Well-quasi-ordering Binary Matroids

Jim Geelen, Bert Gerards, and Geoff Whittle

What is a binary matroid?

A binary matroid is defined by a set of vectors over the 2-element field. For example

$$\begin{pmatrix} a & b & c & d & e & f \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

defines a binary matroid M on $\{a, b, c, d, e, f\}$.

What is a binary matroid?

A binary matroid is defined by a set of vectors over the 2-element field. For example

$$\begin{pmatrix} a & b & c & d & e & f \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

defines a binary matroid M on $\{a, b, c, d, e, f\}$.

▶ The *independent* sets of *M* label linearly independent vectors.

What is a binary matroid?

A binary matroid is defined by a set of vectors over the 2-element field. For example

defines a binary matroid M on $\{a, b, c, d, e, f\}$.

- ▶ The *independent* sets of *M* label linearly independent vectors.
- Linear independence is not affected by row operations, so row operations do not change the matroid.

We can delete elements from a matroid. For example, deleting f gives,

$$\begin{pmatrix} a & b & c & d & e \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

We can delete elements from a matroid. For example, deleting f gives,

$$\begin{pmatrix}
a & b & c & d & e \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{pmatrix}$$

And we can contract elements from a matroid. For example, contracting *a* gives

$$\begin{array}{ccccc}
b & c & d & e \\
\begin{pmatrix}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{pmatrix}$$

We can delete elements from a matroid. For example, deleting f gives,

And we can contract elements from a matroid. For example, contracting *a* gives

A minor is obtained by a sequence of deletions and contractions.

Minors of Graphs

Recall that for a graph G we can

- ► Delete an edge.
- ► Contract an edge.
- ▶ Obtain a minor by a sequence of deletions and contractions.

Binary matroids generalise graphs

Binary matroids generalise graphs

► The independent sets of the cycle matroid of a graph are the edge sets of forests.

- ► The independent sets of the cycle matroid of a graph are the edge sets of forests.
- Deletion, contraction correspond. Hence minors correspond.

- ► The independent sets of the cycle matroid of a graph are the edge sets of forests.
- ▶ Deletion, contraction correspond. Hence minors correspond.
- ▶ Graph G, cycle matroid M(G). Will be relaxed about the

distinction.

ightharpoonup A quasi-order \leq on a set X is a reflexive, transitive relation on Χ.

ightharpoonup A quasi-order \leq on a set X is a reflexive, transitive relation on Χ.

▶ Quasi orders are essentially partial orders.

- ▶ A quasi-order \leq on a set X is a reflexive, transitive relation on X.
- ▶ Quasi orders are essentially partial orders.
- ► An antichain in a quasi-order is a set of pairwise incomparable elements.

- ▶ A quasi-order \leq on a set X is a reflexive, transitive relation on X.
- ▶ Quasi orders are essentially partial orders.
- ► An antichain in a quasi-order is a set of pairwise incomparable elements.
- ► A well-quasi-order has no infinite antichains.

Divisibility
For natural numbers a and b we say that $a \leq b$ if a divides b .

Divisibility

▶ 12, 16, 100 is an antichain.

For natural numbers a and b we say that $a \leq b$ if a divides b.

Divisibility

► 12, 16, 100 is an antichain. ▶ Do we have a well-quasi-order?

For natural numbers a and b we say that $a \leq b$ if a divides b.

Divisibility

For natural numbers a and b we say that $a \leq b$ if a divides b.

- ► 12, 16, 100 is an antichain.
- ► Do we have a well-quasi-order?
- ▶ No. There are infinitely many primes.

Graphs and Subgraphs

 $H \leq G$ if H is a subgraph of G.

Graphs and Subgraphs $H \leq G$ if H is a subgraph of G.

Figure: H is a subgraph of G

► Is this a well-quasi-order?

▶ Is this a well-quasi-order?

Figure: An antichain in the subgraph order

- ► The cycles look more like a chain than an antichain!
- ▶ In fact C_n can be obtained from C_{n+1} by contracting an edge.

- ► The cycles look more like a chain than an antichain!
- ▶ In fact C_n can be obtained from C_{n+1} by contracting an edge.
- In fact C_n can be obtained from C_{n+1} by contracting an edge
 In the minor order on graphs, H ≤ G if H can be obtained from G by a sequence of deletions and contractions.

- The cycles look more like a chain than an antichain!
- ▶ In fact C_n can be obtained from C_{n+1} by contracting an edge.
- ▶ In the minor order on graphs, $H \leq G$ if H can be obtained
- from G by a sequence of deletions and contractions. ▶ Wagner's Conjecture: Graphs are well-quasi-ordered with respect to the minor order.

Two famous theorems

Theorem (Robertson and Seymour)

Graphs are well-quasi-ordered under the minor order.

