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What is Set Cover? And why care?• Set Cover is an “old” 
optimization problem

• Researching classical 
problems is somehow 
satisfying
– Part of a tradition
– Prolific researchers 

considering similar 
questions

• Being sufficiently general, 
Set Cover has wide 
application

• With changing models of 
computation, we revisit 
some classic problems
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Red: 4 Blue: 3 Green: 2

Can you see another solution with three sets?

What is Set Cover? Why care about it?



• Given a family ! of sets
• Aim is to find smallest 

subfamily of sets that 
covers all items originally 
covered by !

• Many variants, including 
weighted sets

• How much time and space
required to solve Set 
Cover, as a function of
– # of sets m
– # of items n

• Let T stand for total input 
size (sum of set sizes)

• An example input with
– n = 10
– m = 9
– T = 28
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Slightly formal definition

ABCDEF
EFG
CEFIJ
BH
CI
D
GHJ
ABDGH
A

ABCDEF
EFG
CEFIJ ✔
BH
CI
D
GHJ
ABDGH ✔
A



Applications

• Facility location
– A hub can serve a set of demand points
– Which hubs do we open?

• Data mining
– Choosing a representative subset of a 

massive data set
– This might be the dual problem of 

maximum coverage

• Retrieval
– Topics we would like to cover
– At least one document per topic
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• How might you solve this 
problem?

• Start with the largest set?
• Then what?

• A greedy approach
• While there are uncovered 

items:
– Take the set with the 

largest number of (yet) 
uncovered items

– “Contribution”

©Tony Wirth   Oct 2018 5

The famous algorithm

ABCDEF
EFG
CEFIJ
BH
CI
D
GHJ
ABDGH
B

ABCDEF ✔
EFG
CEFIJ
BH
CI
D
GHJ
ABDGH
B

ABCDEF ✔
EFG
CEFIJ
BH
CI
D
GHJ ✔

ABDGH
B

ABCDEF ✔
EFG
CEFIJ ✔

BH
CI
D
GHJ ✔

ABDGH
B



• It runs in a reasonable 
amount of time

• Its solution size we can 
prove is at most ~loge n
times optimal
– In fact, in time polynomial 

in T, this is best we can do
• On most “sensible” 

examples, it performs within 
~10% of optimal

• A “crazy” example where 
greedy is ~log n worse than 
optimal…
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What do we know about Greedy

log2(n+2)–1

2



Our agenda

• Set Cover when data resides on disk
• Algorithm design with AT&T Labs
• Deeper investigation at Melbourne

• Multipass streamed instances
• Especially lower bounds, with Dartmouth College

• Modelling software testing
• Min Sum Set Cover with precedence constraints
• Connections to influence maximization and community 

detection, joint work with U. Sydney
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Implementing greedy on large datasets
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• When reading from disk, best to read in 
blocks, not just isolated bytes
– Reading a file sequentially especially good
– To run efficiently, it might help to try to 

process sets in some sequential order

• Key issue when implementing greedy
– When we add a set S to the solution
– Other sets that have items in common with S

must have their contributions updated to 
reflect their lowered importance

• Addressed with Cormode & Karloff 
(AT&T) and with Moffat and Lim 
(Melbourne)

Don’t use this!

Ermishin CC BY-SA 3.0



• Could update counts eagerly:
– Immediately know which set 

to add next
– This seems to require an 
index: for each item, record 
its owning sets
• As large as the input size!

– How do we avoid too many 
random file accesses?
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Eager updating

1: ABCDEF
2: EFG
3: CEFIJ
4: BH
5: CI
6: D
7: GHJ
8: ABDGH
9: B

A: 18
B: 1489
C: 135
D: 168
E: 123
F: 123
G: 278
H: 478
I: 35
J: 37



Lazy updating

• Generate buckets of sets based on initial contribution
• [At all times, we have an estimated contribution of each set]
• Read each bucket in sequence, from highest estimated 

contribution to lowest:
– For each set, if current contribution is same as the last estimate
– Then add it to the solution
– If not, update its contribution and append to appropriate bucket

• Assumes we store one bit per item, in fast memory, recording 
whether item has been covered: O(n) space

• Relatively fast when sets stored on disk

©Tony Wirth   Oct 2018 10



• Hopefully, it’s clear that lazy 
updating is correct!

• Because a contribution can 
only drop as Greedy 
progresses, a previous 
evaluation of contribution 
remains an upper bound on 
current contribution

• We process sets in order of 
these upper-bound estimates

• If a set’s actual contribution 
is the same as its estimate, 
we know it has maximal
contribution
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Why does lazy work?

