
Set Cover, cooked several ways

Tony Wirth
2018-10-29

What is Set Cover? And why care?• Set Cover is an “old”
optimization problem

• Researching classical
problems is somehow
satisfying
– Part of a tradition
– Prolific researchers

considering similar
questions

• Being sufficiently general,
Set Cover has wide
application

• With changing models of
computation, we revisit
some classic problems

©Tony Wirth Oct 2018 2

Red: 4 Blue: 3 Green: 2

Can you see another solution with three sets?

What is Set Cover? Why care about it?

• Given a family ! of sets
• Aim is to find smallest

subfamily of sets that
covers all items originally
covered by !

• Many variants, including
weighted sets

• How much time and space
required to solve Set
Cover, as a function of
– # of sets m
– # of items n

• Let T stand for total input
size (sum of set sizes)

• An example input with
– n = 10
– m = 9
– T = 28

©Tony Wirth Oct 2018 3

Slightly formal definition

ABCDEF
EFG
CEFIJ
BH
CI
D
GHJ
ABDGH
A

ABCDEF
EFG
CEFIJ ✔
BH
CI
D
GHJ
ABDGH ✔
A

Applications

• Facility location
– A hub can serve a set of demand points
– Which hubs do we open?

• Data mining
– Choosing a representative subset of a

massive data set
– This might be the dual problem of

maximum coverage

• Retrieval
– Topics we would like to cover
– At least one document per topic

©Tony Wirth Oct 2018 4

Bidgee [CC BY-SA 3.0]

• How might you solve this
problem?

• Start with the largest set?
• Then what?

• A greedy approach
• While there are uncovered

items:
– Take the set with the

largest number of (yet)
uncovered items

– “Contribution”

©Tony Wirth Oct 2018 5

The famous algorithm

ABCDEF
EFG
CEFIJ
BH
CI
D
GHJ
ABDGH
B

ABCDEF ✔
EFG
CEFIJ
BH
CI
D
GHJ
ABDGH
B

ABCDEF ✔
EFG
CEFIJ
BH
CI
D
GHJ ✔

ABDGH
B

ABCDEF ✔
EFG
CEFIJ ✔

BH
CI
D
GHJ ✔

ABDGH
B

• It runs in a reasonable
amount of time

• Its solution size we can
prove is at most ~loge n
times optimal
– In fact, in time polynomial

in T, this is best we can do
• On most “sensible”

examples, it performs within
~10% of optimal

• A “crazy” example where
greedy is ~log n worse than
optimal…

©Tony Wirth Oct 2018 6

What do we know about Greedy

log2(n+2)–1

2

Our agenda

• Set Cover when data resides on disk
• Algorithm design with AT&T Labs
• Deeper investigation at Melbourne

• Multipass streamed instances
• Especially lower bounds, with Dartmouth College

• Modelling software testing
• Min Sum Set Cover with precedence constraints
• Connections to influence maximization and community

detection, joint work with U. Sydney

©Tony Wirth Oct 2018 7

CC BY-SA 3.0

XKCD Dependencies
CC BY-NC 2.5

Implementing greedy on large datasets

©Tony Wirth Oct 2018 8

• When reading from disk, best to read in
blocks, not just isolated bytes
– Reading a file sequentially especially good
– To run efficiently, it might help to try to

process sets in some sequential order

• Key issue when implementing greedy
– When we add a set S to the solution
– Other sets that have items in common with S

must have their contributions updated to
reflect their lowered importance

• Addressed with Cormode & Karloff
(AT&T) and with Moffat and Lim
(Melbourne)

Don’t use this!

Ermishin CC BY-SA 3.0

• Could update counts eagerly:
– Immediately know which set

to add next
– This seems to require an
index: for each item, record
its owning sets
• As large as the input size!

– How do we avoid too many
random file accesses?

