MELBOURNE

SCHOOL OF

ENGINEERING

THE UNIVERSITY OF
MELBOURNE

Set Cover, cooked several ways

Tony Wirth
2018-10-29

T) MELBOURNE

o s SCHOOL OF - .
e A e o i What is Set Cover? Why care about it!

MELBOURNE

* Set Cover is an “old”
optimization problem

* Researching classical
problems is somehow
satisfying

— Part of a tradition
— Prolific researchers

considering similar
questions

* Being sufficiently general,
Set Cover has wide
application

* With changing models of
computation, we revisit
some classic problems Red:4 Blue:3

iy W e

Can you see another solution with three sets?
©Tony Wirth Oct 2018 2

N

THE UNIVERSITY OF

MELBOURNE

MELBOURNE
SCHOOL OF

ENGINEERING

Given a family F of sets

Aim is to find smallest
subfamily of sets that
covers all items originally
covered by F

Many variants, including
weighted sets

How much time and space
required to solve Set
Cover, as a function of

— # of sets m
— # of items n

©Tony Wirth

Slightly formal definition

* Let T stand for total input

size (sum of set sizes)

* An example input with

—n=10

—m= 9

— T=28
ABCDEF ABCDEF
EFG EFG
CEFIJ CEFIJ V
BH BH
CIL CI
D D
GHJ GHJ
ABDGH ABDGH
A A

Oct 2018 3

€] MELBOURNE

»\s

SR & SCHOOL OF . .
meosmor ENGINEERING Applications

MELBOURNE

* Facility location
— A hub can serve a set of demand points
— Which hubs do we open?

* Data mining

— Choosing a representative subset of a
massive data set

— This might be the dual problem of
maximum coverage

Bidgee [CC BY-SA 3.0]

* Retrieval
— Topics we would like to cover

— At least one document per topic

©Tony Wirth Oct 2018 4

T) MELBOURNE

sy o SCHOOL OF .
e e e The famous algorithm

MELBOURNE

* How might you solve this ABCDEF ABCDEF
problem? EFG EFG
. CEFIJ CEFIJ
* Start with the largest set? BH BH
* Then what! CI CI
D D
GHJ GHJ
* A greedy approach ABDGH ABDGH
. B B
* While there are uncovered
itams: ABCDEF Vv ABCDEF Vv
, EFG EFG
— Take the set with the CEFI] CEFI] V
largest number of (yet) BH BH
uncovered items CI CI
— “Contribution” D D
GHJ v GHJ v
ABDGH ABDGH
B B

©Tony Wirth Oct 2018 5

T) MELBOURNE

sy o SCHOOL OF
B oo DO e What do we know about Greedy

MELBOURNE

* |t runs in a reasonable
amount of time

oli

LON VR VR VI VL VIR VIR VR | EVR VR VR V) | LR V)| RV

* lIts solution size we can
prove is at most ~log, n
times optimal

— In fact, in time polynomial
in T, this is best we can do

* On most “sensible”
examples, it performs within
~10% of optimal

log,(n+2)—1

* A“crazy” example where
greedy is ~log n worse than
optimal...

000000 O|©O0009)®

©Tony Wirth Oct 2018 6

T) MELBOURNE

2/ SCHOOL OF
THE UNIVERSITY OF ENGINEER[NG

MELBOURNE

Our agenda

Set Cover when data resides on disk
* Algorithm design with AT&T Labs
* Deeper investigation at Melbourne
* Multipass streamed instances

* Especially lower bounds, with Dartmouth College
* Modelling software testing
* Min Sum Set Cover with precedence constraints

* Connections to influence maximization and community
detection, joint work with U. Sydney

PAGE 3

CCBY-SA 3.0

DEPARTMENT COURSE DESCRIPTON PREREQS

XKCD Dependencies
CPSC Y32| | ccBY-NC 25

COMPUTER CPSC Y32 | INTERMEDIATE COMPILER
SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

