

MELBOURNE SCHOOL OF ENGINEERING

Set Cover, cooked several ways

Tony Wirth 2018-10-29

What is Set Cover? Why care about it?

Set Cover is an "old" optimization problem

SCHOOL OF

- Researching classical problems is somehow satisfying
 - Part of a tradition
 - Prolific researchers considering similar questions
- Being sufficiently general, Set Cover has wide application
- With changing models of computation, we revisit some classic problems

Can you see another solution with three sets?

Slightly formal definition

- Given a family ${\mathcal F}$ of sets
- Aim is to find smallest subfamily of sets that covers all items originally covered by *F*
- Many variants, including weighted sets
- How much time and space required to solve Set Cover, as a function of
 - # of sets m
 - # of items n

- Let T stand for total input size (sum of set sizes)
- An example input with -n = 10

$$-m = 9$$

$$- T = 28$$

ABCDEF ABCDEF EFG EFG CEFIJ 🗸 CEFIJ BH BH CT CI D D GHJ GHJ ABDGH ABDGH Α Α

- Facility location
 - A hub can serve a set of demand points
 - Which hubs do we open?
- Data mining
 - Choosing a representative subset of a massive data set
 - This might be the dual problem of maximum coverage
- Retrieval
 - Topics we would like to cover
 - At least one document per topic

Bidgee [CC BY-SA 3.0]

The famous algorithm

- How might you solve this problem?
- Start with the largest set?
- Then what?
- A greedy approach
- While there are uncovered items:
 - Take the set with the largest number of (yet) uncovered items
 - "Contribution"

nis et?	ABCDEF EFG CEFIJ BH CI D GHJ ABDGH B		ABCDEF EFG CEFIJ BH CI D GHJ ABDGH B	✓
ered	ABCDEF	\checkmark	ABCDEF	\checkmark
	EFG		EFG	
`	CEF I J		CEFIJ	\checkmark
:)	BH		BH	
	CI		CI	
	D		D	
	GHJ	V	GHJ	V
	ARDGH		ABDGH	
©Tony Wirth	В Oct 2018		В	

What do we know about Greedy

- It runs in a reasonable amount of time
- Its solution size we can prove is at most ~log_e n times optimal
 - In fact, in time polynomial in *T*, this is *best* we can do
- On most "sensible" examples, it performs within ~10% of optimal
- A "crazy" example where greedy is ~log n worse than optimal...

 $\log_2(n+2) - l$

XKCD Dependencies

CC BY-NC 2.5

CC BY-SA 3.0

Set Cover when data resides on disk

Algorithm design with AT&T Labs

- Especially lower bounds, with Dartmouth College
- Modelling software testing
 - Min Sum Set Cover with precedence constraints
 - Connections to influence maximization and community detection, joint work with U. Sydney

PAGE 3			
DEPARTMENT	COURSE	DESCRIPTION	PREREQS
COMPUTER SCIENCE	CPSC 432	INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432
0	Occas Lugar	Ward of allowing project	

Our agenda

• When reading from disk, best to read in blocks, not just isolated bytes

MELBOURNE

- Reading a file sequentially especially good
- To run efficiently, it might help to try to process sets in some sequential order
- Key issue when implementing greedy
 - When we add a set S to the solution
 - Other sets that have items in common with S must have their contributions updated to reflect their lowered importance
- Addressed with Cormode & Karloff (AT&T) and with Moffat and Lim (Melbourne)

Don't use this!

- Could update counts eagerly:
 - Immediately know which set to add next
 - This seems to require an index: for each item, record its owning sets
 - As large as the input size!
 - How do we avoid too many random file accesses?

1:	ABCDEF	A:	18
2:	EFG	B:	1489
3:	CEFIJ	C:	135
4:	BH	D:	168
5:	CI	Ε:	123
6:	D	F :	123
7:	GHJ	G:	278
8:	ABDGH	Η:	478
9:	В	I:	35
		J:	37

- Generate buckets of sets based on *initial* contribution
- [At all times, we have an *estimated* contribution of each set]
- Read each bucket in sequence, from highest estimated contribution to lowest:
 - For each set, if current contribution is same as the last estimate
 - Then add it to the solution
 - If not, *update* its contribution and append to appropriate bucket
- Assumes we store one bit per item, in fast memory, recording whether item has been covered: O(n) space
- Relatively fast when sets stored on disk

- Hopefully, it's clear that lazy updating is correct!
- Because a contribution can only *drop* as Greedy progresses, a previous evaluation of contribution remains an upper bound on current contribution
- We process sets in order of these upper-bound estimates
- If a set's actual contribution is the same as its estimate, we know it has *maximal* contribution

- 6: ABCDEF
- 5: CEFIJ ABDGH
- 3: EFG GHJ
- 2: BH CI
- 1: D B
- 5: CEFIJ ABDGH
- 3: EFG GHJ
- 2: BH CI
- **1:** D B
- 3: GHJ
- 2: BH CI CEFIJ ABDGH
- 1: D B EF**G**
- 2: BH CI CEFIJ ABDGH
- 1: D B EFG
- 1: D B EFG CI CEFIJ