©Tony Wirth Oct 2018 9

Eager updating

1: ABCDEF
2: EFG
3: CEFIJ
4: BH
5: CI
6: D
7: GHJ
8: ABDGH
9: B

A: 18
B: 1489
C: 135
D: 168
E: 123
F: 123
G: 278
H: 478
I: 35
J: 37

Lazy updating

• Generate buckets of sets based on initial contribution
• [At all times, we have an estimated contribution of each set]
• Read each bucket in sequence, from highest estimated

contribution to lowest:
– For each set, if current contribution is same as the last estimate
– Then add it to the solution
– If not, update its contribution and append to appropriate bucket

• Assumes we store one bit per item, in fast memory, recording
whether item has been covered: O(n) space

• Relatively fast when sets stored on disk

©Tony Wirth Oct 2018 10

• Hopefully, it’s clear that lazy
updating is correct!

• Because a contribution can
only drop as Greedy
progresses, a previous
evaluation of contribution
remains an upper bound on
current contribution

• We process sets in order of
these upper-bound estimates

• If a set’s actual contribution
is the same as its estimate,
we know it has maximal
contribution

©Tony Wirth Oct 2018 11

Why does lazy work?

6: ABCDEF
5: CEFIJ ABDGH
3: EFG GHJ
2: BH CI
1: D B

5: CEFIJ ABDGH
3: EFG GHJ
2: BH CI
1: D B

3: GHJ
2: BH CI CEFIJ ABDGH
1: D B EFG

2: BH CI CEFIJ ABDGH
1: D B EFG

1: D B EFG CI CEFIJ

• Do we actually need a set with largest contribution?
• What about at least half as large as the best?
• Proved ⤳ Set Cover solution within ~2loge n of optimal

• Maintain sub-families of sets based on estimated
contribution, bands of powers of 2
• Include a set if contribution ≥ lower bound of band
• Each sub-family has own file, accessed sequentially
• Every second time we kick a set down, it’s half the size!

©Tony Wirth Oct 2018 12

Disk-friendly greedy

4-7: CEFIJ ABCDEF ABDGH
2-3: BH CI EFG GHJ
1: D B

4-7: ABCDEF ABDGH
2-3: BH CI EFG GHJ
1: D B

4-7: ABDGH
2-3: BH CI EFG GHJ ABD
1: D B

Other observations

• DFG bands need not be powers of 2
– Trade off speed with effectiveness: e.g., factor 1.1 or 1.01

• We considered preprocessing data, looking for items that
only appear in one set (“hapax legomena”)
– Add their sets to the solution immediately
– Requires a few initial passes through the input

• Can prove eager approach needs only O(T) time in total
• We found sequence of instances: lazy needs at least T4/3 time
• In practice, lazy is much faster
• A team at Carnegie Mellon said disk-friendly greedy took

more than 40 hours on one of their data sets
– When we ran it, it took about 18 minutes!?

©Tony Wirth Oct 2018 13

Ching Lih Lim’s experimental results

UKUnion SELG DFG (1.1) DFG (1.01)

Solution size 18,375,735 18,415,017 18,381,254

Time 67min05s 13min43s 17min27s

©Tony Wirth Oct 2018 14

Dataset #Sets (m) #Items (n) Largest Set Input size (T)

Social Network 37,551,359 64,961,029 3,615 1,806,067,135

UKUnion 74,117,320 126,454,248 22,429 3,376,989,142

Social Network Eager Lazy

Solution size 10,881,813 10,880,876

Time 19min52s 2min49s

Eager 7x slower

LG 0.03% better,
but 3.85 x slower

Multipass streams

• In the last 20 years, especially, algorithms research has
focused on streaming settings

• Data arrives in a pre-determined sequence
• It should be processed immediately, and quickly
• There isn’t enough space to store all the data
• Several models for this last point

– We adopted Set Streaming: small amount of space per item
– Necessary, just to verify a covering

• We allow multiple passes through the streamed data
– Models disk access … somewhat …
– For one pass, a factor-!(#) approximation [Emek & Rosen]

©Tony Wirth Oct 2018 15

Remember this?

DFG returns!