6: ABCDEF
5: CEFIJ ABDGH
3: EFG GHJ
2: BH CI
1: D B

5: CEFIJ ABDGH
3: EFG GHJ
2: BH CI
1: D B

3: GHJ
2: BH CI CEFIJ ABDGH
1: D B EFG

2: BH CI CEFIJ ABDGH
1: D B EFG

1: D B EFG CI CEFIJ



• Do we actually need a set with largest contribution?
• What about at least half as large as the best?
• Proved ⤳ Set Cover solution within ~2loge n of optimal

• Maintain sub-families of sets based on estimated 
contribution, bands of powers of 2
• Include a set if contribution ≥ lower bound of band
• Each sub-family has own file, accessed sequentially
• Every second time we kick a set down, it’s half the size!
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Disk-friendly greedy

4-7: CEFIJ ABCDEF ABDGH
2-3: BH CI EFG GHJ
1:   D B

4-7: ABCDEF ABDGH
2-3: BH CI EFG GHJ
1:   D B

4-7: ABDGH
2-3: BH CI EFG GHJ ABD
1:   D B



Other observations

• DFG bands need not be powers of 2
– Trade off speed with effectiveness: e.g., factor 1.1 or 1.01

• We considered preprocessing data, looking for items that 
only appear in one set (“hapax legomena”)
– Add their sets to the solution immediately
– Requires a few initial passes through the input

• Can prove eager approach needs only O(T) time in total
• We found sequence of instances: lazy needs at least T4/3 time
• In practice, lazy is much faster
• A team at Carnegie Mellon said disk-friendly greedy took 

more than 40 hours on one of their data sets
– When we ran it, it took about 18 minutes!?
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Ching Lih Lim’s experimental results

UKUnion SELG DFG (1.1) DFG (1.01)

Solution size 18,375,735 18,415,017 18,381,254

Time 67min05s 13min43s 17min27s
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Dataset #Sets (m) #Items (n) Largest Set Input size (T)

Social Network 37,551,359 64,961,029 3,615 1,806,067,135 

UKUnion 74,117,320 126,454,248 22,429 3,376,989,142

Social Network Eager Lazy

Solution size 10,881,813 10,880,876

Time 19min52s 2min49s

Eager 7x slower

LG 0.03% better, 
but 3.85 x slower



Multipass streams

• In the last 20 years, especially, algorithms research has 
focused on streaming settings

• Data arrives in a pre-determined sequence
• It should be processed immediately, and quickly
• There isn’t enough space to store all the data
• Several models for this last point

– We adopted Set Streaming: small amount of space per item
– Necessary, just to verify a covering

• We allow multiple passes through the streamed data
– Models disk access … somewhat …
– For one pass, a factor-!( #) approximation [Emek & Rosen]
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Remember this? 



DFG returns!

• Given the restriction on space
– What is trade-off between number of passes and 

approximation?
– One pass: !( #) approximation
– log n passes: !(log #) approximation

• Say we are allowed p passes through the data
– We run a generalization of DFG
– Instead of log n families with lower boundaries: 1,2,4,8,16,…
– With p = 2: three families, size boundaries: 1, #+/-, #./-

– We have p+1 families, size boundaries, 1, #
/

01/, #
2

01/, … , #
0

01/

– Approximation factor is (p+1)n1/(p+1)
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• First: why p+1?
• Turns out you can run last two passes 

simultaneously
– If an item isn’t covered by a set of 

contribution at least n1/(p+1)

– Just record some set that covers it
• Rough idea of why !"/(%&") is the best 

possible in O(n) space:
• Consider a family of n potential sets, each 

a line ax+b, in 0,1, … , , − 1 ×
{0,1, … , , − 1}, where q is prime power, 
n=q2

– Suppose there is a set in 1 that is the 
complement of line h

– If 1 also contains line h, optimal solution 
is just 2 sets

– If not, optimal has ≥q sets, as each pair of 
lines intersects ≤1 point
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Why is this the “right” approach?

• To describe which sets 
are in 1 needs n bits
– Cannot beat ! approx

• Proof for larger p 
requires a different family 
of curves



Test case prioritization

• While watching District Cricket…
cricket-Tim discussed with me…

• We would like to test software 
efficiently: find faults as soon as possible

• We have a family of tests we could run, 
each covering some of the lines of code

• How do we schedule tests so that we 
maximize the rate of code coverage?

• What if some tests must be executed 
before others?
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• We found some heuristics
– Repeatedly choosing 

available test case with 
highest contribution

– Sorting by contribution 
initially, combined with 
local-search to resolve 
dependencies

• But what exactly are we 
trying to optimize?
– “Average Percentage of 

Faults Detected”
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Initial progress

Test 
case

Fault IDs

A B C D E

1 ✔

2 ✔ ✔

3 ✔ ✔

4 ✔ ✔ ✔

Test 1

Test 4Test 2

Test 3



Formalizing

• Add binary precedence relation on !, ≺
– S2 ≺ S7 indicates S2 must precede S7 (in the output)
– We assume that the graph ≺ induces on ! is acyclic

• Return ordering of ! sets minimizing sum, over all 
elements in U, of first cover times
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• In Set Cover, aim is to find 
smallest sub-family of sets 
covering all items

• Alternative view
– Produce sequence of sets
– For each item, record earliest 

set that covers it (cover time)
– Aim of Set Cover is to find a 

sequence in which largest 
cover time is minimized (when 
do we cover “last” item?)

