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Introduction

H
igman (1950) published the papers Enumerating p-groups I and II and introduced the so-called
�PORC�-functions. (PORC stands for Polynomial On Residue Classes.) A function f is called

PORC if there exists a natural number N and polynomials f0, . . . , fN−1 such that f(x) = fa(x) for
all x ∈ N · Z+ a. So, f behaves like a polynomial for all x in the same residue class modulo N .
Higman (1950) proofed that the number fd(q) of isomorphism classes of algebras of �xed dimension d
over an arbitrary �eld with q elements can be described by a PORC-function in q. He conjectured
that the number gn(p) of isomorphism types of p-groups of order pn is given by a PORC-function
in p. It is a still open problem in group theory. Vaughan-Lee (2013) sketched a method to compute
the PORC-functions for fd(q) and he determined them for d ≤ 4.
This paper will give an introduction to Higman's PORC theory and the basic ideas of the classi�cation
of �nite dimensional algebras over �nite �elds.
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1 Basic de�nitions and examples

De�nition 1.1: Algebra
An algebra A of dimension d over a �eld K is a d-dimensional vector space over K equipped with a bilinear
mapping Kd ×Kd → Kd called multiplication.
If the multiplication is associative1, then A is called associative. If the multiplication is Jacobian2, then A is
called a Lie-algebra.

Remark 1.2

It is not assumed that an algebra contains an identity element.

Example 1.3

1. Let V be any �nite dimensional vector space over any �eld K. Equipping V with the trivial multiplication
V × V → V, (x, y) 7→ 0, gives an algebra. It is easy to see, that it is an associative and commutative
algebra.

2. Let V =Mn(K) be the vector space of all n×n matrices with entries in the �eld K. Equipping V with the
standard multiplication of matrices, one gets an associative algebra. It is not commutative.

3. Let V = R3 equipped with the cross product: × : R3 × R3 → R3, (x, y) 7→ x× y. As this multiplication is
Jacobian, (R3,×) is a Lie-algebra.
There are a lot of applications for this algebra: In maths it can be used for the calculation of the distance
of skew lines or the volume of polyhedra. In physics it is used for computing an angular momentum or the
Lorentz force.

De�nition 1.4: fd(K)
Let fd(K) be the number of isomorphism types of algebras of dimension d over the �eld K.

Remark 1.5

Two algebras are isomorphic if there exists a bijective base transformation preserving their structure.

Central Question:

What can be said about fd(K) depending on d and K?

Example 1.6

Independently from the chosen �eld, there are two isomorphism types of one dimensional algebras: The algebra
A1 with zero multiplication · : A1 ×A1 → A1, (x, y) 7→ 0, and the algebra A2 with non-zero multiplication.
When increasing the dimension to two, there are already in�nitely many algebras3 if the �eld is not �nite (see
[Goze and Remm, 2011]). However, if the �eld is �nite with |K| = pe = q, then the number of isomorphism
types can be given by polynomials (see [Vaughan-Lee, 2013]).

d = 1 d = 2

|K| =∞ 2 ∞

|K| = pe = q 2


q4 + q3 + 4q2 + 3q + 6, p = 2

q4 + q3 + 4q2 + 4q + 6, p = 3

q4 + q3 + 4q2 + 4q + 7, p ≥ 5

Table 1: Number of isomorphism types of algebras for small dimension d

1 Associative: for all a, b, c ∈ A holds (ab)c = a(bc).
2 Jacobian: for all a, b, c ∈ A holds (ab)c+ (bc)a+ (ca)b = 0.
3 For instances, take the algebras with basis Ak = 〈a, b | a2 = 0, ab = 0, ba = b, b2 = ka〉 for an element k ∈ K \ {0}.

These algebras are pairwise non-isomorphic.
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Remark 1.7

For a �nite �eld K with |K| = pe = q write fd(K) = fd(q).

Theorem 1.8 (Higman)
For a �xed d ∈ N the function fd(q) is PORC.

De�nition 1.9: PORC
A function f is called PORC (Polynomial On Residue Classes), if there exists a natural number N ∈ N and a
set of polynomials f0, . . . , fN−1 such that

f(x) = fa(x) for all x ∈ N · Z+ a.