Two famous theorems

Theorem (Robertson and Seymour)

Graphs are well-quasi-ordered under the minor order.

Theorem

Any minor-closed property of graphs can be recognised in polynomial time.

Two famous theorems

Theorem (Robertson and Seymour)

Graphs are well-quasi-ordered under the minor order.

Theorem

Any minor-closed property of graphs can be recognised in polynomial time.

The Work Horse

The Graph Minors Structure Theorem of Robertson and Seymour describe the qualitative structure of members of proper minor-closed classes of graphs. This is where most of the work is.

Theorem (Geelen, Gerards, W)

Binary matroids are well-quasi-ordered under the minor order.

Theorem (Geelen, Gerards, W)

Binary matroids are well-quasi-ordered under the minor order.

Theorem (Geelen, Gerards, W)

Any minor-closed property of binary matroids can be recognised in polynomial time.

Theorem (Geelen, Gerards, W)

Binary matroids are well-quasi-ordered under the minor order.

Theorem (Geelen, Gerards, W)

Any minor-closed property of binary matroids can be recognised in polynomial time.

The Work Horse

We describe the qualitative structure of members of proper minor-closed classes of binary matroids. This is where most of the work is.

Apologies for the sales pitch

► A rank-*n* graphic matroid has at most $\binom{n}{2}$ elements.

Apologies for the sales pitch

- ▶ A rank-*n* graphic matroid has at most $\binom{n}{2}$ elements.
 - ▶ A rank-*n* graphic matroid has at most $\binom{n}{2}$ elements.

Apologies for the sales pitch

- ▶ A rank-*n* graphic matroid has at most $\binom{n}{2}$ elements.
- ▶ A rank-*n* binary matroid can have $2^n 1$ elements.
- ► So almost all binary matroids are not graphic. Graphs to binary matroids is a massive step.

Apologies for the sales pitch

- ▶ A rank-*n* graphic matroid has at most $\binom{n}{2}$ elements.
- ▶ A rank-*n* binary matroid can have $2^n 1$ elements.
- ► So almost all binary matroids are not graphic. Graphs to binary matroids is a massive step.
- ► Arbitrary matroids are not well-quasi-ordered.

It's all about connectivity

Figure: (A, B) defines a 3-separation in the graph

- \triangleright (A, B) a partition of M.
- ▶ If $\langle A \rangle$ meets $\langle B \rangle$ in rank k, then (A, B) defines a (k+1)-separation in M.

- \triangleright (A, B) a partition of M.
- ▶ If $\langle A \rangle$ meets $\langle B \rangle$ in rank k, then (A, B) defines a (k+1)-separation in M.
- ► The +1 makes graph connectivity and matroid connectivity coincide when *M* is the matroid of a graph.

▶ Low connectivity controls the communication between the sides in either a matroid or a graph.

- ▶ Low connectivity controls the communication between the
- sides in either a matroid or a graph.

▶ Abundant low connectivity controls complexity in graphs or

binary matroids.

Trees have abundant low connectivity

Theorem (Kruskal 1960)

Trees are well-quasi-ordered under the minor order.

Trees have abundant low connectivity

Theorem (Kruskal 1960)

Trees are well-quasi-ordered under the minor order.

Quasitheorem

Various types of decorated trees are well-quasi-ordered.

Bounded Tree Width

A graph or matroid has low tree width if it can be built by piecing together small graphs or matroids in a tree-like way.

Bounded Tree Width

A graph or matroid has low tree width if it can be built by piecing together small graphs or matroids in a tree-like way.

Figure: Tree width about 4

Bounded Tree Width

A graph or matroid has low tree width if it can be built by piecing together small graphs or matroids in a tree-like way.

Figure: Tree width about 4 Note the tiled floor

A class C of graphs or matroids has bounded tree width if there exists a k such that all members of C have tree width at most k.

A class C of graphs or matroids has bounded tree width if there exists a k such that all members of C have tree width at most k.

Theorem (Robertson and Seymour)

Any class of graphs of bounded tree width is well-quasi-ordered.

A class C of graphs or matroids has bounded tree width if there exists a k such that all members of C have tree width at most k.

Theorem (Robertson and Seymour)

Any class of graphs of bounded tree width is well-quasi-ordered.

► There is an infinite antichain of matroids all having tree width at most 4.

A class C of graphs or matroids has bounded tree width if there exists a k such that all members of C have tree width at most k.

Theorem (Robertson and Seymour)

Any class of graphs of bounded tree width is well-quasi-ordered.

► There is an infinite antichain of matroids all having tree width at most 4.

Theorem (GGW)

Any class of binary matroids of bounded tree width is well-quasi-ordered.

