
Well-quasi-ordering Binary Matroids

Jim Geelen, Bert Gerards, and Geoff Whittle



What is a binary matroid?

A binary matroid is defined by a set of vectors over the 2-element
field. For example


a b c d e f

1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1


defines a binary matroid M on {a, b, c , d , e, f }.

I The independent sets of M label linearly independent vectors.

I Linear independence is not affected by row operations, so row
operations do not change the matroid.
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We can delete elements from a matroid. For example, deleting f
gives, 

a b c d e

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1



And we can contract elements from a matroid. For example,
contracting a gives ( b c d e

1 0 1 1
0 1 0 1

)
A minor is obtained by a sequence of deletions and contractions.
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Minors of Graphs

Recall that for a graph G we can

I Delete an edge.

I Contract an edge.

I Obtain a minor by a sequence of deletions and contractions.



Binary matroids generalise graphs
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1 1 0 0 1 0 1
2 0 1 0 1 1 0
3 0 0 1 0 1 1
4 1 1 1 0 0 0
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I The independent sets of the cycle matroid of a graph are the
edge sets of forests.

I Deletion, contraction correspond. Hence minors correspond.

I Graph G , cycle matroid M(G ). Will be relaxed about the
distinction.
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What is a well-quasi-order?

I A quasi-order � on a set X is a reflexive, transitive relation on
X .

I Quasi orders are essentially partial orders.

I An antichain in a quasi-order is a set of pairwise incomparable
elements.

I A well-quasi-order has no infinite antichains.
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Divisibility

For natural numbers a and b we say that a � b if a divides b.

I 12, 16, 100 is an antichain.

I Do we have a well-quasi-order?

I No. There are infinitely many primes.
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H � G if H is a subgraph of G .

Figure: H is a subgraph of G
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I Is this a well-quasi-order?

Figure: An antichain in the subgraph order
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I The cycles look more like a chain than an antichain!

I In fact Cn can be obtained from Cn+1 by contracting an edge.

I In the minor order on graphs, H � G if H can be obtained
from G by a sequence of deletions and contractions.

I Wagner’s Conjecture: Graphs are well-quasi-ordered with
respect to the minor order.
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Two famous theorems

Theorem (Robertson and Seymour)

Graphs are well-quasi-ordered under the minor order.

Theorem
Any minor-closed property of graphs can be recognised in
polynomial time.

The Work Horse
The Graph Minors Structure Theorem of Robertson and Seymour
describe the qualitative structure of members of proper
minor-closed classes of graphs. This is where most of the work is.
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Apologies for the sales pitch

I A rank-n graphic matroid has at most
(n
2

)
elements.

I A rank-n binary matroid can have 2n − 1 elements.

I So almost all binary matroids are not graphic. Graphs to
binary matroids is a massive step.

I Arbitrary matroids are not well-quasi-ordered.
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It’s all about connectivity

Figure: (A, B) defines a 3-separation in the graph



I (A, B) a partition of M.

I If 〈A〉 meets 〈B〉 in rank k , then (A, B) defines a
(k + 1)-separation in M.

I The +1 makes graph connectivity and matroid connectivity
coincide when M is the matroid of a graph.
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I Low connectivity controls the communication between the
sides in either a matroid or a graph.

I Abundant low connectivity controls complexity in graphs or
binary matroids.
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Trees have abundant low connectivity

Theorem (Kruskal 1960)

Trees are well-quasi-ordered under the minor order.

Quasitheorem
Various types of decorated trees are well-quasi-ordered.
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A graph or matroid has low tree width if it can be built by piecing
together small graphs or matroids in a tree-like way.

Figure: Tree width about 4 Note the tiled floor
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Bounded tree width
A class C of graphs or matroids has bounded tree width if there
exists a k such that all members of C have tree width at most k .

Theorem (Robertson and Seymour)

Any class of graphs of bounded tree width is well-quasi-ordered.

I There is an infinite antichain of matroids all having tree width
at most 4.

Theorem (GGW)

Any class of binary matroids of bounded tree width is
well-quasi-ordered.
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1. Find linked tree decomposition.

2. Represent graph or matroid as decorated tree.

3. Invoke usual minimal bad sequence argument.
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Assume that we have an infinite antichain of structures (binary
matroids or graphs).

S = S1, S2, S3, . . . , Sn, . . .

I We know that S must contain structures of arbitrarily high
tree width.

I In fact, for any k we like we can assume that all members of
S have tree width at least k .

I But high tree width must be good for something. Otherwise
we have not made progress.
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Grids

I Sufficiently large grids have arbitrarily high tree width.

I Any planar graph is a minor of a sufficiently large grid.