- Do we actually need a set with *largest* contribution?
- What about at least half as large as the best?
 - Proved \rightarrow Set Cover solution within $\sim 2\log_e n$ of optimal
- Maintain sub-families of sets based on estimated contribution, *bands* of powers of 2
 - Include a set if contribution ≥ lower bound of band
 - Each sub-family has own file, accessed sequentially
 - Every second time we kick a set down, it's half the size!
- 4-7: CEFIJ ABCDEF ABDGH2-3: BH CI EFG GHJ1: D B

4-7: ABDGH 2-3: BH CI EFG GHJ ABD 1: D B

- 4-7: ABCDEF ABDGH
- 2-3: BH CI EFG GHJ
- 1: D B

- DFG bands need not be powers of 2
 - Trade off speed with effectiveness: e.g., factor 1.1 or 1.01
- We considered preprocessing data, looking for items that only appear in one set ("hapax legomena")
 - Add their sets to the solution immediately
 - Requires a few initial passes through the input
- Can prove eager approach needs only O(T) time in total
- We found sequence of instances: lazy needs at least $T^{4/3}$ time
- In practice, lazy is much faster
- A team at Carnegie Mellon said disk-friendly greedy took more than 40 hours on one of their data sets
 - When we ran it, it took about 18 minutes!?

MELBOURNE

SCHOOL OF

Ching Lih Lim's experimental results

Dataset	#Sets (m)	#ltems (n)	Largest Set	Input size (<i>T</i>)
Social Network	37,551,359	64,961,029	3,615	1,806,067,135
UKUnion	74,117,320	126,454,248	22,429	3,376,989,142

Social Network	Eager	Lazy
Solution size	10,881,813	10,880,876
Time	19min52s	2min49s

Eager 7x slower

UKUnion	SELG	DFG (1.1)	DFG (1.01)	
Solution size	18,375,735	18,415,017	18,381,254	L(bi
Time	67min05s	13min43s	l 7min27s	

G 0.03% better, it 3.85 x slower

- In the last 20 years, especially, algorithms research has focused on streaming settings
- Data arrives in a pre-determined sequence
- It should be processed immediately, and quickly
- There isn't enough space to store all the data
- Several models for this last point
 - We adopted Set Streaming: small amount of space per item
 - Necessary, just to verify a covering
- We allow **multiple** passes through the streamed data
 - Models disk access ... somewhat ...
 - For one pass, a factor- $O(\sqrt{n})$ approximation [Emek & Rosen]

Remember this?

- Given the restriction on space
 - What is *trade-off* between number of passes and approximation?
 - One pass: $O(\sqrt{n})$ approximation
 - log n passes: $O(\log n)$ approximation
- Say we are allowed p passes through the data
 - We run a generalization of DFG
 - Instead of log *n* families with lower boundaries: 1,2,4,8,16,...
 - With p = 2: three families, size boundaries: 1, $n^{1/3}$, $n^{2/3}$
 - We have p+1 families, size boundaries, $1, n^{\frac{1}{p+1}}, n^{\frac{2}{p+1}}, \dots, n^{\frac{p}{p+1}}$
 - Approximation factor is $(p+1)n^{1/(p+1)}$

Why is this the "right" approach?

- First: why *p*+1?
- Turns out you can run last two passes simultaneously
 - If an item isn't covered by a set of contribution at least $n^{1/(p+1)}$
 - Just record some set that covers it
- Rough idea of why $n^{1/(p+1)}$ is the best possible in O(n) space:
- Consider a family of *n* potential sets, each a line *ax+b*, in {0,1, ..., *q* 1}× {0,1, ..., *q* 1}, where *q* is prime power, *n=q²*
 - Suppose there is a set in \mathcal{F} that is the **complement** of **line** *h*
 - If \mathcal{F} also contains **line** *h*, optimal solution• is just 2 sets
 - If not, optimal has ≥q sets, as each pair of lines intersects ≤1 point

- To describe which sets are in ${\cal F}$ needs *n* bits
 - Cannot beat \sqrt{n} approx
 - Proof for larger *p* requires a different family of curves

- While watching District Cricket... cricket-Tim discussed with me...
- We would like to test software efficiently: find faults as soon as possible
- We have a family of tests we could run, each covering some of the lines of code
- How do we schedule tests so that we maximize the rate of code coverage?
- What if some tests must be executed before others?

PrivateMusings - CC BY-SA 2.5

Initial progress

- We found some heuristics
 - Repeatedly choosing available test case with highest contribution
 - Sorting by contribution initially, combined with local-search to resolve dependencies
- But what exactly are we trying to optimize?
 - "Average Percentage of Faults Detected"

- Add binary precedence relation on \mathcal{F} , \prec
 - $S_2 \prec S_7$ indicates S_2 must precede S_7 (in the output)
 - We assume that the graph \prec induces on $\mathcal F$ is acyclic
- Return ordering of *F* sets minimizing sum, over all elements in *U*, of first cover times

- In Set Cover, aim is to find smallest sub-family of sets covering all items
- Alternative view
 - Produce **sequence** of sets
 - For each item, record earliest set that covers it (cover time)
 - Aim of Set Cover is to find a sequence in which largest cover time is minimized (when do we cover "last" item?)
- What if instead we minimize **sum** of cover times?