S dd

—

P o

Lo,

i)

Al P e AL

©Tony Wirth Oct 2018

T) MELBOURNE

SCHOOL OF

e IR CE o Implementing greedy on large datasets

MELBOURNE

* When reading from disk, best to read in
blocks, not just isolated bytes
— Reading a file sequentially especially good
— To run efficiently, it might help to try to
process sets in some sequential order

* Key issue when implementing greedy

— When we add a set S to the solution

— Other sets that have items in common with §
must have their contributions updated to
reflect their lowered importance

* Addressed with Cormode & Karloff Dot use this
(AT&T) and with Moffat and Lim
(Melbourne)

Ermishin CC BY-SA 3.0
©Tony Wirth Oct 2018 8

T) MELBOURNE

e SCHOOL OF 0
THE UNIVERSITY OF ENGINEER]NG Ea—ger UPdatIng

MELBOURNE

 Could update counts eagerly: 1o ABCDEF — A: 18
2. EFG B: 1489
— Immediately know which set 3: CEFIJ C: 135
to add next 4: BH D: 168
. . 5: CI E: 123
— This seems to require an 6: D F: 123
index: for each item, record /7 GHJ G: 278
. : 8: ABDGH H: 478
its owning sets 9. B I. 3t
* As large as the input size! J: 37

— How do we avoid too many
random file accesses?

©Tony Wirth Oct 2018 9

T) MELBOURNE

R, SCHOOL OF 0
THE UNIVERSITY OF ENGINEER[NG LaZy updatlng

MELBOURNE

* Generate buckets of sets based on initial contribution
* [At all times, we have an estimated contribution of each set]

* Read each bucket in sequence, from highest estimated
contribution to lowest:
— For each set, if current contribution is same as the last estimate

— Then add it to the solution
— If not, update its contribution and append to appropriate bucket

* Assumes we store one bit per item, in fast memory, recording
whether item has been covered: O(n) space

* Relatively fast when sets stored on disk

©Tony Wirth Oct 2018 10

T) MELBOURNE

s scHooL or Why does lazy work!?

THE UNIVERSITY OF ENGINEER[NG

MELBOURNE

* Hopefully,it’s clear that lazy = 6: ABCDEF
updating is correct! 5: CEFIJ ABDGH
* Because a contribution can 3 EFG GHJ
only drop as Greedy ij gHBCI
progresses, a previous ‘
evaluation of contribution 5: CEFIJ ABDGH
remains an upper bound on ~ 3: EFG GHJ
current contribution i SHBCI
* We process sets in order of '
these upper-bound estimates 3: GHJ
,) 2: BH CI CEFIJ ABDGH
* If a set’s actual contribution 4. p B EFe
is the same as its estimate,
we know it has maximal 2: BH CI CEFIJ ABDGH
contribution 1: DB EFG
1: D B EFG CI CEFIJ

©Tony Wirth Oct 2018 I

T) MELBOURNE

R, SCHOOL OF M *
THE UNIVERSITY OF ENGINEER[NG DISI(-frIendIy greedy

MELBOURNE

* Do we actually need a set with largest contribution?
* What about at least half as large as the best!?
* Proved ~ Set Cover solution within ~2log, n of optimal
* Maintain sub-families of sets based on estimated
contribution, bands of powers of 2
* Include a set if contribution 2 lower bound of band

* Each sub-family has own file, accessed sequentially
* Every second time we kick a set down, it’s half the size!

4-7: CEFIJ ABCDEF ABDGH 4-7: ABDGH

2-3: BH CI EFG GHJ 2-3: BH CI EFG GHJ ABD
1: DB 1: D B

4-7: ABCDEF ABDGH

2-3: BH CI EFG GHJ

1: DB

©Tony Wirth Oct 2018 12

z) MELBOURNE
= SCHOOL OF

SR e NN Other observations

MELBOURNE

* DFG bands need not be powers of 2
— Trade off speed with effectiveness: e.g., factor ./ or .01

* We considered preprocessing data, looking for items that
only appear in one set (“hapax legomena”)

— Add their sets to the solution immediately
— Requires a few initial passes through the input

* Can prove eager approach needs only O(T) time in total
* We found sequence of instances: lazy needs at least T#> time
* In practice, lazy is much faster

* A team at Carnegie Mellon said disk-friendly greedy took
more than 40 hours on one of their data sets

— When we ran it, it took about |8 minutes!?