I There is a function f : N→ N such that, if G is a planar
graph with n vertices, then G is a minor of an f (n)× f (n)
grid graph.
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Theorem (Robertson and Seymour)

Any graph of sufficiently large tree width contains the n× n grid as
a minor.

I Not true for matroids. Uniform matroids give a
counterexample.

Theorem (GGW)

Any binary matroid of sufficiently large tree width contains the
cycle matroid of the n × n grid as a minor.

I In fact a much more general result is true.



Theorem (Robertson and Seymour)

Any graph of sufficiently large tree width contains the n× n grid as
a minor.

I Not true for matroids. Uniform matroids give a
counterexample.

Theorem (GGW)

Any binary matroid of sufficiently large tree width contains the
cycle matroid of the n × n grid as a minor.

I In fact a much more general result is true.



Theorem (Robertson and Seymour)

Any graph of sufficiently large tree width contains the n× n grid as
a minor.

I Not true for matroids. Uniform matroids give a
counterexample.

Theorem (GGW)

Any binary matroid of sufficiently large tree width contains the
cycle matroid of the n × n grid as a minor.

I In fact a much more general result is true.



Theorem (Robertson and Seymour)

Any graph of sufficiently large tree width contains the n× n grid as
a minor.

I Not true for matroids. Uniform matroids give a
counterexample.

Theorem (GGW)

Any binary matroid of sufficiently large tree width contains the
cycle matroid of the n × n grid as a minor.

I In fact a much more general result is true.



Proof of the grid theorem

I Several proofs of the grid theorem for graphs.

I None of them extend to matroids.

I Grid theorem for matroids was three years hard work.

I Current proof is not intuitive.



High tree width gives big grids, so that is something. But we have
learnt more. Recall our antichain

S1, S2, S3, . . . , Sn, . . .

I We know that
S2, S3, . . . , Sn, . . .

all belong to the class of structures that do not have S1 as a
minor.

I Excluding a structure gives a proper minor-closed class. What
is life like in such a class?

I For example, what if S1 is a planar graph? What happens
when we exclude a planar graph?
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Excluding a Planar Graph

S = S1, S2, S3, . . . , Sn, . . .

I Assume that S1 is planar.

I Then S1 is a minor of some grid graph Gn.

I There is an m such that all other members of S have tree
width at most m.

I Voila!
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I We now know that all members of S have high tree width and
none of them are planar graphs.

I High tree width does not give high connectivity as such.

I It gives high order tangles.
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Figure: Boswash: A graph with several high order tangles



I A tangle is a way of identifying a highly connected region of a
graph or matroid.

Theorem (RS for graphs, GGW for matroids)

There is a tree of tangles that describes the structure of a graph or
matroid in terms of its maximal order tangles.

I From now on, everything needs to be done tangle theoretically.

I We’ll slip over issues due to tangles.
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S = S1, S2, S3, . . . , Sn, . . .

For graphs we know that each graph must be non-planar. Say
S1 = H. Then every other member of S belongs to the class of
graphs with no H minor.

The graph minors structure theorem gives us a qualitative
structural description of such a graph.
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Figure: The Graph Minors Structure Theorem



The Graph Minors Structure Theorem

Theorem
For any non-planar graph H, there exists a positive integer k such
that every H-free graph can be obtained as follows:

1. We start with a graph that embeds on a surface on which H
does not embed.

2. We add at most k vortices, where each vortex has depth at
most k.

3. we add at most k new vertices and add any number of edges,
each having at least one of its endpoints among the new
vertices.

4. Finally, we join via k-clique-sums graphs of the above type.



I The well-quasi-ordering argument for graphs “follows” from
the structure theorem.

I For binary matroids, there is an analogue of the structure
theorem for matroids that do not have the matroid of a non
planar graph H or its dual as a minor.

I How much help is that?
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Beyond Graphs and Cographs

M = M1, M2, M3, . . . , Mn, . . .

What if the members of M are neither matroids of graphs, nor the
duals of graphs?

Theorem (GGW)

Every binary matroid with no M1 minor admits a tree
decomposition into pieces that are either essentially graphic or
essentially cographic.
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Essentially Graphic Matroids

Figure: An Essentially Graphic Matroid



I Columns in B are vectors labelling edges. We have group
labelled edges.

I Rows in C are vectors labelling vertices. We have group
labelled vertices.

I We almost have a doubly group labelled graph.
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Well-quasi-ordering binary matroids

1. Well-quasi-order doubly group labelled graphs. (Tony Hunh;
Jim Geelen’s PhD student).

2. Describe binary matroids as tree-like object built up from
doubly group labelled graphs.

3. That is, describe binary matroids as certain decorated trees.
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Future Work

I Extend the result to other finite fields. Many extra difficulties,
but we believe we will do it.

I Prove Rota’s Conjecture. For any finite field F there is a finite
number of forbidden minors for F-representability.
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