, c € A holds (ab)c = a(bc).

2 Jacobian: for all a,b,c € A holds (ab)c + (bc)a + (ca)b = 0.

3 Tor instances, take the algebras with basis Ay = (a,b | a2 = 0,ab = 0,ba = b, b? = ka) for an element k € K\ {0}.
These algebras are pairwise non-isomorphic.




Remark 1.7
For a finite field K with |K| = p® = q write fq(K) = fa(q)-

Theorem 1.8 (Higman)
For a fized d € N the function fq4(q) is PORC.

Definition 1.9: PORC
A function f is called PORC (Polynomial On Residue Classes), if there ezists a natural number N € N and a
set of polynomials fy, ..., fn—1 such that

f@)= fo(x) forall z€N-Z+a.

Remark 1.10
A function, that is PORC modulo N, behaves like a polynomial for all x of the same residue class modulo N.

Example 1.11

Let p > 5 be a prime. How many irreducible polynomials of degree three of the form x° — ¢ exist in Fy[x], where
F, is the finite field with p elements? In other words: How many elements c € F,, exist, such that the polynomial
x3 — ¢ has no roots in F,?

It is obvious, that ¢ # 0 must hold. Therefore, one can assume to choose c from the unit group F,. Therefore,
this group shall be looked at in more detail.

First of all, fiz an element 9 = U, which generates this unit group of Fy,, hence it is (J) = F;. Its order is p—1
and one can find an integer k with 0 < k < p — 1 such that c = 9*.

Next, define the subgroup H = (93) < Fy. Depending on p, H can or cannot be a trivial subgroup. Additionally,
as x = 0 cannot be a root of x> — ¢, one can write x = ¥ with 0 <1 < p— 1. So, findig the roots of 2> —c =0
is equivalent to finding all solutions of 93! = ¥*.

3

1. Let p = 1mod 3. Therefore, the subgroup H is a proper subgroup of index 3 in F,. With =9 e H
the equation 3l = k can just be solved with k = 0 mod 3. There are (p — 1)/3 such elements 9*.
As there is a total of p — 1 polynomials of the form 3 — c with ¢ # 0 and as there are (p — 1)/3 reducible
polynomials, there remain 2(p — 1)/3 irreducible polynomials of the desired form.

2. Let p=2mod 3. Then it is H =, So, for any I, there is a k such that the equation 930 = 9% holds. So
the polynomial 23 — ¢ € F,lx] is always reducible and there are no irreducible polynomials of the desired
form.

Depending on the residue class of p modulo 3 one has two different polynomials. Therefore, the number is
PORC. Putting all this together, one has

{f(z) =2® —c € F,lz] | f(z) is irreducible}|
_)2(p—1)/3, p=1mod3
N 0, p=2mod 3

~ged(p—1,3) — 1

3 (p—1).




Enumerating algebras

Remark 2.1
For the rest of this paper let K always be a finite field with |K| = p® = q.

Proposition and Definition 2.2: Structure constants

The multiplication of a d-dimensional algebra with basis B = {by,...,bq} is completely determined by a set of
structure constants \j;x € K, 1 <14, 5,k < d, via

d
bibj =Y Nijib.
k=1

Example 2.3

1. In case of an algebra with zero multiplication, it is Ajj;, = 0 for all 4, j, k.

2. In the case of the matriz algebra M, (K) first fir a basis: Let this be B = {e;; | 1 < 4,5 < n}, where e;;
denotes that nxn matriz, which has a one in row i at column j and whose other entries are zero. It is
known that e;jer = ey holds. Here, §;;, denotes the Kronecker delta, which evaluates to one, if both

indices are equal, and which evaluates to zero otherwise. Then, using the double indices, the structure
constants are

\ 1, if do = j1, i1 = k1, J2 = ko,
ivia, j1jz, kike = .
L2 Judz, Bk 0, otherwise.

3. The structure constants of the algebra (R3, x) are given as follows (when using the canonical vector space
base {e1,e9,€3}:

Al23 = Az12 = o3y = 1,
A132 = A213 = Azpp = —1,

Aijik = 0 otherwise.