©Tony Wirth Oct 2018 13

MELBOURNE

d > SCHOOL OF B S M ’ *
e S Lo O Ching Lih Lim’s experimental results

MELBOURNE

#Sets (m) #ltems (n) Input size (T)

Social Network 37,551,359 64,961,029 3,615 1,806,067,135
UKUnion 74,117,320 126,454,248 22,429 3,376,989,142

Solution size 10,881,813 10,880,876 Eager 7x slower
Time |9min52s 2min49s

“Ukunion | SELG | DFG(L.) | DFG (L01)_

Solution size 18,375,735 18,415,017 18,381,254
Time 67min05s | 3min43s | 7min27s

LG 0.03% better,
but 3.85 x slower

©Tony Wirth Oct 2018 14

T) MELBOURNE

R, SCHOOL OF °
THE UNIVERSITY OF ENGINEER[NG MUItIPa—SS Streams

MELBOURNE

* In the last 20 years, especially, algorithms research has
focused on streaming settings

* Data arrives in a pre-determined sequence
* It should be processed immediately, and quickly
* There isn’t enough space to store all the data

* Several models for this last point
— We adopted Set Streaming: small amount of space per item
— Necessary, just to verify a covering

* We allow multiple passes through the streamed data

— Models disk access ... somewhat ...
— For one pass, a factor-0(y/n) approximation [Emek & Rosen]

Remember this?

©Tony Wirth Oct 2018 I5

T) MELBOURNE

°v S SCHOOL OF '
THE UNIVERSITY OF ENGINEERING DFG retu rns.

MELBOURNE

* Given the restriction on space

— What is trade-off between number of passes and
approximation?

— One pass: 0(1/n) approximation
— log n passes: O(logn) approximation
* Say we are allowed p passes through the data
— We run a generalization of DFG
— Instead of log n families with lower boundaries: 1,2,4,8,16,...

— With p = 2: three families, size boundaries: 1, n'/3,n?/3
1 2 D

— We have p+1 families, size boundaries, 1, nr+1, np+1, . ,np+t
— Approximation factor is (p+1)n!/(P+!)

©Tony Wirth Oct 2018 16

T) MELBOURNE

SCHOOL OF

e P Why is this the “right” approach!?

MELBOURNE

* First: why p+1?
* Turns out you can run last two passes
simultaneously

— |If an item isn’t covered bZ a set of
contribution at least n!/(P*1)

— Just record some set that covers it
* Rough idea of why n/(P*1) js the best
possible in O(n) space:
* Consider a family of n potential sets, each
a line ax+b, in {0,1, ..., — 1} X . .
{0,1,...,q — 1}, where q is prime power, ° To describe which sets

— 2 . .
n=q are in F needs n bits
— Suppose there is a set in F that is the
complement of line h — Cannot beat v/n dpprox
— IffF also contains line h, optimal solutione Proof for Iarger b
s just 2 sets _ requires a different family
— If not, optimal has 2q sets, as each pair of :
lines intersects <| point Oof curves

©Tony Wirth Oct 2018 17

ﬁ?}? MELBOURNE

33 = SCHOOL OF

e e e Test case prioritization

»

MELBOURNE

* While watching District Cricket...
cricket-Tim discussed with me...

* We would like to test software
efficiently: find faults as soon as possible

* We have a family of tests we could run,
each covering some of the lines of code

* How do we schedule tests so that we
maximize the rate of code coverage!