The Strategy

1. Find linked tree decomposition.

The Strategy

- 1. Find linked tree decomposition.
- 2. Represent graph or matroid as decorated tree.

The Strategy

- 1. Find linked tree decomposition.
- 2. Represent graph or matroid as decorated tree.
- 3. Invoke usual minimal bad sequence argument.

$$S = S_1, S_2, S_3, \ldots, S_n, \ldots$$

$$S = S_1, S_2, S_3, \ldots, S_n, \ldots$$

 \blacktriangleright We know that ${\cal S}$ must contain structures of arbitrarily high tree width.

$$S = S_1, S_2, S_3, \ldots, S_n, \ldots$$

- \blacktriangleright We know that ${\cal S}$ must contain structures of arbitrarily high tree width.
- ▶ In fact, for any k we like we can assume that all members of S have tree width at least k.

$$S = S_1, S_2, S_3, \ldots, S_n, \ldots$$

- \blacktriangleright We know that ${\cal S}$ must contain structures of arbitrarily high tree width.
- In fact, for any k we like we can assume that all members of S have tree width at least k.
- ▶ But high tree width must be good for something. Otherwise we have not made progress.

► Sufficiently large grids have arbitrarily high tree width.

- ► Sufficiently large grids have arbitrarily high tree width.
- ► Any planar graph is a minor of a sufficiently large grid.

- ► Sufficiently large grids have arbitrarily high tree width.
- Any planar graph is a minor of a sufficiently large grid.
- ▶ There is a function $f: \mathbb{N} \to \mathbb{N}$ such that, if G is a planar graph with n vertices, then G is a minor of an $f(n) \times f(n)$ grid graph.

Any graph of sufficiently large tree width contains the $n \times n$ grid as a minor.

Any graph of sufficiently large tree width contains the $n \times n$ grid as a minor.

Not true for matroids. Uniform matroids give a counterexample.

Any graph of sufficiently large tree width contains the $n \times n$ grid as a minor.

Not true for matroids. Uniform matroids give a counterexample.

Theorem (GGW)

Any binary matroid of sufficiently large tree width contains the cycle matroid of the $n \times n$ grid as a minor.

Any graph of sufficiently large tree width contains the $n \times n$ grid as a minor.

Not true for matroids. Uniform matroids give a counterexample.

Theorem (GGW)

Any binary matroid of sufficiently large tree width contains the cycle matroid of the $n \times n$ grid as a minor.

In fact a much more general result is true.

Proof of the grid theorem

- ► Several proofs of the grid theorem for graphs.
- ▶ None of them extend to matroids.
- ▶ Grid theorem for matroids was three years hard work.
- ► Current proof is *not* intuitive.

High tree width gives big grids, so that is something. But we have learnt more. Recall our antichain

$$S_1, S_2, S_3, \ldots, S_n, \ldots$$

We know that

$$S_2, S_3, \ldots, S_n, \ldots$$

all belong to the class of structures that do not have S_1 as a minor.

High tree width gives big grids, so that is something. But we have learnt more. Recall our antichain

$$S_1, S_2, S_3, \ldots, S_n, \ldots$$

We know that

$$S_2, S_3, \ldots, S_n, \ldots$$

all belong to the class of structures that do not have S_1 as a minor.

Excluding a structure gives a proper minor-closed class. What is life like in such a class? High tree width gives big grids, so that is something. But we have learnt more. Recall our antichain

$$S_1, S_2, S_3, \ldots, S_n, \ldots$$

We know that

$$S_2, S_3, \ldots, S_n, \ldots$$

all belong to the class of structures that do not have S_1 as a minor.

- ► Excluding a structure gives a proper minor-closed class. What is life like in such a class?
- ▶ For example, what if S_1 is a planar graph? What happens when we exclude a planar graph?

$$S = S_1, S_2, S_3, \ldots, S_n, \ldots$$

$$S = S_1, S_2, S_3, \ldots, S_n, \ldots$$

▶ Assume that S_1 is planar.

$$S = S_1, S_2, S_3, \ldots, S_n, \ldots$$

- ightharpoonup Assume that S_1 is planar.
- ▶ Then S_1 is a minor of some grid graph G_n .

$$S = S_1, S_2, S_3, \ldots, S_n, \ldots$$

- ightharpoonup Assume that S_1 is planar.
- ▶ Then S_1 is a minor of some grid graph G_n .
- ▶ There is an m such that all other members of S have tree width at most m.

$$S = S_1, S_2, S_3, \ldots, S_n, \ldots$$

- ▶ Assume that S_1 is planar.
- ▶ Then S_1 is a minor of some grid graph G_n .
- ▶ There is an m such that all other members of S have tree width at most m.
- ▶ Voila!

lacktriangle We now know that all members of ${\mathcal S}$ have high tree width and

none of them are planar graphs.