Writing a set of structure constants as a vector v € K’ (the elements \;;; are arranged lexicographically),
then the action of a basis transformation G € GL(d,K) is given by v -G ® G ® G~1, where “®” stands for the
Kronecker product. The number of isomorphism types is therefore equal to the number of orbits of elements of
K¢ under the action of GL(d,K). Using the lemma of Burnside, Cauchy, and Frobenius, one gets

1

geGL(d,Fq)

|Fixg|

1 .
= aEy Xl Fa)

conjugacy classes
clCGL(d,Fy)

= Z |Carax)(9(c)| - [Fixg(epl-

conjugacy classes
clCGL(d,Fq)

It is Fix, = {v € K” | v-G®G®G™! = v}, the length of a class cl is denoted by |cl|, a representative of cl is
given by g(cl), and Cqrax)(g(cl)) = {z € G | gr = zg} is the centraliser of the element g = g(cl) in GL(d, K).

Remark 2.4
Fix, is the eigenspace of G @ G ® G~ belonging to the eigenvalue 1.

Problem:

The conjugacy classes still depend on ¢g. While increasing ¢, the number of conjugacy classes of
GL(d,K) increases, too.




Improvement of the lemma of Burnside, Frobenius,
and Cauchy

The main work of improving the application of the lemma is done by Charles Green, Graham Higman, and
Michael Vaughan-Lee.

Green published the paper The characters of the finite general linear groups (see [Green, 1955]) and there he
defined the so called “type” of a matrix. This classification is based on the rational canonical form of a matrix,
but is far coarser than the classification into conjugacy classes. The most important result is that the “types”
do not depend on the field.

Graham Higman published his very well known papers Enumerating p-groups I and II (see [Higman, 1960a],
[Higman, 1960b]). Although working with p-groups, he gives some theorems for algebras too. For instance, he
proofed that the number of isomorphism types of algebras of fixed dimension over a finite field is PORC.
Michael Vaughan-Lee then developed algorithms to really determine the PORC functions. In his paper Enu-
merating algebras over a finite field (see [Vaughan-Lee, 2013]) he publishes the PORC functions for algebras of
dimension d < 4. (In the case d = 2 the polynomials are of degree 4, for d = 3 they are of degree 18, and for
d = 4 they are of degree 48.) The used algorithms are described in his paper Choosing elements from finite
fields (see [Vaughan-Lee, 2012a]).

b \
Charles Alexander Green* Graham Higman® Michael Vaughan-Leef
(26 February 1926 — 7 April 2014) (19 January 1917 — 8 April 2008)

Work by Green:

» |Fixy(cy| does not depend on g(cl), but on the “type” of the class only.

» The number of different “types” within GL(d, K) depends on d only, not on g.
Work by Higman:

» |Fixg(cy is a polynomial in g.

» |Ccrk)(g(cl))| is a polynomial in g.

» The number of elements of a fixed “type” in GL(d,K) is PORC.
Work by Vaughan-Lee:

» Development of algorithms to determine expicitly the PORC functions in small cases of d.

4 Picture taken from https://static.independent.co.uk/s3fs-public/styles/story_large/public/thumbnails/image/
2014/07/20/19/sandy-green. jpg

Picture taken from https://upload.wikimedia.org/wikipedia/commons/2/2d/Graham_Higman. jpg

Picture taken from https://www.lincoln.ac.uk/home/media/universityoflincoln/schoolofmathematicsandphysics/
Professor-Michael-Vaughan-Lee. jpg
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The PORC-conjecture

When looking at Higman’s papers Enumerating p-groups I and II one gets directly another possible question:
How many isomorphism types of groups of order p™ exist?

Let the number of those isomorphism classes be g,,(p). Higman formulated his famous PORC conjecture dealing
with this number.

Conjecture 4.1 (Higman’s PORC conjecture)
For fized n € N, the function g,(p) giving the number of isomorphism types of groups of order p™ is PORC.

The problem is solved for n < 7. For instance, those polynomials can be found at http://groupprops.subwiki.
org/wiki/Higman’s_PORC_conjecture or in [Vaughan-Lee, 2012b] (for n < 5). However, it is an still open
problem for n > 8.
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