• Given the restriction on space
– What is trade-off between number of passes and

approximation?
– One pass: !(#) approximation
– log n passes: !(log #) approximation

• Say we are allowed p passes through the data
– We run a generalization of DFG
– Instead of log n families with lower boundaries: 1,2,4,8,16,…
– With p = 2: three families, size boundaries: 1, #+/-, #./-

– We have p+1 families, size boundaries, 1, #
/

01/, #
2

01/, … , #
0

01/

– Approximation factor is (p+1)n1/(p+1)

©Tony Wirth Oct 2018 16

• First: why p+1?
• Turns out you can run last two passes

simultaneously
– If an item isn’t covered by a set of

contribution at least n1/(p+1)

– Just record some set that covers it
• Rough idea of why !"/(%&") is the best

possible in O(n) space:
• Consider a family of n potential sets, each

a line ax+b, in 0,1, … , , − 1 ×
{0,1, … , , − 1}, where q is prime power,
n=q2

– Suppose there is a set in 1 that is the
complement of line h

– If 1 also contains line h, optimal solution
is just 2 sets

– If not, optimal has ≥q sets, as each pair of
lines intersects ≤1 point

©Tony Wirth Oct 2018 17

Why is this the “right” approach?

• To describe which sets
are in 1 needs n bits
– Cannot beat ! approx

• Proof for larger p
requires a different family
of curves

Test case prioritization

• While watching District Cricket…
cricket-Tim discussed with me…

• We would like to test software
efficiently: find faults as soon as possible

• We have a family of tests we could run,
each covering some of the lines of code

• How do we schedule tests so that we
maximize the rate of code coverage?

• What if some tests must be executed
before others?

©Tony Wirth Oct 2018 18

PrivateMusings - CC BY-SA 2.5

• We found some heuristics
– Repeatedly choosing

available test case with
highest contribution

– Sorting by contribution
initially, combined with
local-search to resolve
dependencies

• But what exactly are we
trying to optimize?
– “Average Percentage of

Faults Detected”

©Tony Wirth Oct 2018 19

Initial progress

Test
case

Fault IDs

A B C D E

1 ✔

2 ✔ ✔

3 ✔ ✔

4 ✔ ✔ ✔

Test 1

Test 4Test 2

Test 3

Formalizing

• Add binary precedence relation on !, ≺
– S2 ≺ S7 indicates S2 must precede S7 (in the output)
– We assume that the graph ≺ induces on ! is acyclic

• Return ordering of ! sets minimizing sum, over all
elements in U, of first cover times

©Tony Wirth Oct 2018 20

• In Set Cover, aim is to find
smallest sub-family of sets
covering all items

• Alternative view
– Produce sequence of sets
– For each item, record earliest

set that covers it (cover time)
– Aim of Set Cover is to find a

sequence in which largest
cover time is minimized (when
do we cover “last” item?)

• What if instead we minimize
sum of cover times?

©Tony Wirth Oct 2018 21

How is this like Set Cover?

1: ABCDEF
2: EFG
3: B
4: BH
5: CI
6: D
7: GHJ
8: ABDGH
9: CEFIJ

Arbitrary
initial order

1: ABCDEF
2: GHJ
3: CEFIJ
4: BH
5: CI
6: D
7: EFG
8: ABDGH
9: B

Greedy order

ABCDEFGHIJ
1111112232

Cover time for
each item

Set Cover: max = 3

MSSC: total = 15
In this instance:
Greedy = OPT

Related problems

• For Min Sum Set Cover, a greedy approach gives a factor-
4 approximation
– Essentially best [Feige et al.]
– Proof uses a histogram!

• What about scheduling test cases?
• Suppose for the moment that test coverages don’t

overlap, no sense of covering
• Minimizing total completion time with precedence

constraints has a factor-2 approximation

©Tony Wirth Oct 2018 22

• Repeat the following step [CM99]:
– Consider all subfamilies of sets that

are precedence closed
• ! ∈ #, % ≺ ! ⇒ % ∈ #

– Append to the schedule, and
remove from input, the subfamily
that maximizes ratio

Sum of set sizes / # sets
• Amazingly, this subproblem can be

solved in polynomial time
– Binary search over collection of

max-flow/min-cut computations
– Very similar to finding a max-

density subset of graph: |E(S)| / |S|

©Tony Wirth Oct 2018 23

Minimizing total completion time

1

35

5

1

5

5

3

5

Density: 3.5

Density: 3 ⁄* +

Density: 4, but not
precedence closed!