Remark 1.10

A function, that is PORC modulo N , behaves like a polynomial for all x of the same residue class modulo N .

Example 1.11

Let p ≥ 5 be a prime. How many irreducible polynomials of degree three of the form x3− c exist in Fp[x], where
Fp is the �nite �eld with p elements? In other words: How many elements c ∈ Fp exist, such that the polynomial
x3 − c has no roots in Fp?
It is obvious, that c 6= 0 must hold. Therefore, one can assume to choose c from the unit group F∗p. Therefore,
this group shall be looked at in more detail.
First of all, �x an element ϑ = ϑp which generates this unit group of Fp, hence it is 〈ϑ〉 = F∗p. Its order is p− 1

and one can �nd an integer k with 0 ≤ k < p− 1 such that c = ϑk.
Next, de�ne the subgroup H = 〈ϑ3〉 ≤ F∗p. Depending on p, H can or cannot be a trivial subgroup. Additionally,

as x = 0 cannot be a root of x3 − c, one can write x = ϑl with 0 ≤ l < p− 1. So, �ndig the roots of x3 − c = 0
is equivalent to �nding all solutions of ϑ3l = ϑk.

1. Let p ≡ 1 mod 3. Therefore, the subgroup H is a proper subgroup of index 3 in F∗p. With x3 = ϑ3l ∈ H
the equation 3l = k can just be solved with k ≡ 0 mod 3. There are (p− 1)/3 such elements ϑk.
As there is a total of p− 1 polynomials of the form x3 − c with c 6= 0 and as there are (p− 1)/3 reducible
polynomials, there remain 2(p− 1)/3 irreducible polynomials of the desired form.

2. Let p ≡ 2 mod 3. Then it is H = F∗p So, for any l, there is a k such that the equation ϑ3l = ϑk holds. So
the polynomial x3 − c ∈ Fp[x] is always reducible and there are no irreducible polynomials of the desired
form.

Depending on the residue class of p modulo 3 one has two di�erent polynomials. Therefore, the number is
PORC. Putting all this together, one has

|{f(x) = x3 − c ∈ Fp[x] | f(x) is irreducible}|

=

{
2(p− 1)/3, p ≡ 1 mod 3

0, p ≡ 2 mod 3

=
gcd(p− 1, 3)− 1

3
· (p− 1).
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2 Enumerating algebras

Remark 2.1

For the rest of this paper let K always be a �nite �eld with |K| = pe = q.

Proposition and De�nition 2.2: Structure constants
The multiplication of a d-dimensional algebra with basis B = {b1, . . . , bd} is completely determined by a set of
structure constants λijk ∈ K, 1 ≤ i, j, k ≤ d, via

bibj =

d∑
k=1

λijkbk.

Example 2.3

1. In case of an algebra with zero multiplication, it is λijk = 0 for all i, j, k.

2. In the case of the matrix algebra Mn(K) �rst �x a basis: Let this be B = {eij | 1 ≤ i, j ≤ n}, where eij
denotes that n×n matrix, which has a one in row i at column j and whose other entries are zero. It is
known that eijekl = δjkeil holds. Here, δjk denotes the Kronecker delta, which evaluates to one, if both
indices are equal, and which evaluates to zero otherwise. Then, using the double indices, the structure
constants are

λi1i2, j1j2, k1k2
=

{
1, if i2 = j1, i1 = k1, j2 = k2,

0, otherwise.

3. The structure constants of the algebra (R3,×) are given as follows (when using the canonical vector space
base {e1, e2, e3}:

λ123 = λ312 = λ231 = 1,

λ132 = λ213 = λ321 = −1,
λijk = 0 otherwise.