* What if some tests must be executed |
befO re OtherS? PrivateMusings - CC BY-SA 2.5

©Tony Wirth Oct 2018 18

.) MELBOURNE

e SCHOOL OF MY
THE UNIVERSITY OF ENGINEERING Inltlal Progress

MELBOURNE

* We found some heuristics Fault IDs
case

— Repeatedly choosing
available test case with

A B C D E

highest contribution | v
— Sorting by contribution 2 v v

initially, combined with 3 v oV

local-search to resolve 4 VvV v

dependencies

* But what exactly are we
trying to optimize!

— “Average Percentage of
Faults Detected”

©Tony Wirth Oct 2018 19

T) MELBOURNE

e SCHOOL OF o__ o
THE UNIVERSITY OF ENGINEER]NG FormaIIZIng

MELBOURNE

* Add binary precedence relation on F, <
— §, < §; indicates S, must precede S, (in the output)

— We assume that the graph < induces on F is acyclic

* Return ordering of F sets minimizing sum, over all
elements in U, of first cover times

©Tony Wirth Oct 2018 20

N

THE UNIVERSITY OF

MELBOURNE

MELBOURNE
SCHOOL OF

ENGINEERING

How is this like Set Cover?

* In Set Cover, aim is to find
smallest sub-family of sets

covering all items
Alternative view

— Produce sequence of sets

— For each item, record earliest
set that covers it (cover time)

— Aim of Set Cover is to find a
sequence in which largest
cover time is minimized (when
do we cover “last” item?)

What if instead we minimize

sum of cover times!?

©Tony Wirth Oct 2018

Arbitrary
initial order

: ABCDEF
EFG

B

BH

. CI

D

: GHJ

: ABDGH
: CEFIJ

O OoOONOTULTPEA NN -

Cover time for
each item

ABCDEFGHIJ
1111112232

Greedy order

: ABCDEF
: GHJ

: CEFIJ
BH

. CI

: D

EFG

: ABDGH
B

OCoOoONONUVT P~ WN -

Set Cover: max = 3

MSSC: total = |5
In this instance:
Greedy = OPT

21

T) MELBOURNE

R, SCHOOL OF
THE UNIVERSITY OF ENGINEERING Related PrObIems

MELBOURNE

* For Min Sum Set Cover, a greedy approach gives a factor-
4 approximation

— Essentially best [Feige et al.]

— Proof uses a histogram!
* What about scheduling test cases!

* Suppose for the moment that test coverages don’t
overlap, no sense of covering

* Minimizing total completion time with precedence
constraints has a factor-2 approximation

©Tony Wirth Oct 2018 22

T) MELBOURNE

R, SCHOOL OF 11 — 1 1
e T o B Minimizing total completion time

MELBOURNE

* Repeat the following step [CM99]:

— Consider all subfamilies of sets that
are precedence closed

e BEX,A<B=>A€eX

— Append to the schedule, and
remove from input, the subfamily
that maximizes ratio

Sum of set sizes | # sets

* Amazingly, this subproblem can be
solved in polynomial time

Density: 32/

— Binary search over collection of
max-flow/min-cut computations

— Very similar to finding a max- 3

. . Density: 4, but not
density subset of graph: [E(S)| / | precedence closed!

©Tony Wirth Oct 2018 23

T) MELBOURNE

% 5 SCHOOL OF A 0 o
S e v Combining coverage & completion times

MELBOURNE

« Of course, sets might in fact overlap
. Gr")efedil{, we choose p(lj*ecedence-closed
subfamily maximizing densit
— Cove)ll"age of familyg/ size toamin [BCDEF H G]
* This max-density precedence-closed
subfamily approach “loses” factor of 4 Density of whole
— Not bad, but can we solve MDPCS? graph is 2.5

* Best algorithm we found was a greedy

approach

— Return set whose required sub-family
has maximal density

— Approximation factor 1/m, leading to (BCDEF |
overall 44/m to MSSC-Prec

— : 4
Not very good: were we toc? lazy! Density induced by
* On trees, approx factor = height + | BCDEF set is 3