• Of course, sets might in fact overlap
• Greedily, we choose precedence-closed

subfamily maximizing density
– Coverage of family / size of family

• This max-density precedence-closed
subfamily approach “loses” factor of 4
– Not bad, but can we solve MDPCS?

• Best algorithm we found was a greedy
approach
– Return set whose required sub-family

has maximal density
– Approximation factor !, leading to

overall 4 ! to MSSC-Prec
– Not very good: were we too lazy?

• On trees, approx factor = height + 1

©Tony Wirth Oct 2018 24

Combining coverage & completion times

A

AGIBCDEF

CGHIJ

Density of whole
graph is 2.5

A

BCDEF

Density induced by
BCDEF set is 3

OPT is 3.33

• Plot cover time (in order)
for each element of U
– Area under is sol’n cost

• Upper bound comprises
horizontal slices of
– height: sub-family size
– width: #uncovered

elements
• Map each slice to a column,

shrunk in area by 4α (α is
Max-density approx. factor)

• Since we chose sub-families
greedily, up to factor α,
OPT can’t do much better

• Analysis developed from
MSSC [FLT, 04]

©Tony Wirth Oct 2018 25

Max-Density helps solve PCMSSC

U

U

#sets

GREEDY

OPT

Newly
covered

Cover
time

Newly
Covered/2

Cover
time

Uncovered/2

!"#$%&'&(
2*×,&"-./0

Uncovered

• With colleagues at Princeton & Stanford,
worked on influence maximization,
modeling rumor or infection spread
– Each node has a resistance to infection
– Once more neighbors than its resistance

are infected, it becomes infected
• What’s the smallest number of nodes we

need to infect initially so that eventually
everyone becomes infected?

• This is a very hard problem to solve well
• To prove some problem is hard:

– We show that if we could solve it, then
we could solve some other problem we
know (or believe) is too hard to solve

©Tony Wirth Oct 2018 26

Rumor spreading

2

3

2

4

• In this case, source problem was
Planted Dense Subgraph

• Can we distinguish between a
random graph on N nodes in
which each vertex has
approximately ! neighbors?

• And a similar random graph
inserted with a random dense
component on ! nodes
– Inside dense component, on

average " ! extra neighbours
• It is strongly conjectured that

this is hard to do in a reasonable
amount of time

©Tony Wirth Oct 2018 27

Hardness via Planted Dense Subgraph

• Reduce a graph into an MSSC
instance with precedences

• Each edge is a set covering ~ !
"#/%

proportion of items
• Each vertex is a set covering

“nothing”, but
• Vertices u and v must both occur

before edge (u,v)
• Set up instance so that edges in

planted component just cover all
items, hence & vertices suffice
– They induce &'/(edges

• But if no planted component,
need &)/* vertices to induce
&'/(edges

• We cannot expect approximation
factor for MSSC-Prec better than
+!/, or -!/!.

©Tony Wirth Oct 2018 28

How does PDS reduce to MSSC-Prec

u

(x,v): AGI(u,v): BCDEF

v x

My MSSC
score is at
most &

My MSSC score
is ~ &)/*

Future work

• Revisit new papers from MIT, Google, Mass, and Penn
– Partial covers
– Set sampling and element sampling

• Different trade-offs between space, time approximation

– Max Coverage in streams

• What other hardness results follow from hardness of
Planted dense subgraph

• With PhD candidate Xin Zhang, and Naonori Kakimura
(Keio): Why does Greedy perform so well?

©Tony Wirth Oct 2018 29

Acknowledgements

• Australian Research Council
• Colleagues

– Graham Cormode, Howard Karloff (both
then @ AT&T Labs)

– Alistair Moffat, Ching Lih Lim
– Amit Chakrabarti (Dartmouth)
– Jess McClintock, Julián Mestre (Sydney)

©Tony Wirth Oct 2018 30