Writing a set of structure constants as a vector v ∈ Kd3

(the elements λijk are arranged lexicographically),
then the action of a basis transformation G ∈ GL(d,K) is given by v ·G⊗G⊗G−1, where �⊗� stands for the
Kronecker product. The number of isomorphism types is therefore equal to the number of orbits of elements of
Kd3

under the action of GL(d,K). Using the lemma of Burnside, Cauchy, and Frobenius, one gets

fd(q) =
1

|GL(d,Fq)|
∑

g∈GL(d,Fq)

|Fixg|

=
1

|GL(d,Fq)|
∑

conjugacy classes

cl⊂GL(d,Fq)

|cl| · |Fixg(cl)|

=
∑

conjugacy classes

cl⊂GL(d,Fq)

|CGL(d,K)(g(cl))| · |Fixg(cl)|.

It is Fixg = {v ∈ Kd3 | v ·G⊗G⊗G−1 = v}, the length of a class cl is denoted by |cl|, a representative of cl is
given by g(cl), and CGL(d,K)(g(cl)) = {x ∈ G | gx = xg} is the centraliser of the element g = g(cl) in GL(d,K).

Remark 2.4

Fixg is the eigenspace of G⊗G⊗G−1 belonging to the eigenvalue 1.

Problem:

The conjugacy classes still depend on q. While increasing q, the number of conjugacy classes of

GL(d,K) increases, too.
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3 Improvement of the lemma of Burnside, Frobenius,

and Cauchy

The main work of improving the application of the lemma is done by Charles Green, Graham Higman, and
Michael Vaughan-Lee.
Green published the paper The characters of the �nite general linear groups (see [Green, 1955]) and there he
de�ned the so called �type� of a matrix. This classi�cation is based on the rational canonical form of a matrix,
but is far coarser than the classi�cation into conjugacy classes. The most important result is that the �types�
do not depend on the �eld.
Graham Higman published his very well known papers Enumerating p-groups I and II (see [Higman, 1960a],
[Higman, 1960b]). Although working with p-groups, he gives some theorems for algebras too. For instance, he
proofed that the number of isomorphism types of algebras of �xed dimension over a �nite �eld is PORC.
Michael Vaughan-Lee then developed algorithms to really determine the PORC functions. In his paper Enu-
merating algebras over a �nite �eld (see [Vaughan-Lee, 2013]) he publishes the PORC functions for algebras of
dimension d ≤ 4. (In the case d = 2 the polynomials are of degree 4, for d = 3 they are of degree 18, and for
d = 4 they are of degree 48.) The used algorithms are described in his paper Choosing elements from �nite
�elds (see [Vaughan-Lee, 2012a]).

Charles Alexander Green4

(26 February 1926 � 7 April 2014)
Graham Higman5

(19 January 1917 � 8 April 2008)
Michael Vaughan-Lee6

Dates

Work by Green:

I |Fixg(cl)| does not depend on g(cl), but on the �type� of the class only.

I The number of di�erent �types� within GL(d,K) depends on d only, not on q.

Work by Higman:

I |Fixg(cl)| is a polynomial in q.

I |CGL(d,K)(g(cl))| is a polynomial in q.

I The number of elements of a �xed �type� in GL(d,K) is PORC.

Work by Vaughan-Lee:

I Development of algorithms to determine expicitly the PORC functions in small cases of d.

4 Picture taken from https://static.independent.co.uk/s3fs-public/styles/story_large/public/thumbnails/image/

2014/07/20/19/sandy-green.jpg
5 Picture taken from https://upload.wikimedia.org/wikipedia/commons/2/2d/Graham_Higman.jpg
6 Picture taken from https://www.lincoln.ac.uk/home/media/universityoflincoln/schoolofmathematicsandphysics/

Professor-Michael-Vaughan-Lee.jpg

5
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4 The PORC-conjecture

When looking at Higman's papers Enumerating p-groups I and II one gets directly another possible question:
How many isomorphism types of groups of order pn exist?
Let the number of those isomorphism classes be gn(p). Higman formulated his famous PORC conjecture dealing
with this number.

Conjecture 4.1 (Higman's PORC conjecture)
For �xed n ∈ N, the function gn(p) giving the number of isomorphism types of groups of order pn is PORC.

The problem is solved for n ≤ 7. For instance, those polynomials can be found at http://groupprops.subwiki.
org/wiki/Higman's_PORC_conjecture or in [Vaughan-Lee, 2012b] (for n ≤ 5). However, it is an still open
problem for n ≥ 8.
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