• What if instead we minimize 
sum of cover times?
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How is this like Set Cover?

1: ABCDEF
2: EFG
3: B
4: BH
5: CI
6: D
7: GHJ
8: ABDGH
9: CEFIJ

Arbitrary 
initial order

1: ABCDEF
2: GHJ
3: CEFIJ
4: BH
5: CI
6: D
7: EFG
8: ABDGH
9: B

Greedy order

ABCDEFGHIJ
1111112232

Cover time for 
each item

Set Cover: max = 3

MSSC: total = 15
In this instance:
Greedy = OPT



Related problems

• For Min Sum Set Cover, a greedy approach gives a factor-
4 approximation
– Essentially best [Feige et al.]
– Proof uses a histogram!

• What about scheduling test cases?
• Suppose for the moment that test coverages don’t

overlap, no sense of covering
• Minimizing total completion time with precedence 

constraints has a factor-2 approximation
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• Repeat the following step [CM99]:
– Consider all subfamilies of sets that 

are precedence closed
• ! ∈ #, % ≺ ! ⇒ % ∈ #

– Append to the schedule, and 
remove from input, the subfamily 
that maximizes ratio

Sum of set sizes / # sets
• Amazingly, this subproblem can be 

solved in polynomial time
– Binary search over collection of 

max-flow/min-cut computations
– Very similar to finding a max-

density subset of graph: |E(S)| / |S|
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Minimizing total completion time

1

35

5

1

5

5

3

5

Density:  3.5

Density: 3 ⁄* +

Density:  4, but not 
precedence closed!



• Of course, sets might in fact overlap
• Greedily, we choose precedence-closed 

subfamily maximizing density
– Coverage of family / size of family

• This max-density precedence-closed 
subfamily approach “loses” factor of 4
– Not bad, but can we solve MDPCS?

• Best algorithm we found was a greedy 
approach
– Return set whose required sub-family 

has maximal density
– Approximation factor !, leading to 

overall 4 ! to MSSC-Prec
– Not very good: were we too lazy?

• On trees, approx factor = height + 1
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Combining coverage & completion times

A

AGIBCDEF

CGHIJ

Density of whole 
graph is 2.5

A

BCDEF

Density induced by 
BCDEF set is 3

OPT is 3.33



• Plot cover time (in order) 
for each element of U
– Area under is sol’n cost

• Upper bound comprises 
horizontal slices of
– height: sub-family size
– width: #uncovered 

elements
• Map each slice to a column, 

shrunk in area by 4α (α is 
Max-density approx. factor)

• Since we chose sub-families 
greedily, up to factor α, 
OPT can’t do much better

• Analysis developed from 
MSSC [FLT, 04]
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Max-Density helps solve PCMSSC

U

U

#sets

GREEDY

OPT

Newly
covered

Cover
time

Newly
Covered/2

Cover
time

Uncovered/2

!"#$%&'&(
2*×,&"-./0

Uncovered



• With colleagues at Princeton & Stanford, 
worked on influence maximization, 
modeling rumor or infection spread
– Each node has a resistance to infection
– Once more neighbors than its resistance 

are infected, it becomes infected
• What’s the smallest number of nodes we 

need to infect initially so that eventually 
everyone becomes infected?

• This is a very hard problem to solve well
• To prove some problem is hard:

– We show that if we could solve it, then 
we could solve some other problem we 
know (or believe) is too hard to solve
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Rumor spreading

2

3

2

4



• In this case, source problem was 
Planted Dense Subgraph

• Can we distinguish between a 
random graph on N nodes in 
which each vertex has 
approximately ! neighbors?

• And a similar random graph 
inserted with a random dense 
component on ! nodes
– Inside dense component, on 

average " ! extra neighbours
• It is strongly conjectured that 

this is hard to do in a reasonable 
amount of time
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Hardness via Planted Dense Subgraph



• Reduce a graph into an MSSC 
instance with precedences

• Each edge is a set covering ~ !
"#/%

proportion of items
• Each vertex is a set covering 

“nothing”, but
• Vertices u and v must both occur 

before edge (u,v)
• Set up instance so that edges in 

planted component just cover all 
items, hence & vertices suffice
– They induce &'/( edges

• But if no planted component, 
need &)/* vertices to induce 
&'/( edges

• We cannot expect approximation 
factor for MSSC-Prec better than 
+!/, or -!/!.
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How does PDS reduce to MSSC-Prec

u

(x,v): AGI(u,v): BCDEF

v x

My MSSC 
score is at 
most &

My MSSC score 
is ~ &)/*



Future work

• Revisit new papers from MIT, Google, Mass, and Penn
– Partial covers
– Set sampling and element sampling

• Different trade-offs between space, time approximation

– Max Coverage in streams

• What other hardness results follow from hardness of 
Planted dense subgraph

• With PhD candidate Xin Zhang, and Naonori Kakimura
(Keio): Why does Greedy perform so well?
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