- ightharpoonup We now know that all members of ${\cal S}$ have high tree width and none of them are planar graphs.
- ▶ High tree width does not give high connectivity as such.

▶ It gives high order tangles.

Figure: Boswash: A graph with several high order tangles

Theorem (RS for graphs, GGW for matroids)

There is a tree of tangles that describes the structure of a graph or matroid in terms of its maximal order tangles.

Theorem (RS for graphs, GGW for matroids)

There is a tree of tangles that describes the structure of a graph or matroid in terms of its maximal order tangles.

From now on, everything needs to be done tangle theoretically.

Theorem (RS for graphs, GGW for matroids)

There is a tree of tangles that describes the structure of a graph or matroid in terms of its maximal order tangles.

- ► From now on, everything needs to be done tangle theoretically.
- We'll slip over issues due to tangles.

Remember our antichain.

$$S = S_1, S_2, S_3, \ldots, S_n, \ldots$$

Remember our antichain.

$$S = S_1, S_2, S_3, \ldots, S_n, \ldots$$

For graphs we know that each graph must be non-planar. Say $S_1 = H$. Then every other member of S belongs to the class of graphs with no H minor.

Remember our antichain.

$$S = S_1, S_2, S_3, \dots, S_n, \dots$$

For graphs we know that each graph must be non-planar. Say $S_1 = H$. Then every other member of S belongs to the class of graphs with no H minor.

The graph minors structure theorem gives us a qualitative structural description of such a graph.

Figure: The Graph Minors Structure Theorem

The Graph Minors Structure Theorem

Theorem

For any non-planar graph H, there exists a positive integer k such that every H-free graph can be obtained as follows:

- 1. We start with a graph that embeds on a surface on which H does not embed.
- 2. We add at most k vortices, where each vortex has depth at most k.
- 3. we add at most k new vertices and add any number of edges, each having at least one of its endpoints among the new vertices.
- 4. Finally, we join via k-clique-sums graphs of the above type.

➤ The well-quasi-ordering argument for graphs "follows" from the structure theorem.

- ► The well-quasi-ordering argument for graphs "follows" from the structure theorem.
- ► For binary matroids, there is an analogue of the structure theorem for matroids that do not have the matroid of a non planar graph *H* or its dual as a minor.

- ▶ The well-quasi-ordering argument for graphs "follows" from the structure theorem.
- ▶ For binary matroids, there is an analogue of the structure theorem for matroids that do not have the matroid of a non
- planar graph H or its dual as a minor.

How much help is that?

Beyond Graphs and Cographs

$$\mathcal{M} = M_1, M_2, M_3, \ldots, M_n, \ldots$$

What if the members of ${\mathcal M}$ are neither matroids of graphs, nor the duals of graphs?

Beyond Graphs and Cographs

$$\mathcal{M} = M_1, M_2, M_3, \ldots, M_n, \ldots$$

What if the members of ${\mathcal M}$ are neither matroids of graphs, nor the duals of graphs?

Theorem (GGW)

Every binary matroid with no M_1 minor admits a tree decomposition into pieces that are either essentially graphic or essentially cographic.

Essentially Graphic Matroids

Figure: An Essentially Graphic Matroid

► Columns in *B* are vectors labelling edges. We have group labelled edges.

- ► Columns in *B* are vectors labelling edges. We have group labelled edges.
- ► Rows in *C* are vectors labelling vertices. We have group labelled vertices.

- ► Columns in *B* are vectors labelling edges. We have group labelled edges.
- ► Rows in *C* are vectors labelling vertices. We have group labelled vertices.
- ▶ We almost have a doubly group labelled graph.

Well-quasi-ordering binary matroids	

Jim Geelen's PhD student).

1. Well-quasi-order doubly group labelled graphs. (Tony Hunh;

•	0	,				
 					/—	

Well-quasi-ordering binary matroids

doubly group labelled graphs.

- 1. Well-quasi-order doubly group labelled graphs. (Tony Hunh; Jim Geelen's PhD student).
 - 2. Describe binary matroids as tree-like object built up from

Well-quasi-ordering binary matroids

- 1. Well-quasi-order doubly group labelled graphs. (Tony Hunh; Jim Geelen's PhD student).
- 2. Describe binary matroids as tree-like object built up from doubly group labelled graphs.
- 3. That is, describe binary matroids as certain decorated trees.

Future Work

► Extend the result to other finite fields. Many extra difficulties,

but we believe we will do it.

Future Work

- ► Extend the result to other finite fields. Many extra difficulties, but we believe we will do it.
- ▶ Prove Rota's Conjecture. For any finite field \mathbb{F} there is a finite number of forbidden minors for \mathbb{F} -representability.