OPT is 3.33

©Tony Wirth Oct 2018 24

T) MELBOURNE

sy o SCHOOL OF _ .
e AR e L U Max-Density helps solve PCMSSC

MELBOURNE

* Plot cover time (in order)
for each element of U

— Area under is sol’'n cost GREEDY Njewly
* Upper bound comprises covered
hori tal sli f Cover]
orizontal slices o) Hsets Uncovered
time Y]

— height: sub-family size |
— width: #uncovered
elements - U

* Map each slice to a column, OPT j

shrunk in area by 4a (ais ¢ er
Max-density approx. factor) time J&

* Since we chose sub-families
greedily, up to factor q, e
OPT can’t do much better |

* Analysis developed from Ne ,m
MSSC [FLT, 04] Cove:::c);IZ

©Tony Wirth Oct 2018 25

T) MELBOURNE

R, SCHOOL OF 0
THE UNIVERSITY OF ENGINEER[NG Rumor Spreadlng

MELBOURNE

* W/ith colleagues at Princeton & Stanford,
worked on influence maximization,
modeling rumor or infection spread

— Each node has a resistance to infection

— Once more neighbors than its resistance 4
are infected, it becomes infected

* What’s the smallest number of nodes we
need to infect initially so that eventually
everyone becomes infected?

* This is a very hard problem to solve well

* To prove some problem is hard:

— We show that if we could solve it, then
we could solve some other problem we
know (or believe) is too hard to solve

©Tony Wirth Oct 2018 26

\E‘:ﬁ MELBOURNE

»

d = SCHOOL OF E
e S o e Hardness via Planted Dense Subgraph

THE UI
MELBOURNE

* In this case, source problem was
Planted Dense Subgraph

* Can we distinguish between a
random graph on N nodes in
which each vertex has

approximately VN neighbors?

* And a similar random graph
inserted with a random dense
component on VN nodes

— Inside dense component, on
average V/N extra neighbours

* ltis strongly conjectured that

this is hard to do in a reasonable
amount of time

©Tony Wirth Oct 2018

S8

THE UNIVERSITY OF

MELBOURNE

MELBOURNE

LR How does PDS reduce to MSSC-Prec

ENGINEERING

Reduce a graph into an MSSC
instance with precedences
1

N3/4

Each edge is a set covering ~
proportion of items

Each vertex is a set covering
“nothing”, but

Vertices u and v must both occur
before edge (u,v)

Set up instance so that edges in
planted component just cover all
items, hence V/N vertices suffice

— They induce N3/* edges

But if no glanted component,
need N>/8 vertices to induce
N3/% edges

We cannot expect approximation

factor for MSSC-Prec better than
n1/6 or m1/12

My MSSC score
is ~ N5/8

©Tony Wirth Oct 2018

My MSSC
score is at

most VN

28

T) MELBOURNE

2 SCHOOL OF

THE UNIVERSITY OF ENGINEERING FUtu re WO rk

MELBOURNE

* Revisit new papers from MIT, Google, Mass, and Penn
— Partial covers

— Set sampling and element sampling

* Different trade-offs between space, time approximation

— Max Coverage in streams

* What other hardness results follow from hardness of
Planted dense subgraph

* With PhD candidate Xin Zhang, and Naonori Kakimura
(Keio):Why does Greedy perform so well?

©Tony Wirth Oct 2018 29

E MELBOURNE
»\ SCHOOL OF AcknOWIGdgementS

THE UNIVERSITY OF ENGINEERING

MELBOURNE

 Australian Research Council

* Colleagues

— Graham Cormode, Howard Karloff (both
then @ AT&T Labs)

— Alistair Moffat, Ching Lih Lim
— Amit Chakrabarti (Dartmouth)
— Jess McClintock, Julian Mestre (Sydney)

©Tony Wirth Oct 2018 30