Ar initi 1: 2: 3: 4: 5: 6: 7: 8:	bitrary al order ABCDEF EFG B BH CI D GHJ ABDGH	Gre 1: 2: 3: 4: 5: 6: 7: 8:	eedy order ABCDEF GHJ CEFIJ BH CI D EFG ABDGH
9: Cov ea AB(11)	er time for ach item CDEFGHIJ 11112232	9: Set MSS In t Gree	B Cover: max = 3 SC: total = 15 his instance: eedy = OPT

- For Min Sum Set Cover, a greedy approach gives a factor-4 approximation
 - Essentially best [Feige et al.]
 - Proof uses a histogram!
- What about scheduling test cases?
- Suppose for the moment that test coverages don't overlap, no sense of covering
- Minimizing total completion time with precedence constraints has a factor-2 approximation

Minimizing total completion time

- Repeat the following step [CM99]:
 - Consider all subfamilies of sets that are precedence closed
 - $B \in \mathcal{X}, A \prec B \Rightarrow A \in \mathcal{X}$
 - Append to the schedule, and remove from input, the subfamily that maximizes ratio
 Sum of set sizes / # sets
- Amazingly, this subproblem can be solved in polynomial time
 - Binary search over collection of max-flow/min-cut computations
 - Very similar to finding a maxdensity subset of graph: |E(S)| / |S|

Combining coverage & completion times

Of course, sets might in fact **overlap**

SCHOOL OF

- Greedily, we choose precedence-closed subfamily maximizing density
 - Coverage of family / size of family
- This max-density precedence-closed subfamily approach "loses" factor of 4 – Not bad, but can we solve MDPCS?
- Best algorithm we found was a greedy approach
 - Return set whose required sub-family has maximal density
 - Approximation factor \sqrt{m} , leading to overall $4\sqrt{m}$ to MSSC-Prec
 - Not very good: were we too lazy?
- On trees, approx factor = height + I

Density of whole graph is 2.5

Density induced by BCDEF set is 3

OPT is 3.33

- Plot cover time (in order) for each element of U
 - Area under is sol'n cost
- Upper bound comprises horizontal slices of
 - height: sub-family size
 - width: #uncovered elements
- Map each slice to a column, shrunk in area by 4α (α is Max-density approx. factor)
- Since we chose sub-families greedily, up to factor α, OPT can't do *much* better
- Analysis developed from MSSC [FLT, 04]

Rumor spreading

- With colleagues at Princeton & Stanford, worked on **influence maximization**, modeling rumor or infection spread
 - Each node has a resistance to infection
 - Once more neighbors than its resistance are infected, it becomes infected
- What's the smallest number of nodes we need to infect initially so that eventually everyone becomes infected?
- This is a very hard problem to solve well
- To prove some problem is hard:
 - We show that if we could solve it, then we could solve some other problem we know (or believe) is too hard to solve

Hardness via Planted Dense Subgraph

- In this case, source problem was Planted Dense Subgraph
- Can we distinguish between a random graph on N nodes in which each vertex has approximately \sqrt{N} neighbors?
- And a similar random graph inserted with a random dense component on \sqrt{N} nodes
 - Inside dense component, on average $\sqrt[4]{N}$ extra neighbours
- It is strongly conjectured that this is hard to do in a reasonable amount of time

How does PDS reduce to MSSC-Prec

- Reduce a graph into an MSSC instance with precedences
- Each edge is a set covering $\sim \frac{1}{N^{3/4}}$ proportion of items
- Each vertex is a set covering "nothing", but
- Vertices *u* and *v* must **both** occur before edge (*u*,*v*)
- Set up instance so that edges in planted component just cover all items, hence \sqrt{N} vertices suffice
 - They induce $N^{3/4}$ edges
- But if no planted component, need $N^{5/8}$ vertices to induce $N^{3/4}$ edges
- We cannot expect approximation factor for MSSC-Prec better than $n^{1/6}$ or $m^{1/12}$

- Revisit new papers from MIT, Google, Mass, and Penn
 - Partial covers
 - Set sampling and element sampling
 - Different trade-offs between space, time approximation
 - Max Coverage in streams
- What other hardness results follow from hardness of Planted dense subgraph
- With PhD candidate Xin Zhang, and Naonori Kakimura (Keio):Why does Greedy perform so well?

Acknowledgements

- Australian Research Council
- Colleagues

MELBOURNE

MELBOURNE

SCHOOL OF

- Graham Cormode, Howard Karloff (both then @ AT&T Labs)
- Alistair Moffat, Ching Lih Lim
- Amit Chakrabarti (Dartmouth)
- Jess McClintock, Julián Mestre (Sydney)

